test_trainer.py 124 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import dataclasses
17
import gc
18
import json
19
import math
20
import os
21
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
22
import re
23
import subprocess
24
import sys
25
import tempfile
Julien Chaumond's avatar
Julien Chaumond committed
26
import unittest
27
from itertools import product
28
from pathlib import Path
29
from typing import Dict, List
30
from unittest.mock import Mock, patch
Julien Chaumond's avatar
Julien Chaumond committed
31

Sylvain Gugger's avatar
Sylvain Gugger committed
32
import numpy as np
33
from huggingface_hub import HfFolder, delete_repo, list_repo_commits, list_repo_files
34
from parameterized import parameterized
Sylvain Gugger's avatar
Sylvain Gugger committed
35
from requests.exceptions import HTTPError
36

37
38
39
40
41
from transformers import (
    AutoTokenizer,
    IntervalStrategy,
    PretrainedConfig,
    TrainingArguments,
42
    get_polynomial_decay_schedule_with_warmup,
43
44
45
    is_torch_available,
    logging,
)
46
from transformers.hyperparameter_search import ALL_HYPERPARAMETER_SEARCH_BACKENDS
47
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
48
    ENDPOINT_STAGING,
49
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
50
    USER,
51
    CaptureLogger,
52
    TestCasePlus,
53
    backend_device_count,
54
    execute_subprocess_async,
55
    get_gpu_count,
56
    get_tests_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
57
    is_staging_test,
Yih-Dar's avatar
Yih-Dar committed
58
    require_accelerate,
59
    require_intel_extension_for_pytorch,
60
    require_optuna,
61
    require_ray,
62
    require_safetensors,
63
    require_sentencepiece,
64
    require_sigopt,
65
    require_tensorboard,
66
67
    require_tokenizers,
    require_torch,
68
69
    require_torch_accelerator,
    require_torch_bf16,
70
    require_torch_gpu,
71
72
    require_torch_multi_accelerator,
    require_torch_non_multi_accelerator,
73
    require_torch_non_multi_gpu,
74
    require_torch_tensorrt_fx,
75
    require_torch_tf32,
76
    require_torch_up_to_2_accelerators,
77
    require_torchdynamo,
78
    require_wandb,
79
    slow,
80
    torch_device,
81
)
82
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, HPSearchBackend
83
from transformers.training_args import OptimizerNames
84
from transformers.utils import (
85
86
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
87
88
89
90
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
    is_apex_available,
    is_bitsandbytes_available,
91
    is_safetensors_available,
92
93
    is_torchdistx_available,
)
94
from transformers.utils.hp_naming import TrialShortNamer
Julien Chaumond's avatar
Julien Chaumond committed
95
96
97
98


if is_torch_available():
    import torch
99
    from torch import nn
100
101
    from torch.utils.data import IterableDataset

102
    import transformers.optimization
Julien Chaumond's avatar
Julien Chaumond committed
103
104
    from transformers import (
        AutoModelForSequenceClassification,
105
        EarlyStoppingCallback,
Julien Chaumond's avatar
Julien Chaumond committed
106
107
        GlueDataset,
        GlueDataTrainingArguments,
108
109
        GPT2Config,
        GPT2LMHeadModel,
110
        LineByLineTextDataset,
111
        PreTrainedModel,
112
        Trainer,
113
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
114
    )
115
    from transformers.modeling_utils import unwrap_model
Julien Chaumond's avatar
Julien Chaumond committed
116

117
118
119
    if is_safetensors_available():
        import safetensors.torch

Julien Chaumond's avatar
Julien Chaumond committed
120

121
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
122
123


Sylvain Gugger's avatar
Sylvain Gugger committed
124
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
125
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
126
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
127
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
128
129
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
130
131
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
132

Sylvain Gugger's avatar
Sylvain Gugger committed
133
134
135
136
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
137
138
139
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
140
141


142
143
144
145
@dataclasses.dataclass
class RegressionTrainingArguments(TrainingArguments):
    a: float = 0.0
    b: float = 0.0
146
    keep_report_to: bool = False
147

148
    def __post_init__(self):
149
        super().__post_init__()
150
151
152
153
        # save resources not dealing with reporting unless specified (also avoids the warning when it's not set)
        # can be explicitly disabled via `keep_report_to`
        if not self.keep_report_to:
            self.report_to = []
154

155

156
157
158
159
160
161
162
163
164
165
166
167
class RepeatDataset:
    def __init__(self, x, length=64):
        self.x = x
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_ids": self.x, "labels": self.x}


168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
class DynamicShapesDataset:
    def __init__(self, length=64, seed=42, batch_size=8):
        self.length = length
        np.random.seed(seed)
        sizes = np.random.randint(1, 20, (length // batch_size,))
        # For easy batching, we make every batch_size consecutive samples the same size.
        self.xs = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]
        self.ys = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.xs[i], "labels": self.ys[i]}


Sylvain Gugger's avatar
Sylvain Gugger committed
184
185
186
187
188
189
190
191
class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
192

Julien Chaumond's avatar
Julien Chaumond committed
193

194
class RegressionModelConfig(PretrainedConfig):
195
    def __init__(self, a=0, b=0, double_output=False, random_torch=True, **kwargs):
196
197
198
199
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output
200
        self.random_torch = random_torch
201
        self.hidden_size = 1
202
203


204
205
206
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
207
208
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)
209
210

        def __iter__(self):
211
212
            for i in range(len(self.dataset)):
                yield self.dataset[i]
213

