import_utils.py 51.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Import utilities: Utilities related to imports and our lazy inits.
"""

18
import importlib.metadata
19
20
21
import importlib.util
import json
import os
22
import shutil
玩火's avatar
玩火 committed
23
import subprocess
24
import sys
25
import warnings
26
from collections import OrderedDict
27
from functools import lru_cache
28
29
from itertools import chain
from types import ModuleType
30
from typing import Any, Tuple, Union
31
32
33
34
35
36
37
38

from packaging import version

from . import logging


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

39

Yih-Dar's avatar
Yih-Dar committed
40
# TODO: This doesn't work for all packages (`bs4`, `faiss`, etc.) Talk to Sylvain to see how to do with it better.
41
def _is_package_available(pkg_name: str, return_version: bool = False) -> Union[Tuple[bool, str], bool]:
42
    # Check if the package spec exists and grab its version to avoid importing a local directory
43
44
45
46
    package_exists = importlib.util.find_spec(pkg_name) is not None
    package_version = "N/A"
    if package_exists:
        try:
47
            # Primary method to get the package version
48
49
            package_version = importlib.metadata.version(pkg_name)
        except importlib.metadata.PackageNotFoundError:
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
            # Fallback method: Only for "torch" and versions containing "dev"
            if pkg_name == "torch":
                try:
                    package = importlib.import_module(pkg_name)
                    temp_version = getattr(package, "__version__", "N/A")
                    # Check if the version contains "dev"
                    if "dev" in temp_version:
                        package_version = temp_version
                        package_exists = True
                    else:
                        package_exists = False
                except ImportError:
                    # If the package can't be imported, it's not available
                    package_exists = False
            else:
                # For packages other than "torch", don't attempt the fallback and set as not available
                package_exists = False
        logger.debug(f"Detected {pkg_name} version: {package_version}")
68
69
70
71
72
73
    if return_version:
        return package_exists, package_version
    else:
        return package_exists


74
75
76
77
78
79
80
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})

USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()

81
82
83
# Try to run a native pytorch job in an environment with TorchXLA installed by setting this value to 0.
USE_TORCH_XLA = os.environ.get("USE_TORCH_XLA", "1").upper()

84
85
FORCE_TF_AVAILABLE = os.environ.get("FORCE_TF_AVAILABLE", "AUTO").upper()

Yih-Dar's avatar
Yih-Dar committed
86
# `transformers` requires `torch>=1.11` but this variable is exposed publicly, and we can't simply remove it.
87
88
89
# This is the version of torch required to run torch.fx features and torch.onnx with dictionary inputs.
TORCH_FX_REQUIRED_VERSION = version.parse("1.10")

NielsRogge's avatar
NielsRogge committed
90
91
92
ACCELERATE_MIN_VERSION = "0.21.0"
FSDP_MIN_VERSION = "1.12.0"

93
94
95

_accelerate_available, _accelerate_version = _is_package_available("accelerate", return_version=True)
_apex_available = _is_package_available("apex")
96
_aqlm_available = _is_package_available("aqlm")
97
_av_available = importlib.util.find_spec("av") is not None
98
_bitsandbytes_available = _is_package_available("bitsandbytes")
99
_galore_torch_available = _is_package_available("galore_torch")
100
# `importlib.metadata.version` doesn't work with `bs4` but `beautifulsoup4`. For `importlib.util.find_spec`, reversed.
Yih-Dar's avatar
Yih-Dar committed
101
_bs4_available = importlib.util.find_spec("bs4") is not None
102
_coloredlogs_available = _is_package_available("coloredlogs")
NielsRogge's avatar
NielsRogge committed
103
104
# `importlib.metadata.util` doesn't work with `opencv-python-headless`.
_cv2_available = importlib.util.find_spec("cv2") is not None
105
106
107
_datasets_available = _is_package_available("datasets")
_decord_available = importlib.util.find_spec("decord") is not None
_detectron2_available = _is_package_available("detectron2")
Yih-Dar's avatar
Yih-Dar committed
108
109
110
# We need to check both `faiss` and `faiss-cpu`.
_faiss_available = importlib.util.find_spec("faiss") is not None
try:
111
    _faiss_version = importlib.metadata.version("faiss")
Yih-Dar's avatar
Yih-Dar committed
112
    logger.debug(f"Successfully imported faiss version {_faiss_version}")
113
except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
114
    try:
115
        _faiss_version = importlib.metadata.version("faiss-cpu")
Yih-Dar's avatar
Yih-Dar committed
116
        logger.debug(f"Successfully imported faiss version {_faiss_version}")
117
    except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
118
        _faiss_available = False
119
_ftfy_available = _is_package_available("ftfy")
120
_g2p_en_available = _is_package_available("g2p_en")
121
122
_ipex_available, _ipex_version = _is_package_available("intel_extension_for_pytorch", return_version=True)
_jieba_available = _is_package_available("jieba")
123
_jinja_available = _is_package_available("jinja2")
124
125
_kenlm_available = _is_package_available("kenlm")
_keras_nlp_available = _is_package_available("keras_nlp")
NielsRogge's avatar
NielsRogge committed
126
_levenshtein_available = _is_package_available("Levenshtein")
127
128
_librosa_available = _is_package_available("librosa")
_natten_available = _is_package_available("natten")
NielsRogge's avatar
NielsRogge committed
129
_nltk_available = _is_package_available("nltk")
130
131
132
_onnx_available = _is_package_available("onnx")
_openai_available = _is_package_available("openai")
_optimum_available = _is_package_available("optimum")
Marc Sun's avatar
Marc Sun committed
133
_auto_gptq_available = _is_package_available("auto_gptq")
134
135
# `importlib.metadata.version` doesn't work with `awq`
_auto_awq_available = importlib.util.find_spec("awq") is not None
136
_quanto_available = _is_package_available("quanto")
137
138
139
140
141
142
143
_pandas_available = _is_package_available("pandas")
_peft_available = _is_package_available("peft")
_phonemizer_available = _is_package_available("phonemizer")
_psutil_available = _is_package_available("psutil")
_py3nvml_available = _is_package_available("py3nvml")
_pyctcdecode_available = _is_package_available("pyctcdecode")
_pytesseract_available = _is_package_available("pytesseract")
144
_pytest_available = _is_package_available("pytest")
145
146
147
148
149
150
_pytorch_quantization_available = _is_package_available("pytorch_quantization")
_rjieba_available = _is_package_available("rjieba")
_sacremoses_available = _is_package_available("sacremoses")
_safetensors_available = _is_package_available("safetensors")
_scipy_available = _is_package_available("scipy")
_sentencepiece_available = _is_package_available("sentencepiece")
151
_is_seqio_available = _is_package_available("seqio")
152
153
154
_sklearn_available = importlib.util.find_spec("sklearn") is not None
if _sklearn_available:
    try:
155
156
        importlib.metadata.version("scikit-learn")
    except importlib.metadata.PackageNotFoundError:
157
        _sklearn_available = False
158
_smdistributed_available = importlib.util.find_spec("smdistributed") is not None
159
160
_soundfile_available = _is_package_available("soundfile")
_spacy_available = _is_package_available("spacy")
161
_sudachipy_available, _sudachipy_version = _is_package_available("sudachipy", return_version=True)
162
163
164
165
166
167
168
169
_tensorflow_probability_available = _is_package_available("tensorflow_probability")
_tensorflow_text_available = _is_package_available("tensorflow_text")
_tf2onnx_available = _is_package_available("tf2onnx")
_timm_available = _is_package_available("timm")
_tokenizers_available = _is_package_available("tokenizers")
_torchaudio_available = _is_package_available("torchaudio")
_torchdistx_available = _is_package_available("torchdistx")
_torchvision_available = _is_package_available("torchvision")
170
_mlx_available = _is_package_available("mlx")
171
172


