run_glue.py 27.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19
20

from __future__ import absolute_import, division, print_function

import argparse
thomwolf's avatar
thomwolf committed
21
import glob
thomwolf's avatar
thomwolf committed
22
23
24
import logging
import os
import random
25
import json
thomwolf's avatar
thomwolf committed
26
27
28
29
30
31

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
32
33
34
35
36
37

try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
38
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
39

40
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
41
                                  BertForSequenceClassification, BertTokenizer,
42
43
44
                                  RobertaConfig,
                                  RobertaForSequenceClassification,
                                  RobertaTokenizer,
thomwolf's avatar
thomwolf committed
45
46
47
                                  XLMConfig, XLMForSequenceClassification,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForSequenceClassification,
48
49
50
51
                                  XLNetTokenizer,
                                  DistilBertConfig,
                                  DistilBertForSequenceClassification,
                                  DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
52

53
from transformers import AdamW, get_linear_schedule_with_warmup
thomwolf's avatar
thomwolf committed
54

55
56
57
58
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
from transformers import glue_convert_examples_to_features as convert_examples_to_features
thomwolf's avatar
thomwolf committed
59
60
61

logger = logging.getLogger(__name__)

Brian Ma's avatar
Brian Ma committed
62
63
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, 
                                                                                RobertaConfig, DistilBertConfig)), ())
64
65

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
66
67
68
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
69
    'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
70
    'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer)
71
}
thomwolf's avatar
thomwolf committed
72

thomwolf's avatar
thomwolf committed
73
74
75
76
77
78
79
80
81

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
82
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
83
84
85
86
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
87
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
88
89
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
90

thomwolf's avatar
thomwolf committed
91
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
92
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
93
94
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
95
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
96

thomwolf's avatar
thomwolf committed
97
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
98
    no_decay = ['bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
99
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
100
101
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
102
        ]
thomwolf's avatar
thomwolf committed
103
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
104
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
thomwolf's avatar
thomwolf committed
105
106
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
107
            from apex import amp
thomwolf's avatar
thomwolf committed
108
109
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
110
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
111

112
113
114
115
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
116
117
118
119
120
121
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
122
123
    # Train!
    logger.info("***** Running training *****")
124
125
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
126
127
128
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
129
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
130
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
131
132

    global_step = 0
thomwolf's avatar
thomwolf committed
133
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
134
    model.zero_grad()
thomwolf's avatar
thomwolf committed
135
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
thomwolf's avatar
thomwolf committed
136
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
thomwolf's avatar
thomwolf committed
137
138
139
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
thomwolf's avatar
thomwolf committed
140
            model.train()
thomwolf's avatar
thomwolf committed
141
            batch = tuple(t.to(args.device) for t in batch)
142
143
144
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
                      'labels':         batch[3]}
145
146
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
Peiqin Lin's avatar
typos  
Peiqin Lin committed
147
            outputs = model(**inputs)
148
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
149
150
151
152
153
154

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
155
156
157
158
159
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
160
161

            tr_loss += loss.item()
162
            if (step + 1) % args.gradient_accumulation_steps == 0:
163
164
165
166
167
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

thomwolf's avatar
thomwolf committed
168
                optimizer.step()
thomwolf's avatar
thomwolf committed
169
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
170
                model.zero_grad()
thomwolf's avatar
thomwolf committed
171
                global_step += 1
thomwolf's avatar
thomwolf committed
172

thomwolf's avatar
thomwolf committed
173
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
thomwolf's avatar
thomwolf committed
174
                    # Log metrics
175
                    logs = {'step': global_step}
thomwolf's avatar
thomwolf committed
176
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
177
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
178
                        for key, value in results.items():
179
180
181
                            eval_key = 'eval_{}'.format(key)
                            tb_writer.add_scalar(eval_key, value, global_step)
                            logs[eval_key] = str(value)
thomwolf's avatar
thomwolf committed
182
                    logging_loss = tr_loss
183
184
185
186
187
188
189
                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
                    tb_writer.add_scalar('lr', learning_rate_scalar, global_step)
                    tb_writer.add_scalar('loss', loss_scalar, global_step)
                    logs['learning_rate'] = learning_rate_scalar
                    logs['loss'] = loss_scalar
                    print(json.dumps(logs))
thomwolf's avatar
thomwolf committed
190
191
192
193
194
195
196
197
198

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
199
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
200

thomwolf's avatar
thomwolf committed
201
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
202
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
203
204
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
205
            train_iterator.close()
thomwolf's avatar
thomwolf committed
206
            break
thomwolf's avatar
thomwolf committed
207

thomwolf's avatar
thomwolf committed
208
209
210
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
211
212
213
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
214
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
215
216
217
218
219
220
221
222
223
224
225
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
226
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
227
228
229
230
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
231
232
233
234
        # multi-gpu eval
        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
235
        # Eval!
thomwolf's avatar
thomwolf committed
236
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
237
238
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
239
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
240
241
242
243
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
244
            model.eval()
thomwolf's avatar
thomwolf committed
245
246
247
248
249
250
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
                inputs = {'input_ids':      batch[0],
                          'attention_mask': batch[1],
                          'labels':         batch[3]}
251
252
                if args.model_type != 'distilbert':
                    inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
253
254
255
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
256
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