214
215
216
217
218
219
220
221
222
223
    class FiniteIterableDataset(SampleIterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            super().__init__(a, b, length, seed, label_names)
            self.current_sample = 0

        def __iter__(self):
            while self.current_sample < len(self.dataset):
                yield self.dataset[self.current_sample]
                self.current_sample += 1

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    class MultiLoader:
        def __init__(self, loaders):
            self.loaders = loaders

        def __len__(self):
            return sum(len(loader) for loader in self.loaders)

        def __iter__(self):
            for loader in self.loaders:
                yield from loader

    class CustomDataloaderTrainer(Trainer):
        def get_train_dataloader(self):
            dataloaders = [super().get_train_dataloader(), super().get_train_dataloader()]
            return MultiLoader(dataloaders)

        def get_eval_dataloader(self, eval_dataset):
            dataloaders = [super().get_eval_dataloader(eval_dataset), super().get_eval_dataloader(eval_dataset)]
            return MultiLoader(dataloaders)

244
    class RegressionModel(nn.Module):
245
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
246
            super().__init__()
247
248
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
249
250
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
251

Stas Bekman's avatar
Stas Bekman committed
252
        def forward(self, input_x, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
253
254
            y = input_x * self.a + self.b
            if labels is None:
255
                return (y, y) if self.double_output else (y,)
256
            loss = nn.functional.mse_loss(y, labels)
257
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
258

259
    class RegressionDictModel(nn.Module):
260
261
        def __init__(self, a=0, b=0):
            super().__init__()
262
263
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
264
265
            self.config = None

Stas Bekman's avatar
Stas Bekman committed
266
        def forward(self, input_x, labels=None, **kwargs):
267
268
269
            y = input_x * self.a + self.b
            result = {"output": y}
            if labels is not None:
270
                result["loss"] = nn.functional.mse_loss(y, labels)
271
272
            return result

273
274
275
276
277
278
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
279
280
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
281
282
            self.double_output = config.double_output

Stas Bekman's avatar
Stas Bekman committed
283
        def forward(self, input_x, labels=None, **kwargs):
284
285
286
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
287
            loss = nn.functional.mse_loss(y, labels)
288
289
            return (loss, y, y) if self.double_output else (loss, y)

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    class RegressionPreTrainedModelWithGradientCheckpointing(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"
        supports_gradient_checkpointing = True

        def __init__(self, config):
            super().__init__(config)
            self.layers = nn.ModuleList([nn.Linear(config.hidden_size, config.hidden_size) for _ in range(4)])
            self.head = nn.Linear(config.hidden_size, 1)
            self.gradient_checkpointing = False
            self.double_output = config.double_output

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x.unsqueeze(0)

            for layer in self.layers:
                if self.training and self.gradient_checkpointing:
                    outputs = self._gradient_checkpointing_func(layer.__call__, y)
                else:
                    outputs = layer(y)

                y = outputs * 3

            logits = self.head(y)

            if labels is None:
                return (logits, logits) if self.double_output else (logits,)

            loss = nn.functional.mse_loss(logits, labels)

            return (loss, y, y) if self.double_output else (loss, y)

322
323
324
325
326
327
    class RegressionRandomPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
328
329
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
330
            self.random_torch = config.random_torch
331
332
333

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
334
335
            if self.random_torch:
                torch_rand = torch.randn(1).squeeze()
336
337
338
            np_rand = np.random.rand()
            rand_rand = random.random()

339
340
341
            if self.random_torch:
                y += 0.05 * torch_rand
            y += 0.05 * torch.tensor(np_rand + rand_rand)
342
343
344

            if labels is None:
                return (y,)
345
            loss = nn.functional.mse_loss(y, labels)
346
347
            return (loss, y)

348
    class TstLayer(nn.Module):
349
350
        def __init__(self, hidden_size):
            super().__init__()
351
352
353
354
355
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
356
357

        def forward(self, x):
358
359
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
360
361
            return self.ln2(x + h + self.bias)

362
363
364
    def get_regression_trainer(
        a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, keep_report_to=False, **kwargs
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
365
        label_names = kwargs.get("label_names", None)
366
        gradient_checkpointing = kwargs.get("gradient_checkpointing", False)
Sylvain Gugger's avatar
Sylvain Gugger committed
367
368
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
369
370
371
372

        model_init = kwargs.pop("model_init", None)
        if model_init is not None:
            model = None
373
        else:
374
375
            if pretrained:
                config = RegressionModelConfig(a=a, b=b, double_output=double_output)
376
377
378
379
380
381
382
                # We infer the correct model class if one uses gradient_checkpointing or not
                target_cls = (
                    RegressionPreTrainedModel
                    if not gradient_checkpointing
                    else RegressionPreTrainedModelWithGradientCheckpointing
                )
                model = target_cls(config)
383
384
385
            else:
                model = RegressionModel(a=a, b=b, double_output=double_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
386
387
388
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
389
        output_dir = kwargs.pop("output_dir", "./regression")
390
        preprocess_logits_for_metrics = kwargs.pop("preprocess_logits_for_metrics", None)
391

392
        args = RegressionTrainingArguments(output_dir, a=a, b=b, keep_report_to=keep_report_to, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
393
394
395
396
397
398
399
400
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
401
            model_init=model_init,
402
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
Sylvain Gugger's avatar
Sylvain Gugger committed
403
404
        )

405

406
class TrainerIntegrationCommon:
407
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True, safe_weights=True):
408
409
        weights_file = WEIGHTS_NAME if not safe_weights else SAFE_WEIGHTS_NAME
        file_list = [weights_file, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
410
411
412
413
414
415
416
417
418
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
419
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True, safe_weights=True
420
421
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
422
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
423
424
425
426
427
428
429
430
431
432

