import_utils.py 47.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Import utilities: Utilities related to imports and our lazy inits.
"""

18
import importlib.metadata
19
20
21
import importlib.util
import json
import os
22
import shutil
玩火's avatar
玩火 committed
23
import subprocess
24
import sys
25
import warnings
26
from collections import OrderedDict
Yih-Dar's avatar
Yih-Dar committed
27
from functools import lru_cache, wraps
28
29
from itertools import chain
from types import ModuleType
30
from typing import Any, Tuple, Union
31
32
33
34
35
36
37
38

from packaging import version

from . import logging


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

39

Yih-Dar's avatar
Yih-Dar committed
40
# TODO: This doesn't work for all packages (`bs4`, `faiss`, etc.) Talk to Sylvain to see how to do with it better.
41
42
43
44
45
46
def _is_package_available(pkg_name: str, return_version: bool = False) -> Union[Tuple[bool, str], bool]:
    # Check we're not importing a "pkg_name" directory somewhere but the actual library by trying to grab the version
    package_exists = importlib.util.find_spec(pkg_name) is not None
    package_version = "N/A"
    if package_exists:
        try:
47
            package_version = importlib.metadata.version(pkg_name)
48
            package_exists = True
49
        except importlib.metadata.PackageNotFoundError:
50
51
52
53
54
55
56
57
            package_exists = False
        logger.debug(f"Detected {pkg_name} version {package_version}")
    if return_version:
        return package_exists, package_version
    else:
        return package_exists


58
59
60
61
62
63
64
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})

USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()

65
66
FORCE_TF_AVAILABLE = os.environ.get("FORCE_TF_AVAILABLE", "AUTO").upper()

67
68
69
70
71
72
73
# This is the version of torch required to run torch.fx features and torch.onnx with dictionary inputs.
TORCH_FX_REQUIRED_VERSION = version.parse("1.10")


_accelerate_available, _accelerate_version = _is_package_available("accelerate", return_version=True)
_apex_available = _is_package_available("apex")
_bitsandbytes_available = _is_package_available("bitsandbytes")
74
75
_flash_attn_2_available = _is_package_available("flash_attn") and version.parse(
    importlib.metadata.version("flash_attn")
76
) >= version.parse("2.1.0")
77
# `importlib.metadata.version` doesn't work with `bs4` but `beautifulsoup4`. For `importlib.util.find_spec`, reversed.
Yih-Dar's avatar
Yih-Dar committed
78
_bs4_available = importlib.util.find_spec("bs4") is not None
79
_coloredlogs_available = _is_package_available("coloredlogs")
NielsRogge's avatar
NielsRogge committed
80
81
# `importlib.metadata.util` doesn't work with `opencv-python-headless`.
_cv2_available = importlib.util.find_spec("cv2") is not None
82
83
84
_datasets_available = _is_package_available("datasets")
_decord_available = importlib.util.find_spec("decord") is not None
_detectron2_available = _is_package_available("detectron2")
Yih-Dar's avatar
Yih-Dar committed
85
86
87
# We need to check both `faiss` and `faiss-cpu`.
_faiss_available = importlib.util.find_spec("faiss") is not None
try:
88
    _faiss_version = importlib.metadata.version("faiss")
Yih-Dar's avatar
Yih-Dar committed
89
    logger.debug(f"Successfully imported faiss version {_faiss_version}")
90
except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
91
    try:
92
        _faiss_version = importlib.metadata.version("faiss-cpu")
Yih-Dar's avatar
Yih-Dar committed
93
        logger.debug(f"Successfully imported faiss version {_faiss_version}")
94
    except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
95
        _faiss_available = False
96
97
98
_ftfy_available = _is_package_available("ftfy")
_ipex_available, _ipex_version = _is_package_available("intel_extension_for_pytorch", return_version=True)
_jieba_available = _is_package_available("jieba")
99
_jinja_available = _is_package_available("jinja2")
100
101
_kenlm_available = _is_package_available("kenlm")
_keras_nlp_available = _is_package_available("keras_nlp")
NielsRogge's avatar
NielsRogge committed
102
_levenshtein_available = _is_package_available("Levenshtein")
103
104
_librosa_available = _is_package_available("librosa")
_natten_available = _is_package_available("natten")
NielsRogge's avatar
NielsRogge committed
105
_nltk_available = _is_package_available("nltk")
106
107
108
_onnx_available = _is_package_available("onnx")
_openai_available = _is_package_available("openai")
_optimum_available = _is_package_available("optimum")
Marc Sun's avatar
Marc Sun committed
109
_auto_gptq_available = _is_package_available("auto_gptq")
110
111
112
113
114
115
116
_pandas_available = _is_package_available("pandas")
_peft_available = _is_package_available("peft")
_phonemizer_available = _is_package_available("phonemizer")
_psutil_available = _is_package_available("psutil")
_py3nvml_available = _is_package_available("py3nvml")
_pyctcdecode_available = _is_package_available("pyctcdecode")
_pytesseract_available = _is_package_available("pytesseract")
117
_pytest_available = _is_package_available("pytest")
118
119
120
121
122
123
_pytorch_quantization_available = _is_package_available("pytorch_quantization")
_rjieba_available = _is_package_available("rjieba")
_sacremoses_available = _is_package_available("sacremoses")
_safetensors_available = _is_package_available("safetensors")
_scipy_available = _is_package_available("scipy")
_sentencepiece_available = _is_package_available("sentencepiece")
124
_is_seqio_available = _is_package_available("seqio")
125
126
127
_sklearn_available = importlib.util.find_spec("sklearn") is not None
if _sklearn_available:
    try:
128
129
        importlib.metadata.version("scikit-learn")
    except importlib.metadata.PackageNotFoundError:
130
        _sklearn_available = False
131
_smdistributed_available = importlib.util.find_spec("smdistributed") is not None
132
133
134
135
136
137
138
139
140
141
142
143
144
_soundfile_available = _is_package_available("soundfile")
_spacy_available = _is_package_available("spacy")
_sudachipy_available = _is_package_available("sudachipy")
_tensorflow_probability_available = _is_package_available("tensorflow_probability")
_tensorflow_text_available = _is_package_available("tensorflow_text")
_tf2onnx_available = _is_package_available("tf2onnx")
_timm_available = _is_package_available("timm")
_tokenizers_available = _is_package_available("tokenizers")
_torchaudio_available = _is_package_available("torchaudio")
_torchdistx_available = _is_package_available("torchdistx")
_torchvision_available = _is_package_available("torchvision")