173
_torch_version = "N/A"
174
_torch_available = False
175
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
176
    _torch_available, _torch_version = _is_package_available("torch", return_version=True)
177
178
179
180
181
182
else:
    logger.info("Disabling PyTorch because USE_TF is set")
    _torch_available = False


_tf_version = "N/A"
183
_tf_available = False
184
185
if FORCE_TF_AVAILABLE in ENV_VARS_TRUE_VALUES:
    _tf_available = True
186
else:
187
    if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
188
189
190
        # Note: _is_package_available("tensorflow") fails for tensorflow-cpu. Please test any changes to the line below
        # with tensorflow-cpu to make sure it still works!
        _tf_available = importlib.util.find_spec("tensorflow") is not None
191
192
193
194
195
196
197
198
        if _tf_available:
            candidates = (
                "tensorflow",
                "tensorflow-cpu",
                "tensorflow-gpu",
                "tf-nightly",
                "tf-nightly-cpu",
                "tf-nightly-gpu",
199
                "tf-nightly-rocm",
200
201
202
203
204
205
206
207
208
209
                "intel-tensorflow",
                "intel-tensorflow-avx512",
                "tensorflow-rocm",
                "tensorflow-macos",
                "tensorflow-aarch64",
            )
            _tf_version = None
            # For the metadata, we have to look for both tensorflow and tensorflow-cpu
            for pkg in candidates:
                try:
210
                    _tf_version = importlib.metadata.version(pkg)
211
                    break
212
                except importlib.metadata.PackageNotFoundError:
213
214
215
216
217
218
219
220
221
222
                    pass
            _tf_available = _tf_version is not None
        if _tf_available:
            if version.parse(_tf_version) < version.parse("2"):
                logger.info(
                    f"TensorFlow found but with version {_tf_version}. Transformers requires version 2 minimum."
                )
                _tf_available = False
    else:
        logger.info("Disabling Tensorflow because USE_TORCH is set")
223
224


Susnato Dhar's avatar
Susnato Dhar committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
_essentia_available = importlib.util.find_spec("essentia") is not None
try:
    _essentia_version = importlib.metadata.version("essentia")
    logger.debug(f"Successfully imported essentia version {_essentia_version}")
except importlib.metadata.PackageNotFoundError:
    _essentia_version = False


_pretty_midi_available = importlib.util.find_spec("pretty_midi") is not None
try:
    _pretty_midi_version = importlib.metadata.version("pretty_midi")
    logger.debug(f"Successfully imported pretty_midi version {_pretty_midi_version}")
except importlib.metadata.PackageNotFoundError:
    _pretty_midi_available = False


241
242
243
244
245
246
ccl_version = "N/A"
_is_ccl_available = (
    importlib.util.find_spec("torch_ccl") is not None
    or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None
)
try:
247
    ccl_version = importlib.metadata.version("oneccl_bind_pt")
248
    logger.debug(f"Detected oneccl_bind_pt version {ccl_version}")
249
except importlib.metadata.PackageNotFoundError:
250
    _is_ccl_available = False
251

252

253
254
255
256
257
258
259
260
261
262
_flax_available = False
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
    _flax_available, _flax_version = _is_package_available("flax", return_version=True)
    if _flax_available:
        _jax_available, _jax_version = _is_package_available("jax", return_version=True)
        if _jax_available:
            logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
        else:
            _flax_available = _jax_available = False
            _jax_version = _flax_version = "N/A"
263

264
265
266
267
268
269
270
271

_torch_fx_available = False
if _torch_available:
    torch_version = version.parse(_torch_version)
    _torch_fx_available = (torch_version.major, torch_version.minor) >= (
        TORCH_FX_REQUIRED_VERSION.major,
        TORCH_FX_REQUIRED_VERSION.minor,
    )
272
273


274
275
276
277
278
279
280
_torch_xla_available = False
if USE_TORCH_XLA in ENV_VARS_TRUE_VALUES:
    _torch_xla_available, _torch_xla_version = _is_package_available("torch_xla", return_version=True)
    if _torch_xla_available:
        logger.info(f"Torch XLA version {_torch_xla_version} available.")


281
def is_kenlm_available():
282
    return _kenlm_available
283
284


NielsRogge's avatar
NielsRogge committed
285
286
287
288
def is_cv2_available():
    return _cv2_available


289
290
291
292
def is_torch_available():
    return _torch_available


293
294
295
296
def get_torch_version():
    return _torch_version


297
298
299
300
301
302
303
304
305
306
307
308
309
def is_torch_sdpa_available():
    if not is_torch_available():
        return False
    elif _torch_version == "N/A":
        return False

    # NOTE: We require torch>=2.1 (and not torch>=2.0) to use SDPA in Transformers for two reasons:
    # - Allow the global use of the `scale` argument introduced in https://github.com/pytorch/pytorch/pull/95259
    # - Memory-efficient attention supports arbitrary attention_mask: https://github.com/pytorch/pytorch/pull/104310
    # NOTE: We require torch>=2.1.1 to avoid a numerical issue in SDPA with non-contiguous inputs: https://github.com/pytorch/pytorch/issues/112577
    return version.parse(_torch_version) >= version.parse("2.1.1")