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
433
434
435
436
            if not safe_weights:
                state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            else:
                state_dict = safetensors.torch.load_file(os.path.join(checkpoint, SAFE_WEIGHTS_NAME))
437
            best_model.load_state_dict(state_dict)
438
            best_model.to(trainer.args.device)
439
440
441
442
443
444
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

445
446
447
448
449
450
451
452
    def check_trainer_state_are_the_same(self, trainer_state, trainer_state1):
        # We'll pop things so operate on copies.
        state = trainer_state.copy()
        state1 = trainer_state1.copy()
        # Log history main contain different logs for the time metrics (after resuming a training).
        log_history = state.pop("log_history", None)
        log_history1 = state1.pop("log_history", None)
        self.assertEqual(state, state1)
453
        skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"]
454
        for log, log1 in zip(log_history, log_history1):
455
456
457
            for key in skip_log_keys:
                _ = log.pop(key, None)
                _ = log1.pop(key, None)
458
459
            self.assertEqual(log, log1)

460
    def convert_to_sharded_checkpoint(self, folder, save_safe=True, load_safe=True):
461
        # Converts a checkpoint of a regression model to a sharded checkpoint.
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
        if load_safe:
            loader = safetensors.torch.load_file
            weights_file = os.path.join(folder, SAFE_WEIGHTS_NAME)
        else:
            loader = torch.load
            weights_file = os.path.join(folder, WEIGHTS_NAME)

        if save_safe:
            extension = "safetensors"
            saver = safetensors.torch.save_file
            index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
            shard_name = SAFE_WEIGHTS_NAME
        else:
            extension = "bin"
            saver = torch.save
            index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
            shard_name = WEIGHTS_NAME

        state_dict = loader(weights_file)

        os.remove(weights_file)
483
484
485
        keys = list(state_dict.keys())

        shard_files = [
486
487
            shard_name.replace(f".{extension}", f"-{idx+1:05d}-of-{len(keys):05d}.{extension}")
            for idx in range(len(keys))
488
489
490
        ]
        index = {"metadata": {}, "weight_map": {key: shard_files[i] for i, key in enumerate(keys)}}

491
        with open(index_file, "w", encoding="utf-8") as f:
492
493
494
495
            content = json.dumps(index, indent=2, sort_keys=True) + "\n"
            f.write(content)

        for param_name, shard_file in zip(keys, shard_files):
496
            saver({param_name: state_dict[param_name]}, os.path.join(folder, shard_file))
497

498
499
500
501

@require_torch
@require_sentencepiece
@require_tokenizers
502
503
504
505
506
507
508
509
class TrainerIntegrationPrerunTest(TestCasePlus, TrainerIntegrationCommon):
    """
    Only tests that want to tap into the auto-pre-run 2 trainings:
    - self.default_trained_model
    - self.alternate_trained_model
    directly, or via check_trained_model
    """

510
511
    def setUp(self):
        super().setUp()
512
        args = TrainingArguments("..")
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_trainer_with_datasets(self):
        import datasets

        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,))
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch", dtype=torch.float32)
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
582
        trainer.args.seed = 314
583
584
585
586
587
588
589
590
591
592
593
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_gradient_accumulation(self):
        # Training with half the batch size but accumulation steps as 2 should give the same results.
        trainer = get_regression_trainer(
            gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1
        )
        trainer.train()
        self.check_trained_model(trainer.model)

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
    def test_gradient_checkpointing(self):
        trainer = get_regression_trainer(
            per_device_train_batch_size=1,
            learning_rate=0.1,
            gradient_checkpointing=True,
            gradient_checkpointing_kwargs={"use_reentrant": False},
        )
        previous_params = {k: v.detach().clone() for k, v in trainer.model.named_parameters()}

        trainer.train()

        # Check if model weights have been updated
        for k, v in trainer.model.named_parameters():
            self.assertFalse(
                torch.allclose(previous_params[k], v, rtol=1e-4, atol=1e-4),
                f"Model weights for {k} have not been updated",
            )

612
    def test_training_loss(self):
613
        n_gpus = max(1, backend_device_count(torch_device))
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

        # With even logs
        trainer = get_regression_trainer(logging_steps=64 / (8 * n_gpus))
        trainer.train()
        log_history = trainer.state.log_history

        losses = [log["loss"] for log in log_history if "loss" in log]
        train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(sum(losses) / len(losses), train_loss, places=4)

        # With uneven logs
        trainer = get_regression_trainer(logging_steps=5)
        trainer.train()
        log_history = trainer.state.log_history

        # Training loss should be the same as before
        new_train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(train_loss, new_train_loss, places=4)

633
634
635
636
637
638
639
640
641
642
643
644
645
646
    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
    def test_lr_scheduler_kwargs(self):
        # test scheduler kwargs passed via TrainingArguments
        train_dataset = RegressionDataset()
        model = RegressionModel()
        num_steps, num_warmup_steps = 10, 2
        extra_kwargs = {"power": 5.0, "lr_end": 1e-5}  # Non-default arguments
        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="polynomial",
            lr_scheduler_kwargs=extra_kwargs,
            learning_rate=0.2,
            warmup_steps=num_warmup_steps,
        )
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.create_optimizer_and_scheduler(num_training_steps=num_steps)

        # Checking that the scheduler was created
        self.assertIsNotNone(trainer.lr_scheduler)

        # Checking that the correct args were passed
        sched1 = trainer.lr_scheduler
        sched2 = get_polynomial_decay_schedule_with_warmup(
            trainer.optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_steps, **extra_kwargs
        )
        self.assertEqual(sched1.lr_lambdas[0].args, sched2.lr_lambdas[0].args)
        self.assertEqual(sched1.lr_lambdas[0].keywords, sched2.lr_lambdas[0].keywords)