145
_torch_version = "N/A"
146
_torch_available = False
147
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
148
    _torch_available, _torch_version = _is_package_available("torch", return_version=True)
149
150
151
152
153
154
else:
    logger.info("Disabling PyTorch because USE_TF is set")
    _torch_available = False


_tf_version = "N/A"
155
_tf_available = False
156
157
if FORCE_TF_AVAILABLE in ENV_VARS_TRUE_VALUES:
    _tf_available = True
158
else:
159
    if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
160
161
162
        # Note: _is_package_available("tensorflow") fails for tensorflow-cpu. Please test any changes to the line below
        # with tensorflow-cpu to make sure it still works!
        _tf_available = importlib.util.find_spec("tensorflow") is not None
163
164
165
166
167
168
169
170
        if _tf_available:
            candidates = (
                "tensorflow",
                "tensorflow-cpu",
                "tensorflow-gpu",
                "tf-nightly",
                "tf-nightly-cpu",
                "tf-nightly-gpu",
171
                "tf-nightly-rocm",
172
173
174
175
176
177
178
179
180
181
                "intel-tensorflow",
                "intel-tensorflow-avx512",
                "tensorflow-rocm",
                "tensorflow-macos",
                "tensorflow-aarch64",
            )
            _tf_version = None
            # For the metadata, we have to look for both tensorflow and tensorflow-cpu
            for pkg in candidates:
                try:
182
                    _tf_version = importlib.metadata.version(pkg)
183
                    break
184
                except importlib.metadata.PackageNotFoundError:
185
186
187
188
189
190
191
192
193
194
                    pass
            _tf_available = _tf_version is not None
        if _tf_available:
            if version.parse(_tf_version) < version.parse("2"):
                logger.info(
                    f"TensorFlow found but with version {_tf_version}. Transformers requires version 2 minimum."
                )
                _tf_available = False
    else:
        logger.info("Disabling Tensorflow because USE_TORCH is set")
195
196


Susnato Dhar's avatar
Susnato Dhar committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
_essentia_available = importlib.util.find_spec("essentia") is not None
try:
    _essentia_version = importlib.metadata.version("essentia")
    logger.debug(f"Successfully imported essentia version {_essentia_version}")
except importlib.metadata.PackageNotFoundError:
    _essentia_version = False


_pretty_midi_available = importlib.util.find_spec("pretty_midi") is not None
try:
    _pretty_midi_version = importlib.metadata.version("pretty_midi")
    logger.debug(f"Successfully imported pretty_midi version {_pretty_midi_version}")
except importlib.metadata.PackageNotFoundError:
    _pretty_midi_available = False


213
214
215
216
217
218
ccl_version = "N/A"
_is_ccl_available = (
    importlib.util.find_spec("torch_ccl") is not None
    or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None
)
try:
219
    ccl_version = importlib.metadata.version("oneccl_bind_pt")
220
    logger.debug(f"Detected oneccl_bind_pt version {ccl_version}")
221
except importlib.metadata.PackageNotFoundError:
222
    _is_ccl_available = False
223

224

225
226
227
228
229
230
231
232
233
234
_flax_available = False
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
    _flax_available, _flax_version = _is_package_available("flax", return_version=True)
    if _flax_available:
        _jax_available, _jax_version = _is_package_available("jax", return_version=True)
        if _jax_available:
            logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
        else:
            _flax_available = _jax_available = False
            _jax_version = _flax_version = "N/A"
235

236
237
238
239
240
241
242
243

_torch_fx_available = False
if _torch_available:
    torch_version = version.parse(_torch_version)
    _torch_fx_available = (torch_version.major, torch_version.minor) >= (
        TORCH_FX_REQUIRED_VERSION.major,
        TORCH_FX_REQUIRED_VERSION.minor,
    )
244
245


246
def is_kenlm_available():
247
    return _kenlm_available
248
249


NielsRogge's avatar
NielsRogge committed
250
251
252
253
def is_cv2_available():
    return _cv2_available


254
255
256
257
def is_torch_available():
    return _torch_available


258
259
260
261
def get_torch_version():
    return _torch_version


NielsRogge's avatar
NielsRogge committed
262
def is_torchvision_available():
263
    return _torchvision_available
NielsRogge's avatar
NielsRogge committed
264
265


266
267
268
269
270
271
272
273
def is_pyctcdecode_available():
    return _pyctcdecode_available


def is_librosa_available():
    return _librosa_available


Susnato Dhar's avatar
Susnato Dhar committed
274
275
276
277
278
279
280
281
def is_essentia_available():
    return _essentia_available


def is_pretty_midi_available():
    return _pretty_midi_available


282
283
284
285
286
287
288
289
290
def is_torch_cuda_available():
    if is_torch_available():
        import torch

        return torch.cuda.is_available()
    else:
        return False


291
292
293
294
295
296
297
298
299
def is_torch_mps_available():
    if is_torch_available():
        import torch

        if hasattr(torch.backends, "mps"):
            return torch.backends.mps.is_available()
    return False