NielsRogge's avatar
NielsRogge committed
310
def is_torchvision_available():
311
    return _torchvision_available
NielsRogge's avatar
NielsRogge committed
312
313


314
315
316
317
def is_galore_torch_available():
    return _galore_torch_available


318
319
320
321
322
323
324
325
def is_pyctcdecode_available():
    return _pyctcdecode_available


def is_librosa_available():
    return _librosa_available


Susnato Dhar's avatar
Susnato Dhar committed
326
327
328
329
330
331
332
333
def is_essentia_available():
    return _essentia_available


def is_pretty_midi_available():
    return _pretty_midi_available


334
335
336
337
338
339
340
341
342
def is_torch_cuda_available():
    if is_torch_available():
        import torch

        return torch.cuda.is_available()
    else:
        return False


343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
def is_mamba_ssm_available():
    if is_torch_available():
        import torch

        if not torch.cuda.is_available():
            return False
        else:
            return _is_package_available("mamba_ssm")
    return False


def is_causal_conv1d_available():
    if is_torch_available():
        import torch

        if not torch.cuda.is_available():
            return False
        return _is_package_available("causal_conv1d")
    return False


364
365
366
367
368
369
370
371
372
def is_torch_mps_available():
    if is_torch_available():
        import torch

        if hasattr(torch.backends, "mps"):
            return torch.backends.mps.is_available()
    return False


373
def is_torch_bf16_gpu_available():
374
375
376
377
378
    if not is_torch_available():
        return False

    import torch

Roohollah Etemadi's avatar
Roohollah Etemadi committed
379
    return torch.cuda.is_available() and torch.cuda.is_bf16_supported()
380
381
382
383
384
385
386
387


def is_torch_bf16_cpu_available():
    if not is_torch_available():
        return False

    import torch

388
389
390
391
    try:
        # multiple levels of AttributeError depending on the pytorch version so do them all in one check
        _ = torch.cpu.amp.autocast
    except AttributeError:
392
        return False
393

394
395
396
397
    return True


def is_torch_bf16_available():
398
399
400
401
402
403
404
405
    # the original bf16 check was for gpu only, but later a cpu/bf16 combo has emerged so this util
    # has become ambiguous and therefore deprecated
    warnings.warn(
        "The util is_torch_bf16_available is deprecated, please use is_torch_bf16_gpu_available "
        "or is_torch_bf16_cpu_available instead according to whether it's used with cpu or gpu",
        FutureWarning,
    )
    return is_torch_bf16_gpu_available()
406
407


408
409
410
411
412
413
414
415
416
417
@lru_cache()
def is_torch_fp16_available_on_device(device):
    if not is_torch_available():
        return False

    import torch

    try:
        x = torch.zeros(2, 2, dtype=torch.float16).to(device)
        _ = x @ x
418
419
420
421
422
423
424
425

        # At this moment, let's be strict of the check: check if `LayerNorm` is also supported on device, because many
        # models use this layer.
        batch, sentence_length, embedding_dim = 3, 4, 5
        embedding = torch.randn(batch, sentence_length, embedding_dim, dtype=torch.float16, device=device)
        layer_norm = torch.nn.LayerNorm(embedding_dim, dtype=torch.float16, device=device)
        _ = layer_norm(embedding)

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    except:  # noqa: E722
        # TODO: more precise exception matching, if possible.
        # most backends should return `RuntimeError` however this is not guaranteed.
        return False

    return True


@lru_cache()
def is_torch_bf16_available_on_device(device):
    if not is_torch_available():
        return False

    import torch

    if device == "cuda":
        return is_torch_bf16_gpu_available()

    try:
        x = torch.zeros(2, 2, dtype=torch.bfloat16).to(device)
        _ = x @ x
    except:  # noqa: E722
        # TODO: more precise exception matching, if possible.
        # most backends should return `RuntimeError` however this is not guaranteed.
        return False

    return True


455
456
457
458
459
460
461
462
463
464
465
466
def is_torch_tf32_available():
    if not is_torch_available():
        return False

    import torch

    if not torch.cuda.is_available() or torch.version.cuda is None:
        return False
    if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8:
        return False
    if int(torch.version.cuda.split(".")[0]) < 11:
        return False
467
    if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.7"):
468
469
470
471
472
473
474
475
476
        return False

    return True


def is_torch_fx_available():
    return _torch_fx_available


477
def is_peft_available():
478
    return _peft_available
479
480


NielsRogge's avatar
NielsRogge committed
481
def is_bs4_available():
482
    return _bs4_available
NielsRogge's avatar
NielsRogge committed
483
484


485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
def is_tf_available():
    return _tf_available


def is_coloredlogs_available():
    return _coloredlogs_available


def is_tf2onnx_available():
    return _tf2onnx_available


def is_onnx_available():
    return _onnx_available


Sylvain Gugger's avatar
Sylvain Gugger committed
501
def is_openai_available():
502
    return _openai_available
Sylvain Gugger's avatar
Sylvain Gugger committed
503
504


505
506
507
508
509
510
511
512
def is_flax_available():
    return _flax_available


def is_ftfy_available():
    return _ftfy_available


513
514
515
516
def is_g2p_en_available():
    return _g2p_en_available


517
@lru_cache()
518
519
def is_torch_tpu_available(check_device=True):
    "Checks if `torch_xla` is installed and potentially if a TPU is in the environment"
520
521
522
523
524
525
    warnings.warn(
        "`is_torch_tpu_available` is deprecated and will be removed in 4.41.0. "
        "Please use the `is_torch_xla_available` instead.",
        FutureWarning,
    )

526
527
    if not _torch_available:
        return False
528
529
530
531
532
    if importlib.util.find_spec("torch_xla") is not None:
        if check_device:
            # We need to check if `xla_device` can be found, will raise a RuntimeError if not
            try:
                import torch_xla.core.xla_model as xm
533

534
535
536
537
                _ = xm.xla_device()
                return True
            except RuntimeError:
                return False
538
        return True
539
    return False
540
541


542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
@lru_cache
def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False):
    """
    Check if `torch_xla` is available. To train a native pytorch job in an environment with torch xla installed, set
    the USE_TORCH_XLA to false.
    """
    assert not (check_is_tpu and check_is_gpu), "The check_is_tpu and check_is_gpu cannot both be true."

    if not _torch_xla_available:
        return False

    import torch_xla

    if check_is_gpu:
        return torch_xla.runtime.device_type() in ["GPU", "CUDA"]
    elif check_is_tpu:
        return torch_xla.runtime.device_type() == "TPU"

    return True


563
564
565
@lru_cache()
def is_torch_neuroncore_available(check_device=True):
    if importlib.util.find_spec("torch_neuronx") is not None:
566
        return is_torch_xla_available()
567
568
569
    return False