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
    def test_reduce_lr_on_plateau_args(self):
        # test passed arguments for a custom ReduceLROnPlateau scheduler
        train_dataset = RegressionDataset(length=64)
        eval_dataset = RegressionDataset(length=64)
        args = TrainingArguments(
            "./regression",
            evaluation_strategy="epoch",
            metric_for_best_model="eval_loss",
        )
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.2, patience=5, cooldown=2)
        trainer = Trainer(
            model, args, train_dataset=train_dataset, eval_dataset=eval_dataset, optimizers=(optimizer, lr_scheduler)
        )
        trainer.train()

        self.assertIsInstance(trainer.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau)
        self.assertEqual(trainer.lr_scheduler.factor, 0.2)
        self.assertEqual(trainer.lr_scheduler.patience, 5)
        self.assertEqual(trainer.lr_scheduler.cooldown, 2)

    def test_reduce_lr_on_plateau(self):
        # test the ReduceLROnPlateau scheduler

        class TrainerWithLRLogs(Trainer):
            def log(self, logs):
                # the LR is computed after metrics and does not exist for the first epoch
                if hasattr(self.lr_scheduler, "_last_lr"):
703
                    logs["learning_rate"] = self.lr_scheduler._last_lr[0]
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
                super().log(logs)

        train_dataset = RegressionDataset(length=64)
        eval_dataset = RegressionDataset(length=64)

        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="reduce_lr_on_plateau",
            evaluation_strategy="epoch",
            metric_for_best_model="eval_loss",
            num_train_epochs=10,
            learning_rate=0.2,
        )
        model = RegressionModel()
        trainer = TrainerWithLRLogs(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()

        self.assertIsInstance(trainer.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau)
        patience = trainer.lr_scheduler.patience

        logs = trainer.state.log_history[1:]
        best_loss = logs[0]["eval_loss"]
        bad_epochs = 0
        for i, log in enumerate(logs[:-1]):  # Compare learning rate to next epoch's
            loss = log["eval_loss"]
            just_decreased = False
            if loss > best_loss:
                bad_epochs += 1
                if bad_epochs > patience:
733
                    self.assertLess(logs[i + 1]["learning_rate"], log["learning_rate"])
734
735
736
737
738
739
                    just_decreased = True
                    bad_epochs = 0
            else:
                best_loss = loss
                bad_epochs = 0
            if not just_decreased:
740
                self.assertEqual(logs[i + 1]["learning_rate"], log["learning_rate"])
741

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
    def test_adafactor_lr_none(self):
        # test the special case where lr=None, since Trainer can't not have lr_scheduler

        from transformers.optimization import Adafactor, AdafactorSchedule

        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
        lr_scheduler = AdafactorSchedule(optimizer)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0)

760
761
    @require_torch_accelerator
    @require_torch_bf16
762
763
764
765
766
767
768
769
770
771
772
773
    def test_mixed_bf16(self):
        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, bf16=True)
        trainer.train()
        self.check_trained_model(trainer.model)

        # --bf16 --half_precision_backend apex can't be used together
        with self.assertRaises(ValueError):
            trainer = get_regression_trainer(learning_rate=0.1, bf16=True, half_precision_backend="apex")

        # will add more specific tests once there are some bugs to fix

774
775
776
777
778
779
780
781
    @require_torch_gpu
    @require_torch_tf32
    def test_tf32(self):
        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, tf32=True)
        trainer.train()
        self.check_trained_model(trainer.model)

782
783
784
785
786
787
788

@require_torch
@require_sentencepiece
@require_tokenizers
class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
789
        args = TrainingArguments("..")
790
791
792
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

793
794
795
796
797
798
799
800
801
802
803
804
805
    def test_trainer_works_with_dict(self):
        # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break
        # anything.
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

    def test_evaluation_with_keys_to_drop(self):
806
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
807
808
809
810
811
812
813
814
815
816
817
818
819
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        eval_dataset = RepeatDataset(x)
        args = TrainingArguments("./test")
        trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset)
        # By default the past_key_values are removed
        result = trainer.predict(eval_dataset)
        self.assertTrue(isinstance(result.predictions, np.ndarray))
        # We can still get them by setting ignore_keys to []
        result = trainer.predict(eval_dataset, ignore_keys=[])
        self.assertTrue(isinstance(result.predictions, tuple))
        self.assertEqual(len(result.predictions), 2)

820
821
822
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
823
        args = TrainingArguments("./regression", report_to=[])
824
825
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
826
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
827
            if key != "logging_dir":
828
                self.assertEqual(dict1[key], dict2[key])
829

Sylvain Gugger's avatar
Sylvain Gugger committed
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

846
    @require_torch_bf16
847
848
849
850
    @require_intel_extension_for_pytorch
    def test_number_of_steps_in_training_with_ipex(self):
        for mix_bf16 in [True, False]:
            # Regular training has n_epochs * len(train_dl) steps
851
            trainer = get_regression_trainer(learning_rate=0.1, use_ipex=True, bf16=mix_bf16, use_cpu=True)
852
            train_output = trainer.train()
853
            self.assertEqual(train_output.global_step, self.n_epochs * 64 / trainer.args.train_batch_size)
854
855
856

            # Check passing num_train_epochs works (and a float version too):
            trainer = get_regression_trainer(
857
                learning_rate=0.1, num_train_epochs=1.5, use_ipex=True, bf16=mix_bf16, use_cpu=True
858
859
            )
            train_output = trainer.train()
860
            self.assertEqual(train_output.global_step, int(1.5 * 64 / trainer.args.train_batch_size))
861
862
863