300
def is_torch_bf16_gpu_available():
301
302
303
304
305
306
307
308
    if not is_torch_available():
        return False

    import torch

    # since currently no utility function is available we build our own.
    # some bits come from https://github.com/pytorch/pytorch/blob/2289a12f21c54da93bf5d696e3f9aea83dd9c10d/torch/testing/_internal/common_cuda.py#L51
    # with additional check for torch version
Yih-Dar's avatar
Yih-Dar committed
309
310
311
312
    # to succeed: (torch is required to be >= 1.10 anyway)
    # 1. the hardware needs to support bf16 (GPU arch >= Ampere, or CPU)
    # 2. if using gpu, CUDA >= 11
    # 3. torch.autocast exists
313
314
    # XXX: one problem here is that it may give invalid results on mixed gpus setup, so it's
    # really only correct for the 0th gpu (or currently set default device if different from 0)
315
316
    if torch.cuda.is_available() and torch.version.cuda is not None:
        if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8:
317
            return False
318
        if int(torch.version.cuda.split(".")[0]) < 11:
319
            return False
320
        if not hasattr(torch.cuda.amp, "autocast"):
321
            return False
322
    else:
323
324
325
326
327
328
329
330
331
332
333
        return False

    return True


def is_torch_bf16_cpu_available():
    if not is_torch_available():
        return False

    import torch

334
335
336
337
    try:
        # multiple levels of AttributeError depending on the pytorch version so do them all in one check
        _ = torch.cpu.amp.autocast
    except AttributeError:
338
        return False
339

340
341
342
343
    return True


def is_torch_bf16_available():
344
345
346
347
348
349
350
351
    # the original bf16 check was for gpu only, but later a cpu/bf16 combo has emerged so this util
    # has become ambiguous and therefore deprecated
    warnings.warn(
        "The util is_torch_bf16_available is deprecated, please use is_torch_bf16_gpu_available "
        "or is_torch_bf16_cpu_available instead according to whether it's used with cpu or gpu",
        FutureWarning,
    )
    return is_torch_bf16_gpu_available()
352
353


354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
@lru_cache()
def is_torch_fp16_available_on_device(device):
    if not is_torch_available():
        return False

    import torch

    try:
        x = torch.zeros(2, 2, dtype=torch.float16).to(device)
        _ = x @ x
    except:  # noqa: E722
        # TODO: more precise exception matching, if possible.
        # most backends should return `RuntimeError` however this is not guaranteed.
        return False

    return True


@lru_cache()
def is_torch_bf16_available_on_device(device):
    if not is_torch_available():
        return False

    import torch

    if device == "cuda":
        return is_torch_bf16_gpu_available()

    try:
        x = torch.zeros(2, 2, dtype=torch.bfloat16).to(device)
        _ = x @ x
    except:  # noqa: E722
        # TODO: more precise exception matching, if possible.
        # most backends should return `RuntimeError` however this is not guaranteed.
        return False

    return True


393
394
395
396
397
398
399
400
401
402
403
404
def is_torch_tf32_available():
    if not is_torch_available():
        return False

    import torch

    if not torch.cuda.is_available() or torch.version.cuda is None:
        return False
    if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8:
        return False
    if int(torch.version.cuda.split(".")[0]) < 11:
        return False
405
    if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.7"):
406
407
408
409
410
411
412
413
414
        return False

    return True


def is_torch_fx_available():
    return _torch_fx_available


415
def is_peft_available():
416
    return _peft_available
417
418


NielsRogge's avatar
NielsRogge committed
419
def is_bs4_available():
420
    return _bs4_available
NielsRogge's avatar
NielsRogge committed
421
422


423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
def is_tf_available():
    return _tf_available


def is_coloredlogs_available():
    return _coloredlogs_available


def is_tf2onnx_available():
    return _tf2onnx_available


def is_onnx_available():
    return _onnx_available


Sylvain Gugger's avatar
Sylvain Gugger committed
439
def is_openai_available():
440
    return _openai_available
Sylvain Gugger's avatar
Sylvain Gugger committed
441
442


443
444
445
446
447
448
449
450
def is_flax_available():
    return _flax_available


def is_ftfy_available():
    return _ftfy_available


451
@lru_cache()
452
453
def is_torch_tpu_available(check_device=True):
    "Checks if `torch_xla` is installed and potentially if a TPU is in the environment"
454
455
    if not _torch_available:
        return False
456
457
458
459
460
    if importlib.util.find_spec("torch_xla") is not None:
        if check_device:
            # We need to check if `xla_device` can be found, will raise a RuntimeError if not
            try:
                import torch_xla.core.xla_model as xm
461

462
463
464
465
                _ = xm.xla_device()
                return True
            except RuntimeError:
                return False
466
        return True
467
    return False
468
469


470
471
472
473
474
475
476
@lru_cache()
def is_torch_neuroncore_available(check_device=True):
    if importlib.util.find_spec("torch_neuronx") is not None:
        return is_torch_tpu_available(check_device)
    return False


477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
@lru_cache()
def is_torch_npu_available(check_device=False):
    "Checks if `torch_npu` is installed and potentially if a NPU is in the environment"
    if not _torch_available or importlib.util.find_spec("torch_npu") is None:
        return False

    import torch
    import torch_npu  # noqa: F401

    if check_device:
        try:
            # Will raise a RuntimeError if no NPU is found
            _ = torch.npu.device_count()
            return torch.npu.is_available()
        except RuntimeError:
            return False
    return hasattr(torch, "npu") and torch.npu.is_available()


496
def is_torchdynamo_available():
497
498
499
500
501
502
503
504
    if not is_torch_available():
        return False
    try:
        import torch._dynamo as dynamo  # noqa: F401

        return True
    except Exception:
        return False
505
506


507
508
509
510
511
512
def is_torch_compile_available():
    if not is_torch_available():
        return False

    import torch

513
514
    # We don't do any version check here to support nighlies marked as 1.14. Ultimately needs to check version against
    # 2.0 but let's do it later.
515
516
517
    return hasattr(torch, "compile")


518
519
520
521
522
523
524
525
526
527
528
def is_torchdynamo_compiling():
    if not is_torch_available():
        return False
    try:
        import torch._dynamo as dynamo  # noqa: F401

        return dynamo.is_compiling()
    except Exception:
        return False


529
530
531
532
533
534
def is_torch_tensorrt_fx_available():
    if importlib.util.find_spec("torch_tensorrt") is None:
        return False
    return importlib.util.find_spec("torch_tensorrt.fx") is not None