570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
@lru_cache()
def is_torch_npu_available(check_device=False):
    "Checks if `torch_npu` is installed and potentially if a NPU is in the environment"
    if not _torch_available or importlib.util.find_spec("torch_npu") is None:
        return False

    import torch
    import torch_npu  # noqa: F401

    if check_device:
        try:
            # Will raise a RuntimeError if no NPU is found
            _ = torch.npu.device_count()
            return torch.npu.is_available()
        except RuntimeError:
            return False
    return hasattr(torch, "npu") and torch.npu.is_available()


589
def is_torchdynamo_available():
590
591
592
593
594
595
596
597
    if not is_torch_available():
        return False
    try:
        import torch._dynamo as dynamo  # noqa: F401

        return True
    except Exception:
        return False
598
599


600
601
602
603
604
605
def is_torch_compile_available():
    if not is_torch_available():
        return False

    import torch

606
607
    # We don't do any version check here to support nighlies marked as 1.14. Ultimately needs to check version against
    # 2.0 but let's do it later.
608
609
610
    return hasattr(torch, "compile")


611
612
613
614
615
616
617
618
619
620
621
def is_torchdynamo_compiling():
    if not is_torch_available():
        return False
    try:
        import torch._dynamo as dynamo  # noqa: F401

        return dynamo.is_compiling()
    except Exception:
        return False


622
623
624
625
626
627
def is_torch_tensorrt_fx_available():
    if importlib.util.find_spec("torch_tensorrt") is None:
        return False
    return importlib.util.find_spec("torch_tensorrt.fx") is not None


628
629
630
631
632
633
634
635
636
def is_datasets_available():
    return _datasets_available


def is_detectron2_available():
    return _detectron2_available


def is_rjieba_available():
637
    return _rjieba_available
638
639
640


def is_psutil_available():
641
    return _psutil_available
642
643
644


def is_py3nvml_available():
645
    return _py3nvml_available
646
647


648
def is_sacremoses_available():
649
    return _sacremoses_available
650
651


652
def is_apex_available():
653
    return _apex_available
654
655


656
657
658
659
def is_aqlm_available():
    return _aqlm_available


660
661
662
663
def is_av_available():
    return _av_available


664
def is_ninja_available():
玩火's avatar
玩火 committed
665
666
667
668
669
670
671
672
673
674
    r"""
    Code comes from *torch.utils.cpp_extension.is_ninja_available()*. Returns `True` if the
    [ninja](https://ninja-build.org/) build system is available on the system, `False` otherwise.
    """
    try:
        subprocess.check_output("ninja --version".split())
    except Exception:
        return False
    else:
        return True
675
676


677
def is_ipex_available():
678
679
680
    def get_major_and_minor_from_version(full_version):
        return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)

681
    if not is_torch_available() or not _ipex_available:
682
        return False
683

684
685
686
687
688
689
690
691
692
    torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
    ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
    if torch_major_and_minor != ipex_major_and_minor:
        logger.warning(
            f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
            f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
        )
        return False
    return True
693
694


695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
@lru_cache
def is_torch_xpu_available(check_device=False):
    "Checks if `intel_extension_for_pytorch` is installed and potentially if a XPU is in the environment"
    if not is_ipex_available():
        return False

    import intel_extension_for_pytorch  # noqa: F401
    import torch

    if check_device:
        try:
            # Will raise a RuntimeError if no XPU  is found
            _ = torch.xpu.device_count()
            return torch.xpu.is_available()
        except RuntimeError:
            return False
    return hasattr(torch, "xpu") and torch.xpu.is_available()


714
def is_bitsandbytes_available():
715
716
717
718
719
720
721
722
    if not is_torch_available():
        return False

    # bitsandbytes throws an error if cuda is not available
    # let's avoid that by adding a simple check
    import torch

    return _bitsandbytes_available and torch.cuda.is_available()
723
724


725
def is_flash_attn_2_available():
726
727
728
    if not is_torch_available():
        return False

729
730
731
    if not _is_package_available("flash_attn"):
        return False

732
733
734
    # Let's add an extra check to see if cuda is available
    import torch

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    if not torch.cuda.is_available():
        return False

    if torch.version.cuda:
        return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.1.0")
    elif torch.version.hip:
        # TODO: Bump the requirement to 2.1.0 once released in https://github.com/ROCmSoftwarePlatform/flash-attention
        return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.0.4")
    else:
        return False


def is_flash_attn_greater_or_equal_2_10():
    if not _is_package_available("flash_attn"):
        return False

    return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.1.0")
752
753


754
def is_torchdistx_available():
755
    return _torchdistx_available
756
757


758
759
760
761
762
def is_faiss_available():
    return _faiss_available


def is_scipy_available():
763
    return _scipy_available
764
765
766


def is_sklearn_available():
767
    return _sklearn_available
768
769
770


def is_sentencepiece_available():
771
    return _sentencepiece_available
772
773


774
775
776
777
def is_seqio_available():
    return _is_seqio_available


778
779
780
781
782
783
def is_protobuf_available():
    if importlib.util.find_spec("google") is None:
        return False
    return importlib.util.find_spec("google.protobuf") is not None


NielsRogge's avatar
NielsRogge committed
784
def is_accelerate_available(min_version: str = ACCELERATE_MIN_VERSION):
785
786
    if min_version is not None:
        return _accelerate_available and version.parse(_accelerate_version) >= version.parse(min_version)
787
    return _accelerate_available
788
789


NielsRogge's avatar
NielsRogge committed
790
def is_fsdp_available(min_version: str = FSDP_MIN_VERSION):
791
    return is_torch_available() and version.parse(_torch_version) >= version.parse(min_version)
792
793


794
def is_optimum_available():
795
    return _optimum_available
796
797


798
799
800
801
def is_auto_awq_available():
    return _auto_awq_available


802
803
804
805
def is_quanto_available():
    return _quanto_available


Marc Sun's avatar
Marc Sun committed
806
807
808
809
def is_auto_gptq_available():
    return _auto_gptq_available


NielsRogge's avatar
NielsRogge committed
810
811
812
813
def is_levenshtein_available():
    return _levenshtein_available


814
def is_optimum_neuron_available():
815
    return _optimum_available and _is_package_available("optimum.neuron")
816
817


818
def is_safetensors_available():
819
    return _safetensors_available
820
821