            # If we pass a max_steps, num_train_epochs is ignored
            trainer = get_regression_trainer(
864
                learning_rate=0.1, max_steps=10, use_ipex=True, bf16=mix_bf16, use_cpu=True
865
866
867
868
            )
            train_output = trainer.train()
            self.assertEqual(train_output.global_step, 10)

869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
    def test_neftune(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments(
            "./test", learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, neftune_noise_alpha=0.4
        )
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

        trainer.model = trainer._activate_neftune(trainer.model)

        dummy_input = torch.LongTensor([[1, 0, 1]]).to(torch_device)

        emb1 = trainer.model.get_input_embeddings()(dummy_input)
        emb2 = trainer.model.get_input_embeddings()(dummy_input)

        self.assertFalse(torch.allclose(emb1, emb2), "Neftune noise is not applied!")

        # redefine the model
        tiny_gpt2 = GPT2LMHeadModel(config)
        # Trainer without inf/nan filter
        args = TrainingArguments(
            "./test", learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, neftune_noise_alpha=0.4
        )
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

        # Check that it trains without errors
        trainer.train()

        # Make sure forward pass works fine
        _ = trainer.model(dummy_input)
        self.assertTrue(len(trainer.model.get_input_embeddings()._forward_hooks) == 0)

        trainer.model.eval()

        # Check that we get identical embeddings just in case
        emb1 = trainer.model.get_input_embeddings()(dummy_input)
        emb2 = trainer.model.get_input_embeddings()(dummy_input)

        self.assertTrue(torch.allclose(emb1, emb2), "Neftune noise is still applied!")

913
    def test_logging_inf_nan_filter(self):
914
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=False)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_no_filter = trainer.state.log_history

        # Trainer with inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=True)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_filter = trainer.state.log_history

        def is_any_loss_nan_or_inf(log_history):
            losses = [l["loss"] for l in log_history[:-1]]
            return any(math.isnan(x) for x in losses) or any(math.isinf(x) for x in losses)

        self.assertTrue(is_any_loss_nan_or_inf(log_history_no_filter))
        self.assertFalse(is_any_loss_nan_or_inf(log_history_filter))

Sylvain Gugger's avatar
Sylvain Gugger committed
938
    def test_train_and_eval_dataloaders(self):
939
        n_gpu = max(1, backend_device_count(torch_device))
Sylvain Gugger's avatar
Sylvain Gugger committed
940
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
941
        self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
942
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
943
        self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
944
945
946
947
948

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
949
950
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
951
952
953
954
955
956
957
958
959

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
960
961
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
962

963
        # Check passing a new dataset for evaluation works
Sylvain Gugger's avatar
Sylvain Gugger committed
964
        new_eval_dataset = RegressionDataset(length=128)
965
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
966

967
968
969
970
971
972
973
974
975
    # tests that we do not require dataloader to have a .dataset attribute
    def test_dataloader_without_dataset(self):
        train_dataset = RegressionDataset(length=128)
        trainer = CustomDataloaderTrainer(
            model=RegressionModel(), train_dataset=train_dataset, eval_dataset=train_dataset
        )
        trainer.train()
        trainer.evaluate()

976
    @require_torch_multi_accelerator
977
978
979
980
981
    def test_data_is_not_parallelized_when_model_is_parallel(self):
        model = RegressionModel()
        # Make the Trainer believe it's a parallelized model
        model.is_parallelizable = True
        model.model_parallel = True
982
983
        args = TrainingArguments("./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16)
        trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset())
984
985
        # Check the Trainer was fooled
        self.assertTrue(trainer.is_model_parallel)
986
        self.assertEqual(trainer.args.n_gpu, 1)
987
988

        # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu
989
        self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16)
990
        self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16)
991
        self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16)
992
993
        self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16)

Sylvain Gugger's avatar
Sylvain Gugger committed
994
995
996
997
    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
998
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
1009
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
1010
1011
1012
1013
1014
1015
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
    def test_evaluate_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy(), jit_mode_eval=True)
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(
            a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy(), jit_mode_eval=True
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
            jit_mode_eval=True,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1073
    @require_torch_bf16
1074
1075
1076
1077
    @require_intel_extension_for_pytorch
    def test_evaluate_with_ipex(self):
        for mix_bf16 in [True, False]:
            trainer = get_regression_trainer(
1078
                a=1.5, b=2.5, use_ipex=True, compute_metrics=AlmostAccuracy(), bf16=mix_bf16, use_cpu=True
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With a number of elements not a round multiple of the batch size
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                eval_len=66,
                compute_metrics=AlmostAccuracy(),
                bf16=mix_bf16,
1097
                use_cpu=True,
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With logits preprocess
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                compute_metrics=AlmostAccuracy(),
                preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
                bf16=mix_bf16,
1116
                use_cpu=True,
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

Sylvain Gugger's avatar
Sylvain Gugger committed
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