535
536
537
538
539
540
541
542
543
def is_datasets_available():
    return _datasets_available


def is_detectron2_available():
    return _detectron2_available


def is_rjieba_available():
544
    return _rjieba_available
545
546
547


def is_psutil_available():
548
    return _psutil_available
549
550
551


def is_py3nvml_available():
552
    return _py3nvml_available
553
554


555
def is_sacremoses_available():
556
    return _sacremoses_available
557
558


559
def is_apex_available():
560
    return _apex_available
561
562


563
def is_ninja_available():
玩火's avatar
玩火 committed
564
565
566
567
568
569
570
571
572
573
    r"""
    Code comes from *torch.utils.cpp_extension.is_ninja_available()*. Returns `True` if the
    [ninja](https://ninja-build.org/) build system is available on the system, `False` otherwise.
    """
    try:
        subprocess.check_output("ninja --version".split())
    except Exception:
        return False
    else:
        return True
574
575


576
def is_ipex_available():
577
578
579
    def get_major_and_minor_from_version(full_version):
        return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)

580
    if not is_torch_available() or not _ipex_available:
581
        return False
582

583
584
585
586
587
588
589
590
591
    torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
    ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
    if torch_major_and_minor != ipex_major_and_minor:
        logger.warning(
            f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
            f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
        )
        return False
    return True
592
593


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
@lru_cache
def is_torch_xpu_available(check_device=False):
    "Checks if `intel_extension_for_pytorch` is installed and potentially if a XPU is in the environment"
    if not is_ipex_available():
        return False

    import intel_extension_for_pytorch  # noqa: F401
    import torch

    if check_device:
        try:
            # Will raise a RuntimeError if no XPU  is found
            _ = torch.xpu.device_count()
            return torch.xpu.is_available()
        except RuntimeError:
            return False
    return hasattr(torch, "xpu") and torch.xpu.is_available()


613
def is_bitsandbytes_available():
614
615
616
617
618
619
620
621
    if not is_torch_available():
        return False

    # bitsandbytes throws an error if cuda is not available
    # let's avoid that by adding a simple check
    import torch

    return _bitsandbytes_available and torch.cuda.is_available()
622
623


624
def is_flash_attn_2_available():
625
626
627
628
629
630
    if not is_torch_available():
        return False

    # Let's add an extra check to see if cuda is available
    import torch

631
    return _flash_attn_2_available and torch.cuda.is_available()
632
633


634
def is_torchdistx_available():
635
    return _torchdistx_available
636
637


638
639
640
641
642
def is_faiss_available():
    return _faiss_available


def is_scipy_available():
643
    return _scipy_available
644
645
646


def is_sklearn_available():
647
    return _sklearn_available
648
649
650


def is_sentencepiece_available():
651
    return _sentencepiece_available
652
653


654
655
656
657
def is_seqio_available():
    return _is_seqio_available


658
659
660
661
662
663
def is_protobuf_available():
    if importlib.util.find_spec("google") is None:
        return False
    return importlib.util.find_spec("google.protobuf") is not None


664
665
666
def is_accelerate_available(min_version: str = None):
    if min_version is not None:
        return _accelerate_available and version.parse(_accelerate_version) >= version.parse(min_version)
667
    return _accelerate_available
668
669


670
def is_fsdp_available(min_version: str = "1.12.0"):
671
    return is_torch_available() and version.parse(_torch_version) >= version.parse(min_version)
672
673


674
def is_optimum_available():
675
    return _optimum_available
676
677


Marc Sun's avatar
Marc Sun committed
678
679
680
681
def is_auto_gptq_available():
    return _auto_gptq_available


NielsRogge's avatar
NielsRogge committed
682
683
684
685
def is_levenshtein_available():
    return _levenshtein_available


686
def is_optimum_neuron_available():
687
    return _optimum_available and _is_package_available("optimum.neuron")
688
689


690
def is_safetensors_available():
691
    return _safetensors_available
692
693


694
def is_tokenizers_available():
695
    return _tokenizers_available
696
697
698


def is_vision_available():
699
700
701
    _pil_available = importlib.util.find_spec("PIL") is not None
    if _pil_available:
        try:
702
703
            package_version = importlib.metadata.version("Pillow")
        except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
704
705
706
707
            try:
                package_version = importlib.metadata.version("Pillow-SIMD")
            except importlib.metadata.PackageNotFoundError:
                return False
708
709
        logger.debug(f"Detected PIL version {package_version}")
    return _pil_available
710
711
712


def is_pytesseract_available():
713
    return _pytesseract_available
714
715


716
717
718
719
def is_pytest_available():
    return _pytest_available


720
def is_spacy_available():
721
    return _spacy_available
722
723


724
def is_tensorflow_text_available():
725
    return is_tf_available() and _tensorflow_text_available
726
727


728
def is_keras_nlp_available():
729
    return is_tensorflow_text_available() and _keras_nlp_available
730
731


732
733
734
735
736
737
738
739
def is_in_notebook():
    try:
        # Test adapted from tqdm.autonotebook: https://github.com/tqdm/tqdm/blob/master/tqdm/autonotebook.py
        get_ipython = sys.modules["IPython"].get_ipython
        if "IPKernelApp" not in get_ipython().config:
            raise ImportError("console")
        if "VSCODE_PID" in os.environ:
            raise ImportError("vscode")
740
741
742
        if "DATABRICKS_RUNTIME_VERSION" in os.environ and os.environ["DATABRICKS_RUNTIME_VERSION"] < "11.0":
            # Databricks Runtime 11.0 and above uses IPython kernel by default so it should be compatible with Jupyter notebook
            # https://docs.microsoft.com/en-us/azure/databricks/notebooks/ipython-kernel
743
            raise ImportError("databricks")
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758

        return importlib.util.find_spec("IPython") is not None
    except (AttributeError, ImportError, KeyError):
        return False