822
def is_tokenizers_available():
823
    return _tokenizers_available
824
825


826
@lru_cache
827
def is_vision_available():
828
829
830
    _pil_available = importlib.util.find_spec("PIL") is not None
    if _pil_available:
        try:
831
832
            package_version = importlib.metadata.version("Pillow")
        except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
833
834
835
836
            try:
                package_version = importlib.metadata.version("Pillow-SIMD")
            except importlib.metadata.PackageNotFoundError:
                return False
837
838
        logger.debug(f"Detected PIL version {package_version}")
    return _pil_available
839
840
841


def is_pytesseract_available():
842
    return _pytesseract_available
843
844


845
846
847
848
def is_pytest_available():
    return _pytest_available


849
def is_spacy_available():
850
    return _spacy_available
851
852


853
def is_tensorflow_text_available():
854
    return is_tf_available() and _tensorflow_text_available
855
856


857
def is_keras_nlp_available():
858
    return is_tensorflow_text_available() and _keras_nlp_available
859
860


861
862
863
864
865
866
867
868
def is_in_notebook():
    try:
        # Test adapted from tqdm.autonotebook: https://github.com/tqdm/tqdm/blob/master/tqdm/autonotebook.py
        get_ipython = sys.modules["IPython"].get_ipython
        if "IPKernelApp" not in get_ipython().config:
            raise ImportError("console")
        if "VSCODE_PID" in os.environ:
            raise ImportError("vscode")
869
870
871
        if "DATABRICKS_RUNTIME_VERSION" in os.environ and os.environ["DATABRICKS_RUNTIME_VERSION"] < "11.0":
            # Databricks Runtime 11.0 and above uses IPython kernel by default so it should be compatible with Jupyter notebook
            # https://docs.microsoft.com/en-us/azure/databricks/notebooks/ipython-kernel
872
            raise ImportError("databricks")
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887

        return importlib.util.find_spec("IPython") is not None
    except (AttributeError, ImportError, KeyError):
        return False


def is_pytorch_quantization_available():
    return _pytorch_quantization_available


def is_tensorflow_probability_available():
    return _tensorflow_probability_available


def is_pandas_available():
888
    return _pandas_available
889
890
891
892
893
894
895
896
897
898
899
900
901


def is_sagemaker_dp_enabled():
    # Get the sagemaker specific env variable.
    sagemaker_params = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        sagemaker_params = json.loads(sagemaker_params)
        if not sagemaker_params.get("sagemaker_distributed_dataparallel_enabled", False):
            return False
    except json.JSONDecodeError:
        return False
    # Lastly, check if the `smdistributed` module is present.
902
    return _smdistributed_available
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925


def is_sagemaker_mp_enabled():
    # Get the sagemaker specific mp parameters from smp_options variable.
    smp_options = os.getenv("SM_HP_MP_PARAMETERS", "{}")
    try:
        # Parse it and check the field "partitions" is included, it is required for model parallel.
        smp_options = json.loads(smp_options)
        if "partitions" not in smp_options:
            return False
    except json.JSONDecodeError:
        return False

    # Get the sagemaker specific framework parameters from mpi_options variable.
    mpi_options = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        mpi_options = json.loads(mpi_options)
        if not mpi_options.get("sagemaker_mpi_enabled", False):
            return False
    except json.JSONDecodeError:
        return False
    # Lastly, check if the `smdistributed` module is present.
926
    return _smdistributed_available
927
928
929
930
931
932
933
934
935
936
937
938
939
940


def is_training_run_on_sagemaker():
    return "SAGEMAKER_JOB_NAME" in os.environ


def is_soundfile_availble():
    return _soundfile_available


def is_timm_available():
    return _timm_available


941
942
943
944
def is_natten_available():
    return _natten_available


NielsRogge's avatar
NielsRogge committed
945
946
947
948
def is_nltk_available():
    return _nltk_available


949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
def is_torchaudio_available():
    return _torchaudio_available


def is_speech_available():
    # For now this depends on torchaudio but the exact dependency might evolve in the future.
    return _torchaudio_available


def is_phonemizer_available():
    return _phonemizer_available


def torch_only_method(fn):
    def wrapper(*args, **kwargs):
        if not _torch_available:
            raise ImportError(
                "You need to install pytorch to use this method or class, "
                "or activate it with environment variables USE_TORCH=1 and USE_TF=0."
            )
        else:
            return fn(*args, **kwargs)

    return wrapper


975
976
977
978
def is_ccl_available():
    return _is_ccl_available


979
def is_decord_available():
980
    return _decord_available
981
982


983
def is_sudachi_available():
984
    return _sudachipy_available
985
986


987
988
989
990
991
992
993
994
995
996
997
998
999
def get_sudachi_version():
    return _sudachipy_version


def is_sudachi_projection_available():
    if not is_sudachi_available():
        return False

    # NOTE: We require sudachipy>=0.6.8 to use projection option in sudachi_kwargs for the constructor of BertJapaneseTokenizer.
    # - `projection` option is not supported in sudachipy<0.6.8, see https://github.com/WorksApplications/sudachi.rs/issues/230
    return version.parse(_sudachipy_version) >= version.parse("0.6.8")


1000
def is_jumanpp_available():
Hao Wang's avatar
Hao Wang committed
1001
    return (importlib.util.find_spec("rhoknp") is not None) and (shutil.which("jumanpp") is not None)
1002
1003


1004
1005
1006
1007
def is_cython_available():
    return importlib.util.find_spec("pyximport") is not None


1008
1009
1010
1011
def is_jieba_available():
    return _jieba_available


1012
1013
1014
1015
def is_jinja_available():
    return _jinja_available


1016
1017
1018
1019
def is_mlx_available():
    return _mlx_available


1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
# docstyle-ignore
AV_IMPORT_ERROR = """
{0} requires the PyAv library but it was not found in your environment. You can install it with:
```
pip install av
```
Please note that you may need to restart your runtime after installation.
"""


NielsRogge's avatar
NielsRogge committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
# docstyle-ignore
CV2_IMPORT_ERROR = """
{0} requires the OpenCV library but it was not found in your environment. You can install it with:
```
pip install opencv-python
```
Please note that you may need to restart your runtime after installation.
"""


1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
# docstyle-ignore
DATASETS_IMPORT_ERROR = """
{0} requires the 🤗 Datasets library but it was not found in your environment. You can install it with:
```
pip install datasets
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install datasets
```
then restarting your kernel.