1139
1140
1141
1142
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
1143
        self.assertEqual(len(preds), 2)
1144
1145
1146
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
1147
1148
1149
1150
1151
1152
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

    def test_predict_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

        # With more than one output/label of the model
        trainer = get_regression_trainer(
            a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"], jit_mode_eval=True
        )
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
1187
        self.assertEqual(len(preds), 2)
Sylvain Gugger's avatar
Sylvain Gugger committed
1188
1189
1190
1191
1192
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1193
    @require_torch_bf16
1194
1195
1196
    @require_intel_extension_for_pytorch
    def test_predict_with_ipex(self):
        for mix_bf16 in [True, False]:
1197
            trainer = get_regression_trainer(a=1.5, b=2.5, use_ipex=True, bf16=mix_bf16, use_cpu=True)
1198
1199
1200
1201
1202
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With a number of elements not a round multiple of the batch size
1203
            trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, use_ipex=True, bf16=mix_bf16, use_cpu=True)
1204
1205
1206
1207
1208
1209
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With more than one output of the model
            trainer = get_regression_trainer(
1210
                a=1.5, b=2.5, double_output=True, use_ipex=True, bf16=mix_bf16, use_cpu=True
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
            )
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

            # With more than one output/label of the model
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                double_output=True,
                label_names=["labels", "labels_2"],
                use_ipex=True,
                bf16=mix_bf16,
1226
                use_cpu=True,
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
            )
            outputs = trainer.predict(trainer.eval_dataset)
            preds = outputs.predictions
            labels = outputs.label_ids
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
            self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
            self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
    def test_dynamic_shapes(self):
        eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
        model = RegressionModel(a=2, b=1)
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        # Same tests with eval accumulation
        args = TrainingArguments("./regression", eval_accumulation_steps=2)
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

1274
    def test_log_level(self):
1275
        # testing only --log_level (--log_level_replica requires multiple gpus and DDP and is tested elsewhere)
1276
1277
1278
        logger = logging.get_logger()
        log_info_string = "Running training"

1279
1280
        # test with the default log_level - should be the same as before and thus we test depending on is_info
        is_info = logging.get_verbosity() <= 20
1281
1282
1283
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer()
            trainer.train()
1284
1285
1286
1287
        if is_info:
            self.assertIn(log_info_string, cl.out)
        else:
            self.assertNotIn(log_info_string, cl.out)
1288

1289
        # test with low log_level - lower than info
1290
1291
1292
1293
1294
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(log_level="debug")
            trainer.train()
        self.assertIn(log_info_string, cl.out)

1295
        # test with high log_level - should be quiet
1296
1297
1298
1299
1300
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(log_level="error")
            trainer.train()
        self.assertNotIn(log_info_string, cl.out)

1301
1302
1303
1304
1305
1306
1307
1308
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1309
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
1310
1311
1312
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
    @require_safetensors
    def test_safe_checkpoints(self):
        for save_safetensors in [True, False]:
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, save_safetensors=save_safetensors)
                trainer.train()
                self.check_saved_checkpoints(
                    tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), safe_weights=save_safetensors
                )

            # With a regular model that is not a PreTrainedModel
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(
                    output_dir=tmpdir, save_steps=5, pretrained=False, save_safetensors=save_safetensors
                )
                trainer.train()
                self.check_saved_checkpoints(
                    tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False, safe_weights=save_safetensors
                )

1333
    @require_torch_multi_accelerator
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
    def test_run_seq2seq_double_train_wrap_once(self):
        # test that we don't wrap the model more than once
        # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for
        # example DataParallel(DataParallel(model))

        trainer = get_regression_trainer()
        trainer.train()
        model_wrapped_before = trainer.model_wrapped
        trainer.train()
        model_wrapped_after = trainer.model_wrapped
        self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice")

1346
    @require_torch_up_to_2_accelerators
1347
    def test_can_resume_training(self):
1348
1349
1350
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).
1351

1352
        with tempfile.TemporaryDirectory() as tmpdir:
1353
1354
1355
1356
1357
1358
1359
            kwargs = {
                "output_dir": tmpdir,
                "train_len": 128,
                "save_steps": 5,
                "learning_rate": 0.1,
                "logging_steps": 5,
            }
1360
            trainer = get_regression_trainer(**kwargs)
1361
1362
1363
1364
1365
1366
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

1367
            # Reinitialize trainer
1368
            trainer = get_regression_trainer(**kwargs)
1369

1370
            trainer.train(resume_from_checkpoint=checkpoint)
1371
1372
1373
1374
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1375
            self.check_trainer_state_are_the_same(state, state1)
1376

1377
1378
1379
1380
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1381
            trainer = get_regression_trainer(**kwargs)
1382

1383
            trainer.train(resume_from_checkpoint=checkpoint)
1384
1385
1386
1387
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1388
            self.check_trainer_state_are_the_same(state, state1)
1389

1390
1391
        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1392
1393
1394
1395
1396
1397
1398
            kwargs = {
                "output_dir": tmpdir,
                "train_len": 128,
                "save_steps": 5,
                "learning_rate": 0.1,
                "pretrained": False,
            }
1399
1400

            trainer = get_regression_trainer(**kwargs)
1401
1402
1403
1404
1405
1406
1407
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
1408
            trainer = get_regression_trainer(**kwargs)
1409

1410
            trainer.train(resume_from_checkpoint=checkpoint)
1411
1412
1413
1414
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1415
            self.check_trainer_state_are_the_same(state, state1)
1416

1417
1418
1419
1420
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1421
            trainer = get_regression_trainer(**kwargs)
1422

1423
            trainer.train(resume_from_checkpoint=checkpoint)
1424
1425
1426
1427
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1428
            self.check_trainer_state_are_the_same(state, state1)
1429

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
        # Now check failures

        # 1. fail to find a bogus checkpoint
        trainer = get_regression_trainer()
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
        self.assertTrue("Can't find a valid checkpoint at" in str(context.exception))

        # 2. fail to find any checkpoint - due a fresh output_dir
        output_dir2 = self.get_auto_remove_tmp_dir()
        trainer = get_regression_trainer(output_dir=output_dir2)
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=True)
        self.assertTrue("No valid checkpoint found in output directory" in str(context.exception))