def is_pytorch_quantization_available():
    return _pytorch_quantization_available


def is_tensorflow_probability_available():
    return _tensorflow_probability_available


def is_pandas_available():
759
    return _pandas_available
760
761
762
763
764
765
766
767
768
769
770
771
772


def is_sagemaker_dp_enabled():
    # Get the sagemaker specific env variable.
    sagemaker_params = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        sagemaker_params = json.loads(sagemaker_params)
        if not sagemaker_params.get("sagemaker_distributed_dataparallel_enabled", False):
            return False
    except json.JSONDecodeError:
        return False
    # Lastly, check if the `smdistributed` module is present.
773
    return _smdistributed_available
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796


def is_sagemaker_mp_enabled():
    # Get the sagemaker specific mp parameters from smp_options variable.
    smp_options = os.getenv("SM_HP_MP_PARAMETERS", "{}")
    try:
        # Parse it and check the field "partitions" is included, it is required for model parallel.
        smp_options = json.loads(smp_options)
        if "partitions" not in smp_options:
            return False
    except json.JSONDecodeError:
        return False

    # Get the sagemaker specific framework parameters from mpi_options variable.
    mpi_options = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        mpi_options = json.loads(mpi_options)
        if not mpi_options.get("sagemaker_mpi_enabled", False):
            return False
    except json.JSONDecodeError:
        return False
    # Lastly, check if the `smdistributed` module is present.
797
    return _smdistributed_available
798
799
800
801
802
803
804
805
806
807
808
809
810
811


def is_training_run_on_sagemaker():
    return "SAGEMAKER_JOB_NAME" in os.environ


def is_soundfile_availble():
    return _soundfile_available


def is_timm_available():
    return _timm_available


812
813
814
815
def is_natten_available():
    return _natten_available


NielsRogge's avatar
NielsRogge committed
816
817
818
819
def is_nltk_available():
    return _nltk_available


820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
def is_torchaudio_available():
    return _torchaudio_available


def is_speech_available():
    # For now this depends on torchaudio but the exact dependency might evolve in the future.
    return _torchaudio_available


def is_phonemizer_available():
    return _phonemizer_available


def torch_only_method(fn):
    def wrapper(*args, **kwargs):
        if not _torch_available:
            raise ImportError(
                "You need to install pytorch to use this method or class, "
                "or activate it with environment variables USE_TORCH=1 and USE_TF=0."
            )
        else:
            return fn(*args, **kwargs)

    return wrapper


846
847
848
849
def is_ccl_available():
    return _is_ccl_available


850
def is_decord_available():
851
    return _decord_available
852
853


854
def is_sudachi_available():
855
    return _sudachipy_available
856
857
858


def is_jumanpp_available():
Hao Wang's avatar
Hao Wang committed
859
    return (importlib.util.find_spec("rhoknp") is not None) and (shutil.which("jumanpp") is not None)
860
861


862
863
864
865
def is_cython_available():
    return importlib.util.find_spec("pyximport") is not None


866
867
868
869
def is_jieba_available():
    return _jieba_available


870
871
872
873
def is_jinja_available():
    return _jinja_available


NielsRogge's avatar
NielsRogge committed
874
875
876
877
878
879
880
881
882
883
# docstyle-ignore
CV2_IMPORT_ERROR = """
{0} requires the OpenCV library but it was not found in your environment. You can install it with:
```
pip install opencv-python
```
Please note that you may need to restart your runtime after installation.
"""


884
885
886
887
888
889
890
891
892
893
894
895
896
897
# docstyle-ignore
DATASETS_IMPORT_ERROR = """
{0} requires the 🤗 Datasets library but it was not found in your environment. You can install it with:
```
pip install datasets
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install datasets
```
then restarting your kernel.

Note that if you have a local folder named `datasets` or a local python file named `datasets.py` in your current
working directory, python may try to import this instead of the 🤗 Datasets library. You should rename this folder or
898
that python file if that's the case. Please note that you may need to restart your runtime after installation.
899
900
901
902
903
904
905
906
907
908
909
910
911
"""


# docstyle-ignore
TOKENIZERS_IMPORT_ERROR = """
{0} requires the 🤗 Tokenizers library but it was not found in your environment. You can install it with:
```
pip install tokenizers
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install tokenizers
```
912
Please note that you may need to restart your runtime after installation.
913
914
915
916
917
918
919
"""


# docstyle-ignore
SENTENCEPIECE_IMPORT_ERROR = """
{0} requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones
920
that match your environment. Please note that you may need to restart your runtime after installation.
921
922
923
924
925
926
927
"""


# docstyle-ignore
PROTOBUF_IMPORT_ERROR = """
{0} requires the protobuf library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/protocolbuffers/protobuf/tree/master/python#installation and follow the ones
928
that match your environment. Please note that you may need to restart your runtime after installation.
929
930
931
932
933
934
935
"""


# docstyle-ignore
FAISS_IMPORT_ERROR = """
{0} requires the faiss library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md and follow the ones
936
that match your environment. Please note that you may need to restart your runtime after installation.
937
938
939
940
941
942
943
"""


# docstyle-ignore
PYTORCH_IMPORT_ERROR = """
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
944
Please note that you may need to restart your runtime after installation.
945
946
"""

NielsRogge's avatar
NielsRogge committed
947
948
949
950
951
952
953
954

# docstyle-ignore
TORCHVISION_IMPORT_ERROR = """
{0} requires the Torchvision library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
Please note that you may need to restart your runtime after installation.
"""

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
# docstyle-ignore
PYTORCH_IMPORT_ERROR_WITH_TF = """
{0} requires the PyTorch library but it was not found in your environment.
However, we were able to find a TensorFlow installation. TensorFlow classes begin
with "TF", but are otherwise identically named to our PyTorch classes. This
means that the TF equivalent of the class you tried to import would be "TF{0}".
If you want to use TensorFlow, please use TF classes instead!