273
        output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
thomwolf's avatar
thomwolf committed
274
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
275
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
276
277
278
279
280
281
282
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
283
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
284
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
285
286
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
287
    processor = processors[task]()
288
289
290
291
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
292
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
thomwolf's avatar
thomwolf committed
293
294
        str(args.max_seq_length),
        str(task)))
295
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
thomwolf's avatar
thomwolf committed
296
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
297
298
        features = torch.load(cached_features_file)
    else:
299
300
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
301
302
303
        if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta']:
            # HACK(label indices are swapped in RoBERTa pretrained model)
            label_list[1], label_list[2] = label_list[2], label_list[1] 
304
        examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
thomwolf's avatar
thomwolf committed
305
306
        features = convert_examples_to_features(examples,
                                                tokenizer,
thomwolf's avatar
thomwolf committed
307
308
309
                                                label_list=label_list,
                                                max_length=args.max_seq_length,
                                                output_mode=output_mode,
thomwolf's avatar
thomwolf committed
310
311
312
                                                pad_on_left=bool(args.model_type in ['xlnet']),                 # pad on the left for xlnet
                                                pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
                                                pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
313
        )
314
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
315
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
316
317
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
318
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
319
320
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

321
322
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
323
324
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
325
    if output_mode == "classification":
thomwolf's avatar
thomwolf committed
326
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
327
    elif output_mode == "regression":
thomwolf's avatar
thomwolf committed
328
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
329

thomwolf's avatar
thomwolf committed
330
    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
331
    return dataset
thomwolf's avatar
thomwolf committed
332
333


thomwolf's avatar
thomwolf committed
334
335
336
337
338
339
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
340
341
342
343
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
thomwolf's avatar
thomwolf committed
344
    parser.add_argument("--task_name", default=None, type=str, required=True,
345
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
thomwolf's avatar
thomwolf committed
346
347
348
349
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
thomwolf's avatar
thomwolf committed
350
351
352
353
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
thomwolf's avatar
thomwolf committed
354
355
356
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
357
358
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
thomwolf's avatar
thomwolf committed
359
360
361
362
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
363
364
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
365
366
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
367
368

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
369
                        help="Batch size per GPU/CPU for training.")
thomwolf's avatar
thomwolf committed
370
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
371
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
372
373
374
375
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
thomwolf's avatar
thomwolf committed
376
377
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
thomwolf's avatar
thomwolf committed
378
379
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
thomwolf's avatar
thomwolf committed
380
381
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
thomwolf's avatar
thomwolf committed
382
383
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
thomwolf's avatar
thomwolf committed
384
385
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
thomwolf's avatar
thomwolf committed
386
387
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
thomwolf's avatar
thomwolf committed
388

thomwolf's avatar
thomwolf committed
389
    parser.add_argument('--logging_steps', type=int, default=50,
thomwolf's avatar
thomwolf committed
390
                        help="Log every X updates steps.")
thomwolf's avatar
thomwolf committed
391
392
393
394
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
395
396
397
398
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
399
400
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
401
402
403
404
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
thomwolf's avatar
thomwolf committed
405
406
407
408
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
thomwolf's avatar
thomwolf committed
409
    parser.add_argument("--local_rank", type=int, default=-1,
thomwolf's avatar
thomwolf committed
410
411
412
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
thomwolf's avatar
thomwolf committed
413
414
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
415
416
417
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

thomwolf's avatar
thomwolf committed
418
419
420
421
422
423
424
425
426
427
428
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
429
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
430
431
432
433
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
434
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
435
436
437
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
438
439
440
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
441
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
thomwolf's avatar
thomwolf committed
442
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
thomwolf's avatar
thomwolf committed
443

thomwolf's avatar
thomwolf committed
444
445
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
446
447

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
448
449
450
451
452
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
453
454
455
456
457
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
458
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
459

460
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
461
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
462
463
464
465
466
467
468
469
470
471
472
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
thomwolf's avatar
thomwolf committed
473
474

    if args.local_rank == 0:
475
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
476

thomwolf's avatar
thomwolf committed
477
    model.to(args.device)
thomwolf's avatar
thomwolf committed
478

thomwolf's avatar
thomwolf committed
479
480
    logger.info("Training/evaluation parameters %s", args)

481

thomwolf's avatar
thomwolf committed
482
    # Training
thomwolf's avatar
thomwolf committed
483
    if args.do_train:
484
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
485
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
486
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
487
488


thomwolf's avatar
thomwolf committed
489
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
490
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
491
492
493
494
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
495
        logger.info("Saving model checkpoint to %s", args.output_dir)
496
497
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
498
499
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
500
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
501
502

        # Good practice: save your training arguments together with the trained model
503
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
504

505
        # Load a trained model and vocabulary that you have fine-tuned
506
        model = model_class.from_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
507
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
508
        model.to(args.device)
thomwolf's avatar
thomwolf committed
509

510

thomwolf's avatar
thomwolf committed
511
    # Evaluation
thomwolf's avatar
thomwolf committed
512
    results = {}
thomwolf's avatar
thomwolf committed
513
    if args.do_eval and args.local_rank in [-1, 0]:
514
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
515
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
516
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
517
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
518
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
519
520
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
521
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
522
523
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            
thomwolf's avatar
thomwolf committed
524
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
525
            model.to(args.device)
526
            result = evaluate(args, model, tokenizer, prefix=prefix)
thomwolf's avatar
thomwolf committed
527
528
529
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

thomwolf's avatar
thomwolf committed
530
    return results
thomwolf's avatar
thomwolf committed
531
532
533
534


if __name__ == "__main__":
    main()