1445
    def test_resume_training_with_randomness(self):
1446
1447
1448
1449
        # For more than 1 GPUs, since the randomness is introduced in the model and with DataParallel (which is used
        # in this test for more than 2 GPUs), the calls to the torch RNG will happen in a random order (sometimes
        # GPU 0 will call first and sometimes GPU 1).
        random_torch = not torch.cuda.is_available() or torch.cuda.device_count() <= 1
1450
1451
1452
1453
1454
1455

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

1456
1457
1458
        with self.subTest("Test every step"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)
1459

1460
1461
1462
            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
1463

1464
1465
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
1466

1467
1468
1469
1470
1471
            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15"))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()

1472
1473
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495

        with self.subTest("Test every epoch"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)

            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_strategy="epoch", learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()

            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            checkpoints = [d for d in os.listdir(tmp_dir) if d.startswith("checkpoint-")]
            # There should be one checkpoint per epoch.
            self.assertEqual(len(checkpoints), 3)
            checkpoint_dir = sorted(checkpoints, key=lambda x: int(x.replace("checkpoint-", "")))[0]

            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, checkpoint_dir))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1496

1497
1498
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
1499

1500
    @slow
Yih-Dar's avatar
Yih-Dar committed
1501
    @require_accelerate
1502
    @require_torch_non_multi_accelerator
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
    def test_auto_batch_size_finder(self):
        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True

        SRC_DIR = os.path.abspath(
            os.path.join(os.path.dirname(__file__), "..", "..", "examples", "pytorch", "text-classification")
        )
        sys.path.append(SRC_DIR)
        import run_glue

        with tempfile.TemporaryDirectory() as tmpdir:
            testargs = f"""
                run_glue.py
                --model_name_or_path distilbert-base-uncased
                --task_name mrpc
                --do_train
                --do_eval
                --max_seq_len 128
                --per_device_train_batch_size 4096
                --learning_rate 2e-5
                --num_train_epochs 1
                --output_dir {tmpdir}
                --auto_find_batch_size 0
                """.split()
            with self.assertRaises(RuntimeError):
                with patch.object(sys, "argv", testargs):
                    run_glue.main()

        testargs[-1] = "1"
        with patch.object(sys, "argv", testargs):
            run_glue.main()

1535
    # regression for this issue: https://github.com/huggingface/transformers/issues/12970
1536
    def test_training_with_resume_from_checkpoint_false(self):
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train(resume_from_checkpoint=False)

1549
    @require_torch_up_to_2_accelerators
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
    def test_resume_training_with_shard_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")
            self.convert_to_sharded_checkpoint(checkpoint)

            # Reinitialize trainer
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

1574
    @require_safetensors
1575
    @require_torch_up_to_2_accelerators
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
    def test_resume_training_with_safe_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        for initial_safe in [False, True]:
            for loaded_safe in [False, True]:
                with tempfile.TemporaryDirectory() as tmpdir:
                    trainer = get_regression_trainer(
                        output_dir=tmpdir,
                        train_len=128,
                        save_steps=5,
                        learning_rate=0.1,
                        save_safetensors=initial_safe,
                    )
                    trainer.train()
                    (a, b) = trainer.model.a.item(), trainer.model.b.item()
                    state = dataclasses.asdict(trainer.state)

                    checkpoint = os.path.join(tmpdir, "checkpoint-5")
                    self.convert_to_sharded_checkpoint(checkpoint, load_safe=initial_safe, save_safe=loaded_safe)

                    # Reinitialize trainer
                    trainer = get_regression_trainer(
                        output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, save_safetensors=loaded_safe
                    )

                    trainer.train(resume_from_checkpoint=checkpoint)
                    (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
                    state1 = dataclasses.asdict(trainer.state)
                    self.assertEqual(a, a1)
                    self.assertEqual(b, b1)
                    self.check_trainer_state_are_the_same(state, state1)

1610
    @require_torch_up_to_2_accelerators
1611
    def test_resume_training_with_gradient_accumulation(self):
1612
1613
1614
1615
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

1631
1632
1633
1634
1635
1636
1637
1638
1639
            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
1640

1641
            trainer.train(resume_from_checkpoint=checkpoint)
1642
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1643
1644
1645
1646
1647
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

1648
    @require_torch_up_to_2_accelerators
1649
    def test_resume_training_with_frozen_params(self):
1650
1651
1652
1653
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)

            trainer.train(resume_from_checkpoint=checkpoint)

            self.assertFalse(trainer.model.a.requires_grad)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1683
1684
1685
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1686
            self.check_trainer_state_are_the_same(state, state1)
1687

1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1698
                save_steps=5,
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1714
                save_steps=5,
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                evaluation_strategy="epoch",
1731
                save_strategy="epoch",
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1750
                save_steps=5,
1751
                load_best_model_at_end=True,
1752
                pretrained=False,
1753
1754
1755
1756
1757
1758
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
    @require_safetensors
    def test_load_best_model_from_safetensors(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        for save_safetensors, pretrained in product([False, True], [False, True]):
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(
                    a=1.5,
                    b=2.5,
                    output_dir=tmpdir,
                    learning_rate=0.1,
                    eval_steps=5,
                    evaluation_strategy="steps",
                    save_steps=5,
                    load_best_model_at_end=True,
                    save_safetensors=save_safetensors,
                    pretrained=pretrained,
                )
                self.assertFalse(trainer.args.greater_is_better)
                trainer.train()
                self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=pretrained, safe_weights=save_safetensors)
                self.check_best_model_has_been_loaded(
                    tmpdir, 5, total, trainer, "eval_loss", is_pretrained=pretrained, safe_weights=save_safetensors
                )