If you really do want to use PyTorch please go to
https://pytorch.org/get-started/locally/ and follow the instructions that
match your environment.
"""

# docstyle-ignore
TF_IMPORT_ERROR_WITH_PYTORCH = """
{0} requires the TensorFlow library but it was not found in your environment.
However, we were able to find a PyTorch installation. PyTorch classes do not begin
with "TF", but are otherwise identically named to our TF classes.
If you want to use PyTorch, please use those classes instead!

If you really do want to use TensorFlow, please follow the instructions on the
installation page https://www.tensorflow.org/install that match your environment.
"""

NielsRogge's avatar
NielsRogge committed
979
980
981
# docstyle-ignore
BS4_IMPORT_ERROR = """
{0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip:
982
`pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation.
NielsRogge's avatar
NielsRogge committed
983
984
"""

985
986
987
988
989
990
991
992
993
994
995

# docstyle-ignore
SKLEARN_IMPORT_ERROR = """
{0} requires the scikit-learn library but it was not found in your environment. You can install it with:
```
pip install -U scikit-learn
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install -U scikit-learn
```
996
Please note that you may need to restart your runtime after installation.
997
998
999
1000
1001
1002
1003
"""


# docstyle-ignore
TENSORFLOW_IMPORT_ERROR = """
{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the
installation page: https://www.tensorflow.org/install and follow the ones that match your environment.
1004
Please note that you may need to restart your runtime after installation.
1005
1006
1007
1008
1009
1010
1011
"""


# docstyle-ignore
DETECTRON2_IMPORT_ERROR = """
{0} requires the detectron2 library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md and follow the ones
1012
that match your environment. Please note that you may need to restart your runtime after installation.
1013
1014
1015
1016
1017
1018
1019
"""


# docstyle-ignore
FLAX_IMPORT_ERROR = """
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/google/flax and follow the ones that match your environment.
1020
Please note that you may need to restart your runtime after installation.
1021
1022
1023
1024
1025
1026
"""

# docstyle-ignore
FTFY_IMPORT_ERROR = """
{0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the
installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones
1027
that match your environment. Please note that you may need to restart your runtime after installation.
1028
1029
"""

NielsRogge's avatar
NielsRogge committed
1030
1031
1032
1033
1034
LEVENSHTEIN_IMPORT_ERROR = """
{0} requires the python-Levenshtein library but it was not found in your environment. You can install it with pip: `pip
install python-Levenshtein`. Please note that you may need to restart your runtime after installation.
"""

1035
1036
1037
1038
# docstyle-ignore
PYTORCH_QUANTIZATION_IMPORT_ERROR = """
{0} requires the pytorch-quantization library but it was not found in your environment. You can install it with pip:
`pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com`
1039
Please note that you may need to restart your runtime after installation.
1040
1041
1042
1043
1044
"""

# docstyle-ignore
TENSORFLOW_PROBABILITY_IMPORT_ERROR = """
{0} requires the tensorflow_probability library but it was not found in your environment. You can install it with pip as
1045
explained here: https://github.com/tensorflow/probability. Please note that you may need to restart your runtime after installation.
1046
1047
"""

1048
1049
1050
1051
# docstyle-ignore
TENSORFLOW_TEXT_IMPORT_ERROR = """
{0} requires the tensorflow_text library but it was not found in your environment. You can install it with pip as
explained here: https://www.tensorflow.org/text/guide/tf_text_intro.
1052
Please note that you may need to restart your runtime after installation.
1053
1054
"""

1055
1056
1057
1058
1059

# docstyle-ignore
PANDAS_IMPORT_ERROR = """
{0} requires the pandas library but it was not found in your environment. You can install it with pip as
explained here: https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html.
1060
Please note that you may need to restart your runtime after installation.
1061
1062
1063
1064
1065
1066
"""


# docstyle-ignore
PHONEMIZER_IMPORT_ERROR = """
{0} requires the phonemizer library but it was not found in your environment. You can install it with pip:
1067
`pip install phonemizer`. Please note that you may need to restart your runtime after installation.
1068
1069
1070
"""


1071
1072
1073
# docstyle-ignore
SACREMOSES_IMPORT_ERROR = """
{0} requires the sacremoses library but it was not found in your environment. You can install it with pip:
1074
`pip install sacremoses`. Please note that you may need to restart your runtime after installation.
1075
1076
1077
"""


1078
1079
1080
# docstyle-ignore
SCIPY_IMPORT_ERROR = """
{0} requires the scipy library but it was not found in your environment. You can install it with pip:
1081
`pip install scipy`. Please note that you may need to restart your runtime after installation.
1082
1083
1084
1085
1086
1087
"""


# docstyle-ignore
SPEECH_IMPORT_ERROR = """
{0} requires the torchaudio library but it was not found in your environment. You can install it with pip:
1088
`pip install torchaudio`. Please note that you may need to restart your runtime after installation.
1089
1090
1091
1092
1093
"""

# docstyle-ignore
TIMM_IMPORT_ERROR = """
{0} requires the timm library but it was not found in your environment. You can install it with pip:
1094
`pip install timm`. Please note that you may need to restart your runtime after installation.
1095
1096
"""

1097
1098
1099
1100
1101
1102
1103
# docstyle-ignore
NATTEN_IMPORT_ERROR = """
{0} requires the natten library but it was not found in your environment. You can install it by referring to:
shi-labs.com/natten . You can also install it with pip (may take longer to build):
`pip install natten`. Please note that you may need to restart your runtime after installation.
"""

NielsRogge's avatar
NielsRogge committed
1104
1105
1106
1107
1108
1109
1110
1111

# docstyle-ignore
NLTK_IMPORT_ERROR = """
{0} requires the NLTK library but it was not found in your environment. You can install it by referring to:
https://www.nltk.org/install.html. Please note that you may need to restart your runtime after installation.
"""


1112
1113
1114
# docstyle-ignore
VISION_IMPORT_ERROR = """
{0} requires the PIL library but it was not found in your environment. You can install it with pip:
1115
`pip install pillow`. Please note that you may need to restart your runtime after installation.
1116
1117
1118
1119
1120
1121
"""