Note that if you have a local folder named `datasets` or a local python file named `datasets.py` in your current
working directory, python may try to import this instead of the 🤗 Datasets library. You should rename this folder or
1054
that python file if that's the case. Please note that you may need to restart your runtime after installation.
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
"""


# docstyle-ignore
TOKENIZERS_IMPORT_ERROR = """
{0} requires the 🤗 Tokenizers library but it was not found in your environment. You can install it with:
```
pip install tokenizers
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install tokenizers
```
1068
Please note that you may need to restart your runtime after installation.
1069
1070
1071
1072
1073
1074
1075
"""


# docstyle-ignore
SENTENCEPIECE_IMPORT_ERROR = """
{0} requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones
1076
that match your environment. Please note that you may need to restart your runtime after installation.
1077
1078
1079
1080
1081
1082
1083
"""


# docstyle-ignore
PROTOBUF_IMPORT_ERROR = """
{0} requires the protobuf library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/protocolbuffers/protobuf/tree/master/python#installation and follow the ones
1084
that match your environment. Please note that you may need to restart your runtime after installation.
1085
1086
1087
1088
1089
1090
1091
"""


# docstyle-ignore
FAISS_IMPORT_ERROR = """
{0} requires the faiss library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md and follow the ones
1092
that match your environment. Please note that you may need to restart your runtime after installation.
1093
1094
1095
1096
1097
1098
1099
"""


# docstyle-ignore
PYTORCH_IMPORT_ERROR = """
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
1100
Please note that you may need to restart your runtime after installation.
1101
1102
"""

NielsRogge's avatar
NielsRogge committed
1103
1104
1105
1106
1107
1108
1109
1110

# docstyle-ignore
TORCHVISION_IMPORT_ERROR = """
{0} requires the Torchvision library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
Please note that you may need to restart your runtime after installation.
"""

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
# docstyle-ignore
PYTORCH_IMPORT_ERROR_WITH_TF = """
{0} requires the PyTorch library but it was not found in your environment.
However, we were able to find a TensorFlow installation. TensorFlow classes begin
with "TF", but are otherwise identically named to our PyTorch classes. This
means that the TF equivalent of the class you tried to import would be "TF{0}".
If you want to use TensorFlow, please use TF classes instead!

If you really do want to use PyTorch please go to
https://pytorch.org/get-started/locally/ and follow the instructions that
match your environment.
"""

# docstyle-ignore
TF_IMPORT_ERROR_WITH_PYTORCH = """
{0} requires the TensorFlow library but it was not found in your environment.
However, we were able to find a PyTorch installation. PyTorch classes do not begin
with "TF", but are otherwise identically named to our TF classes.
If you want to use PyTorch, please use those classes instead!

If you really do want to use TensorFlow, please follow the instructions on the
installation page https://www.tensorflow.org/install that match your environment.
"""

NielsRogge's avatar
NielsRogge committed
1135
1136
1137
# docstyle-ignore
BS4_IMPORT_ERROR = """
{0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip:
1138
`pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation.
NielsRogge's avatar
NielsRogge committed
1139
1140
"""

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151

# docstyle-ignore
SKLEARN_IMPORT_ERROR = """
{0} requires the scikit-learn library but it was not found in your environment. You can install it with:
```
pip install -U scikit-learn
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install -U scikit-learn
```
1152
Please note that you may need to restart your runtime after installation.
1153
1154
1155
1156
1157
1158
1159
"""


# docstyle-ignore
TENSORFLOW_IMPORT_ERROR = """
{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the
installation page: https://www.tensorflow.org/install and follow the ones that match your environment.
1160
Please note that you may need to restart your runtime after installation.
1161
1162
1163
1164
1165
1166
1167
"""


# docstyle-ignore
DETECTRON2_IMPORT_ERROR = """
{0} requires the detectron2 library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md and follow the ones
1168
that match your environment. Please note that you may need to restart your runtime after installation.
1169
1170
1171
1172
1173
1174
1175
"""


# docstyle-ignore
FLAX_IMPORT_ERROR = """
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/google/flax and follow the ones that match your environment.
1176
Please note that you may need to restart your runtime after installation.
1177
1178
1179
1180
1181
1182
"""

# docstyle-ignore
FTFY_IMPORT_ERROR = """
{0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the
installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones
1183
that match your environment. Please note that you may need to restart your runtime after installation.
1184
1185
"""

NielsRogge's avatar
NielsRogge committed
1186
1187
1188
1189
1190
LEVENSHTEIN_IMPORT_ERROR = """
{0} requires the python-Levenshtein library but it was not found in your environment. You can install it with pip: `pip
install python-Levenshtein`. Please note that you may need to restart your runtime after installation.
"""

1191
1192
1193
1194
1195
1196
# docstyle-ignore
G2P_EN_IMPORT_ERROR = """
{0} requires the g2p-en library but it was not found in your environment. You can install it with pip:
`pip install g2p-en`. Please note that you may need to restart your runtime after installation.
"""

1197
1198
1199
1200
# docstyle-ignore
PYTORCH_QUANTIZATION_IMPORT_ERROR = """
{0} requires the pytorch-quantization library but it was not found in your environment. You can install it with pip:
`pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com`
1201
Please note that you may need to restart your runtime after installation.
1202
1203
1204
1205
1206
"""

# docstyle-ignore
TENSORFLOW_PROBABILITY_IMPORT_ERROR = """
{0} requires the tensorflow_probability library but it was not found in your environment. You can install it with pip as
1207
explained here: https://github.com/tensorflow/probability. Please note that you may need to restart your runtime after installation.
1208
1209
"""

1210
1211
1212
1213
# docstyle-ignore
TENSORFLOW_TEXT_IMPORT_ERROR = """
{0} requires the tensorflow_text library but it was not found in your environment. You can install it with pip as
explained here: https://www.tensorflow.org/text/guide/tf_text_intro.
1214
Please note that you may need to restart your runtime after installation.
1215
1216
"""

1217
1218
1219
1220
1221

# docstyle-ignore
PANDAS_IMPORT_ERROR = """
{0} requires the pandas library but it was not found in your environment. You can install it with pip as
explained here: https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html.
1222
Please note that you may need to restart your runtime after installation.
1223
1224
1225
1226
1227
1228
"""


# docstyle-ignore
PHONEMIZER_IMPORT_ERROR = """
{0} requires the phonemizer library but it was not found in your environment. You can install it with pip:
1229
`pip install phonemizer`. Please note that you may need to restart your runtime after installation.
1230
1231
1232
"""