# docstyle-ignore
PYTESSERACT_IMPORT_ERROR = """
{0} requires the PyTesseract library but it was not found in your environment. You can install it with pip:
1122
`pip install pytesseract`. Please note that you may need to restart your runtime after installation.
1123
1124
1125
1126
1127
"""

# docstyle-ignore
PYCTCDECODE_IMPORT_ERROR = """
{0} requires the pyctcdecode library but it was not found in your environment. You can install it with pip:
1128
`pip install pyctcdecode`. Please note that you may need to restart your runtime after installation.
1129
1130
"""

1131
1132
1133
# docstyle-ignore
ACCELERATE_IMPORT_ERROR = """
{0} requires the accelerate library but it was not found in your environment. You can install it with pip:
1134
`pip install accelerate`. Please note that you may need to restart your runtime after installation.
1135
1136
"""

1137
1138
1139
1140
# docstyle-ignore
CCL_IMPORT_ERROR = """
{0} requires the torch ccl library but it was not found in your environment. You can install it with pip:
`pip install oneccl_bind_pt -f https://developer.intel.com/ipex-whl-stable`
1141
Please note that you may need to restart your runtime after installation.
1142
"""
1143

Susnato Dhar's avatar
Susnato Dhar committed
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
# docstyle-ignore
ESSENTIA_IMPORT_ERROR = """
{0} requires essentia library. But that was not found in your environment. You can install them with pip:
`pip install essentia==2.1b6.dev1034`
Please note that you may need to restart your runtime after installation.
"""

# docstyle-ignore
LIBROSA_IMPORT_ERROR = """
{0} requires thes librosa library. But that was not found in your environment. You can install them with pip:
`pip install librosa`
Please note that you may need to restart your runtime after installation.
"""

# docstyle-ignore
PRETTY_MIDI_IMPORT_ERROR = """
{0} requires thes pretty_midi library. But that was not found in your environment. You can install them with pip:
`pip install pretty_midi`
Please note that you may need to restart your runtime after installation.
"""

1165
1166
1167
1168
1169
DECORD_IMPORT_ERROR = """
{0} requires the decord library but it was not found in your environment. You can install it with pip: `pip install
decord`. Please note that you may need to restart your runtime after installation.
"""

Clémentine Fourrier's avatar
Clémentine Fourrier committed
1170
1171
1172
1173
1174
CYTHON_IMPORT_ERROR = """
{0} requires the Cython library but it was not found in your environment. You can install it with pip: `pip install
Cython`. Please note that you may need to restart your runtime after installation.
"""

1175
1176
1177
1178
1179
JIEBA_IMPORT_ERROR = """
{0} requires the jieba library but it was not found in your environment. You can install it with pip: `pip install
jieba`. Please note that you may need to restart your runtime after installation.
"""

1180
1181
1182
1183
1184
PEFT_IMPORT_ERROR = """
{0} requires the peft library but it was not found in your environment. You can install it with pip: `pip install
peft`. Please note that you may need to restart your runtime after installation.
"""

1185
1186
1187
1188
1189
JINJA_IMPORT_ERROR = """
{0} requires the jinja library but it was not found in your environment. You can install it with pip: `pip install
jinja2`. Please note that you may need to restart your runtime after installation.
"""

1190
1191
BACKENDS_MAPPING = OrderedDict(
    [
NielsRogge's avatar
NielsRogge committed
1192
        ("bs4", (is_bs4_available, BS4_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1193
        ("cv2", (is_cv2_available, CV2_IMPORT_ERROR)),
1194
1195
        ("datasets", (is_datasets_available, DATASETS_IMPORT_ERROR)),
        ("detectron2", (is_detectron2_available, DETECTRON2_IMPORT_ERROR)),
Susnato Dhar's avatar
Susnato Dhar committed
1196
        ("essentia", (is_essentia_available, ESSENTIA_IMPORT_ERROR)),
1197
1198
1199
1200
1201
        ("faiss", (is_faiss_available, FAISS_IMPORT_ERROR)),
        ("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
        ("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)),
        ("pandas", (is_pandas_available, PANDAS_IMPORT_ERROR)),
        ("phonemizer", (is_phonemizer_available, PHONEMIZER_IMPORT_ERROR)),
Susnato Dhar's avatar
Susnato Dhar committed
1202
        ("pretty_midi", (is_pretty_midi_available, PRETTY_MIDI_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1203
        ("levenshtein", (is_levenshtein_available, LEVENSHTEIN_IMPORT_ERROR)),
Susnato Dhar's avatar
Susnato Dhar committed
1204
        ("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
1205
1206
1207
        ("protobuf", (is_protobuf_available, PROTOBUF_IMPORT_ERROR)),
        ("pyctcdecode", (is_pyctcdecode_available, PYCTCDECODE_IMPORT_ERROR)),
        ("pytesseract", (is_pytesseract_available, PYTESSERACT_IMPORT_ERROR)),
1208
        ("sacremoses", (is_sacremoses_available, SACREMOSES_IMPORT_ERROR)),
1209
1210
1211
1212
1213
1214
        ("pytorch_quantization", (is_pytorch_quantization_available, PYTORCH_QUANTIZATION_IMPORT_ERROR)),
        ("sentencepiece", (is_sentencepiece_available, SENTENCEPIECE_IMPORT_ERROR)),
        ("sklearn", (is_sklearn_available, SKLEARN_IMPORT_ERROR)),
        ("speech", (is_speech_available, SPEECH_IMPORT_ERROR)),
        ("tensorflow_probability", (is_tensorflow_probability_available, TENSORFLOW_PROBABILITY_IMPORT_ERROR)),
        ("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
1215
        ("tensorflow_text", (is_tensorflow_text_available, TENSORFLOW_TEXT_IMPORT_ERROR)),
1216
        ("timm", (is_timm_available, TIMM_IMPORT_ERROR)),
1217
        ("natten", (is_natten_available, NATTEN_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1218
        ("nltk", (is_nltk_available, NLTK_IMPORT_ERROR)),
1219
1220
        ("tokenizers", (is_tokenizers_available, TOKENIZERS_IMPORT_ERROR)),
        ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1221
        ("torchvision", (is_torchvision_available, TORCHVISION_IMPORT_ERROR)),
1222
1223
        ("vision", (is_vision_available, VISION_IMPORT_ERROR)),
        ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
1224
        ("accelerate", (is_accelerate_available, ACCELERATE_IMPORT_ERROR)),
1225
        ("oneccl_bind_pt", (is_ccl_available, CCL_IMPORT_ERROR)),
1226
        ("decord", (is_decord_available, DECORD_IMPORT_ERROR)),
Clémentine Fourrier's avatar
Clémentine Fourrier committed
1227
        ("cython", (is_cython_available, CYTHON_IMPORT_ERROR)),
1228
        ("jieba", (is_jieba_available, JIEBA_IMPORT_ERROR)),
1229
        ("peft", (is_peft_available, PEFT_IMPORT_ERROR)),
1230
        ("jinja", (is_jinja_available, JINJA_IMPORT_ERROR)),
1231
1232
1233
1234
1235
1236
1237
1238
1239
    ]
)


def requires_backends(obj, backends):
    if not isinstance(backends, (list, tuple)):
        backends = [backends]

    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
1240
1241
1242
1243
1244
1245
1246
1247
1248

    # Raise an error for users who might not realize that classes without "TF" are torch-only
    if "torch" in backends and "tf" not in backends and not is_torch_available() and is_tf_available():
        raise ImportError(PYTORCH_IMPORT_ERROR_WITH_TF.format(name))

    # Raise the inverse error for PyTorch users trying to load TF classes
    if "tf" in backends and "torch" not in backends and is_torch_available() and not is_tf_available():
        raise ImportError(TF_IMPORT_ERROR_WITH_PYTORCH.format(name))

1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
    checks = (BACKENDS_MAPPING[backend] for backend in backends)
    failed = [msg.format(name) for available, msg in checks if not available()]
    if failed:
        raise ImportError("".join(failed))


class DummyObject(type):
    """
    Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
    `requires_backend` each time a user tries to access any method of that class.
    """

1261
    def __getattribute__(cls, key):
1262
        if key.startswith("_") and key != "_from_config":
1263
            return super().__getattribute__(key)
1264
1265
1266
        requires_backends(cls, cls._backends)


Yih-Dar's avatar
Yih-Dar committed
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
def torch_required(func):
    warnings.warn(
        "The method `torch_required` is deprecated and will be removed in v4.36. Use `requires_backends` instead.",
        FutureWarning,
    )

    # Chose a different decorator name than in tests so it's clear they are not the same.
    @wraps(func)
    def wrapper(*args, **kwargs):
        if is_torch_available():
            return func(*args, **kwargs)
        else:
            raise ImportError(f"Method `{func.__name__}` requires PyTorch.")

    return wrapper


def tf_required(func):
    warnings.warn(
        "The method `tf_required` is deprecated and will be removed in v4.36. Use `requires_backends` instead.",
        FutureWarning,
    )

    # Chose a different decorator name than in tests so it's clear they are not the same.
    @wraps(func)
    def wrapper(*args, **kwargs):
        if is_tf_available():
            return func(*args, **kwargs)
        else:
            raise ImportError(f"Method `{func.__name__}` requires TF.")

    return wrapper


1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
def is_torch_fx_proxy(x):
    if is_torch_fx_available():
        import torch.fx

        return isinstance(x, torch.fx.Proxy)
    return False


class _LazyModule(ModuleType):
    """
    Module class that surfaces all objects but only performs associated imports when the objects are requested.
    """

    # Very heavily inspired by optuna.integration._IntegrationModule
    # https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
    def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None):
        super().__init__(name)
        self._modules = set(import_structure.keys())
        self._class_to_module = {}
        for key, values in import_structure.items():
            for value in values:
                self._class_to_module[value] = key
        # Needed for autocompletion in an IDE
        self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values()))
        self.__file__ = module_file
        self.__spec__ = module_spec
        self.__path__ = [os.path.dirname(module_file)]
        self._objects = {} if extra_objects is None else extra_objects
        self._name = name
        self._import_structure = import_structure

    # Needed for autocompletion in an IDE
    def __dir__(self):
        result = super().__dir__()
        # The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether
        # they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir.
        for attr in self.__all__:
            if attr not in result:
                result.append(attr)
        return result

    def __getattr__(self, name: str) -> Any:
        if name in self._objects:
            return self._objects[name]
        if name in self._modules:
            value = self._get_module(name)
        elif name in self._class_to_module.keys():
            module = self._get_module(self._class_to_module[name])
            value = getattr(module, name)
        else:
            raise AttributeError(f"module {self.__name__} has no attribute {name}")

        setattr(self, name, value)
        return value

    def _get_module(self, module_name: str):
        try:
            return importlib.import_module("." + module_name, self.__name__)
        except Exception as e:
            raise RuntimeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1361
1362
                f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its"
                f" traceback):\n{e}"
1363
1364
1365
1366
            ) from e

    def __reduce__(self):
        return (self.__class__, (self._name, self.__file__, self._import_structure))
1367
1368
1369
1370


class OptionalDependencyNotAvailable(BaseException):
    """Internally used error class for signalling an optional dependency was not found."""
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389


def direct_transformers_import(path: str, file="__init__.py") -> ModuleType:
    """Imports transformers directly

    Args:
        path (`str`): The path to the source file
        file (`str`, optional): The file to join with the path. Defaults to "__init__.py".

    Returns:
        `ModuleType`: The resulting imported module
    """
    name = "transformers"
    location = os.path.join(path, file)
    spec = importlib.util.spec_from_file_location(name, location, submodule_search_locations=[path])
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)
    module = sys.modules[name]
    return module