1233
1234
1235
# docstyle-ignore
SACREMOSES_IMPORT_ERROR = """
{0} requires the sacremoses library but it was not found in your environment. You can install it with pip:
1236
`pip install sacremoses`. Please note that you may need to restart your runtime after installation.
1237
1238
"""

1239
1240
1241
# docstyle-ignore
SCIPY_IMPORT_ERROR = """
{0} requires the scipy library but it was not found in your environment. You can install it with pip:
1242
`pip install scipy`. Please note that you may need to restart your runtime after installation.
1243
1244
1245
1246
1247
1248
"""


# docstyle-ignore
SPEECH_IMPORT_ERROR = """
{0} requires the torchaudio library but it was not found in your environment. You can install it with pip:
1249
`pip install torchaudio`. Please note that you may need to restart your runtime after installation.
1250
1251
1252
1253
1254
"""

# docstyle-ignore
TIMM_IMPORT_ERROR = """
{0} requires the timm library but it was not found in your environment. You can install it with pip:
1255
`pip install timm`. Please note that you may need to restart your runtime after installation.
1256
1257
"""

1258
1259
1260
1261
1262
1263
1264
# docstyle-ignore
NATTEN_IMPORT_ERROR = """
{0} requires the natten library but it was not found in your environment. You can install it by referring to:
shi-labs.com/natten . You can also install it with pip (may take longer to build):
`pip install natten`. Please note that you may need to restart your runtime after installation.
"""

NielsRogge's avatar
NielsRogge committed
1265
1266
1267
1268
1269
1270
1271
1272

# docstyle-ignore
NLTK_IMPORT_ERROR = """
{0} requires the NLTK library but it was not found in your environment. You can install it by referring to:
https://www.nltk.org/install.html. Please note that you may need to restart your runtime after installation.
"""


1273
1274
1275
# docstyle-ignore
VISION_IMPORT_ERROR = """
{0} requires the PIL library but it was not found in your environment. You can install it with pip:
1276
`pip install pillow`. Please note that you may need to restart your runtime after installation.
1277
1278
1279
1280
1281
1282
"""


# docstyle-ignore
PYTESSERACT_IMPORT_ERROR = """
{0} requires the PyTesseract library but it was not found in your environment. You can install it with pip:
1283
`pip install pytesseract`. Please note that you may need to restart your runtime after installation.
1284
1285
1286
1287
1288
"""

# docstyle-ignore
PYCTCDECODE_IMPORT_ERROR = """
{0} requires the pyctcdecode library but it was not found in your environment. You can install it with pip:
1289
`pip install pyctcdecode`. Please note that you may need to restart your runtime after installation.
1290
1291
"""

1292
1293
# docstyle-ignore
ACCELERATE_IMPORT_ERROR = """
NielsRogge's avatar
NielsRogge committed
1294
1295
1296
{0} requires the accelerate library >= {ACCELERATE_MIN_VERSION} it was not found in your environment.
You can install or update it with pip: `pip install --upgrade accelerate`. Please note that you may need to restart your
runtime after installation.
1297
1298
"""

1299
1300
1301
1302
# docstyle-ignore
CCL_IMPORT_ERROR = """
{0} requires the torch ccl library but it was not found in your environment. You can install it with pip:
`pip install oneccl_bind_pt -f https://developer.intel.com/ipex-whl-stable`
1303
Please note that you may need to restart your runtime after installation.
1304
"""
1305

Susnato Dhar's avatar
Susnato Dhar committed
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
# docstyle-ignore
ESSENTIA_IMPORT_ERROR = """
{0} requires essentia library. But that was not found in your environment. You can install them with pip:
`pip install essentia==2.1b6.dev1034`
Please note that you may need to restart your runtime after installation.
"""

# docstyle-ignore
LIBROSA_IMPORT_ERROR = """
{0} requires thes librosa library. But that was not found in your environment. You can install them with pip:
`pip install librosa`
Please note that you may need to restart your runtime after installation.
"""

# docstyle-ignore
PRETTY_MIDI_IMPORT_ERROR = """
{0} requires thes pretty_midi library. But that was not found in your environment. You can install them with pip:
`pip install pretty_midi`
Please note that you may need to restart your runtime after installation.
"""

1327
1328
1329
1330
1331
DECORD_IMPORT_ERROR = """
{0} requires the decord library but it was not found in your environment. You can install it with pip: `pip install
decord`. Please note that you may need to restart your runtime after installation.
"""

Clémentine Fourrier's avatar
Clémentine Fourrier committed
1332
1333
1334
1335
1336
CYTHON_IMPORT_ERROR = """
{0} requires the Cython library but it was not found in your environment. You can install it with pip: `pip install
Cython`. Please note that you may need to restart your runtime after installation.
"""

1337
1338
1339
1340
1341
JIEBA_IMPORT_ERROR = """
{0} requires the jieba library but it was not found in your environment. You can install it with pip: `pip install
jieba`. Please note that you may need to restart your runtime after installation.
"""

1342
1343
1344
1345
1346
PEFT_IMPORT_ERROR = """
{0} requires the peft library but it was not found in your environment. You can install it with pip: `pip install
peft`. Please note that you may need to restart your runtime after installation.
"""

1347
1348
1349
1350
1351
JINJA_IMPORT_ERROR = """
{0} requires the jinja library but it was not found in your environment. You can install it with pip: `pip install
jinja2`. Please note that you may need to restart your runtime after installation.
"""

1352
1353
BACKENDS_MAPPING = OrderedDict(
    [
1354
        ("av", (is_av_available, AV_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1355
        ("bs4", (is_bs4_available, BS4_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1356
        ("cv2", (is_cv2_available, CV2_IMPORT_ERROR)),
1357
1358
        ("datasets", (is_datasets_available, DATASETS_IMPORT_ERROR)),
        ("detectron2", (is_detectron2_available, DETECTRON2_IMPORT_ERROR)),
Susnato Dhar's avatar
Susnato Dhar committed
1359
        ("essentia", (is_essentia_available, ESSENTIA_IMPORT_ERROR)),
1360
1361
1362
        ("faiss", (is_faiss_available, FAISS_IMPORT_ERROR)),
        ("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
        ("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)),
1363
        ("g2p_en", (is_g2p_en_available, G2P_EN_IMPORT_ERROR)),
1364
1365
        ("pandas", (is_pandas_available, PANDAS_IMPORT_ERROR)),
        ("phonemizer", (is_phonemizer_available, PHONEMIZER_IMPORT_ERROR)),
Susnato Dhar's avatar
Susnato Dhar committed
1366
        ("pretty_midi", (is_pretty_midi_available, PRETTY_MIDI_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1367
        ("levenshtein", (is_levenshtein_available, LEVENSHTEIN_IMPORT_ERROR)),
Susnato Dhar's avatar
Susnato Dhar committed
1368
        ("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
1369
1370
1371
        ("protobuf", (is_protobuf_available, PROTOBUF_IMPORT_ERROR)),
        ("pyctcdecode", (is_pyctcdecode_available, PYCTCDECODE_IMPORT_ERROR)),
        ("pytesseract", (is_pytesseract_available, PYTESSERACT_IMPORT_ERROR)),
1372
        ("sacremoses", (is_sacremoses_available, SACREMOSES_IMPORT_ERROR)),
1373
1374
1375
1376
1377
1378
        ("pytorch_quantization", (is_pytorch_quantization_available, PYTORCH_QUANTIZATION_IMPORT_ERROR)),
        ("sentencepiece", (is_sentencepiece_available, SENTENCEPIECE_IMPORT_ERROR)),
        ("sklearn", (is_sklearn_available, SKLEARN_IMPORT_ERROR)),
        ("speech", (is_speech_available, SPEECH_IMPORT_ERROR)),
        ("tensorflow_probability", (is_tensorflow_probability_available, TENSORFLOW_PROBABILITY_IMPORT_ERROR)),
        ("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
1379
        ("tensorflow_text", (is_tensorflow_text_available, TENSORFLOW_TEXT_IMPORT_ERROR)),
1380
        ("timm", (is_timm_available, TIMM_IMPORT_ERROR)),
1381
        ("natten", (is_natten_available, NATTEN_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1382
        ("nltk", (is_nltk_available, NLTK_IMPORT_ERROR)),
1383
1384
        ("tokenizers", (is_tokenizers_available, TOKENIZERS_IMPORT_ERROR)),
        ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1385
        ("torchvision", (is_torchvision_available, TORCHVISION_IMPORT_ERROR)),
1386
1387
        ("vision", (is_vision_available, VISION_IMPORT_ERROR)),
        ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
1388
        ("accelerate", (is_accelerate_available, ACCELERATE_IMPORT_ERROR)),
1389
        ("oneccl_bind_pt", (is_ccl_available, CCL_IMPORT_ERROR)),
1390
        ("decord", (is_decord_available, DECORD_IMPORT_ERROR)),
Clémentine Fourrier's avatar
Clémentine Fourrier committed
1391
        ("cython", (is_cython_available, CYTHON_IMPORT_ERROR)),
1392
        ("jieba", (is_jieba_available, JIEBA_IMPORT_ERROR)),
1393
        ("peft", (is_peft_available, PEFT_IMPORT_ERROR)),
1394
        ("jinja", (is_jinja_available, JINJA_IMPORT_ERROR)),
1395
1396
1397
1398
1399
1400
1401
1402
1403
    ]
)


def requires_backends(obj, backends):
    if not isinstance(backends, (list, tuple)):
        backends = [backends]

    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
1404
1405
1406
1407
1408
1409
1410
1411
1412

    # Raise an error for users who might not realize that classes without "TF" are torch-only
    if "torch" in backends and "tf" not in backends and not is_torch_available() and is_tf_available():
        raise ImportError(PYTORCH_IMPORT_ERROR_WITH_TF.format(name))

    # Raise the inverse error for PyTorch users trying to load TF classes
    if "tf" in backends and "torch" not in backends and is_torch_available() and not is_tf_available():
        raise ImportError(TF_IMPORT_ERROR_WITH_PYTORCH.format(name))

1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
    checks = (BACKENDS_MAPPING[backend] for backend in backends)
    failed = [msg.format(name) for available, msg in checks if not available()]
    if failed:
        raise ImportError("".join(failed))


class DummyObject(type):
    """
    Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
    `requires_backend` each time a user tries to access any method of that class.
    """

1425
    def __getattribute__(cls, key):
1426
        if key.startswith("_") and key != "_from_config":
1427
            return super().__getattribute__(key)
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
        requires_backends(cls, cls._backends)


def is_torch_fx_proxy(x):
    if is_torch_fx_available():
        import torch.fx

        return isinstance(x, torch.fx.Proxy)
    return False


class _LazyModule(ModuleType):
    """
    Module class that surfaces all objects but only performs associated imports when the objects are requested.
    """

    # Very heavily inspired by optuna.integration._IntegrationModule
    # https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
    def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None):
        super().__init__(name)
        self._modules = set(import_structure.keys())
        self._class_to_module = {}
        for key, values in import_structure.items():
            for value in values:
                self._class_to_module[value] = key
        # Needed for autocompletion in an IDE
        self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values()))
        self.__file__ = module_file
        self.__spec__ = module_spec
        self.__path__ = [os.path.dirname(module_file)]
        self._objects = {} if extra_objects is None else extra_objects
        self._name = name
        self._import_structure = import_structure

    # Needed for autocompletion in an IDE
    def __dir__(self):
        result = super().__dir__()
        # The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether
        # they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir.
        for attr in self.__all__:
            if attr not in result:
                result.append(attr)
        return result

    def __getattr__(self, name: str) -> Any:
        if name in self._objects:
            return self._objects[name]
        if name in self._modules:
            value = self._get_module(name)
        elif name in self._class_to_module.keys():
            module = self._get_module(self._class_to_module[name])
            value = getattr(module, name)
        else:
            raise AttributeError(f"module {self.__name__} has no attribute {name}")

        setattr(self, name, value)
        return value

    def _get_module(self, module_name: str):
        try:
            return importlib.import_module("." + module_name, self.__name__)
        except Exception as e:
            raise RuntimeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1491
1492
                f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its"
                f" traceback):\n{e}"
1493
1494
1495
1496
            ) from e

    def __reduce__(self):
        return (self.__class__, (self._name, self.__file__, self._import_structure))
1497
1498
1499
1500


class OptionalDependencyNotAvailable(BaseException):
    """Internally used error class for signalling an optional dependency was not found."""
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519


def direct_transformers_import(path: str, file="__init__.py") -> ModuleType:
    """Imports transformers directly

    Args:
        path (`str`): The path to the source file
        file (`str`, optional): The file to join with the path. Defaults to "__init__.py".

    Returns:
        `ModuleType`: The resulting imported module
    """
    name = "transformers"
    location = os.path.join(path, file)
    spec = importlib.util.spec_from_file_location(name, location, submodule_search_locations=[path])
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)
    module = sys.modules[name]
    return module