1783
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
1784
1785
1786
1787
1788
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
1789
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
1790
        )
1791
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
1792

1793
        training_args = TrainingArguments(output_dir="./examples", use_cpu=True)
Julien Chaumond's avatar
Julien Chaumond committed
1794
1795
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
1796
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
1797

1798
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
1799
1800
1801
1802
    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
1803
1804
1805
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
1806
1807
        )
        self.assertEqual(len(dataset), 31)
1808

1809
    def test_training_iterable_dataset(self):
1810
1811
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)
1812
1813
        # Adding one column not used by the model should have no impact
        train_dataset = SampleIterableDataset(label_names=["labels", "extra"])
1814

1815
        args = RegressionTrainingArguments(output_dir="./examples", max_steps=4)
1816
        trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
1817
        trainer.train()
1818
        self.assertEqual(trainer.state.global_step, 4)
1819

1820
1821
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
1822
1823
        self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)

1824
1825
1826
    def test_evaluation_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
1827
1828
        # Adding one column not used by the model should have no impact
        eval_dataset = SampleIterableDataset(label_names=["labels", "extra"])
1829
1830
1831
1832

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()
1833

1834
1835
1836
1837
1838
1839
        x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
1840

1841
1842
1843
        # With a number of elements not a round multiple of the batch size
        eval_dataset = SampleIterableDataset(length=66)
        results = trainer.evaluate(eval_dataset)
1844

1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
        x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())

        preds = trainer.predict(trainer.eval_dataset).predictions
        x = eval_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
1865
1866
        # Adding one column not used by the model should have no impact
        test_dataset = SampleIterableDataset(length=66, label_names=["labels", "extra"])
1867
1868
1869
        preds = trainer.predict(test_dataset).predictions
        x = test_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1885

1886
1887
    def test_early_stopping_callback(self):
        # early stopping stops training before num_training_epochs
1888
1889
1890
1891
1892
1893
1894
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                load_best_model_at_end=True,
1895
                evaluation_strategy=IntervalStrategy.EPOCH,
1896
                save_strategy=IntervalStrategy.EPOCH,
1897
1898
1899
1900
1901
1902
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1, 0.0001))
            train_output = trainer.train()
            self.assertLess(train_output.global_step, 20 * 64 / 16)
1903
1904

        # Invalid inputs to trainer with early stopping callback result in assertion error
1905
1906
1907
1908
1909
1910
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
1911
                evaluation_strategy=IntervalStrategy.EPOCH,
1912
1913
1914
1915
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1))
1916
            self.assertEqual(trainer.state.global_step, 0)
1917
1918
1919
1920
            try:
                trainer.train()
            except AssertionError:
                self.assertEqual(trainer.state.global_step, 0)
1921

Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1922
1923
1924
1925
    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
1926
1927
            self.assertEqual(trainer.model, unwrap_model(wrapped_model_to_check))
            self.assertGreaterEqual(getattr(unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0)
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1928
1929
1930
1931
1932

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
1933
        assert_flos_extraction(trainer, nn.DataParallel(trainer.model))
1934

1935
1936
1937
        trainer.train()
        self.assertTrue(isinstance(trainer.state.total_flos, float))

1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
    def check_checkpoint_deletion(self, trainer, output_dir, expected):
        # Make fake checkpoints
        for n in [5, 10, 15, 20, 25]:
            os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True)
        trainer._rotate_checkpoints(output_dir=output_dir)
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")]
        values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints]
        self.assertSetEqual(set(values), set(expected))

    def test_checkpoint_rotation(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Without best model at end
            trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2)
            self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25])

            # With best model at end
1954
1955
1956
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=2
            )
1957
1958
1959
1960
1961
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

            # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume
            # from checkpoint
1962
1963
1964
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=1
            )
1965
1966
1967
1968
1969
1970
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25")
            self.check_checkpoint_deletion(trainer, tmp_dir, [25])

            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

1971
1972
1973
1974
    def check_mem_metrics(self, trainer, check_func):
        metrics = trainer.train().metrics
        check_func("init_mem_cpu_alloc_delta", metrics)
        check_func("train_mem_cpu_alloc_delta", metrics)
1975
        if backend_device_count(torch_device) > 0:
1976
1977
1978
1979
1980
            check_func("init_mem_gpu_alloc_delta", metrics)
            check_func("train_mem_gpu_alloc_delta", metrics)

        metrics = trainer.evaluate()
        check_func("eval_mem_cpu_alloc_delta", metrics)
1981
        if backend_device_count(torch_device) > 0:
1982
1983
1984
1985
            check_func("eval_mem_gpu_alloc_delta", metrics)

        metrics = trainer.predict(RegressionDataset()).metrics
        check_func("test_mem_cpu_alloc_delta", metrics)
1986
        if backend_device_count(torch_device) > 0:
1987
1988
1989
1990
            check_func("test_mem_gpu_alloc_delta", metrics)

    def test_mem_metrics(self):
        # with mem metrics enabled
1991
        trainer = get_regression_trainer(skip_memory_metrics=False)
1992
1993
1994
1995
1996
1997
        self.check_mem_metrics(trainer, self.assertIn)

        # with mem metrics disabled
        trainer = get_regression_trainer(skip_memory_metrics=True)
        self.check_mem_metrics(trainer, self.assertNotIn)

1998
    @require_torch_accelerator
1999
2000
2001
2002
    def test_fp16_full_eval(self):
        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
2003
        n_gpus = backend_device_count(torch_device)
2004
2005

        bs = 8
2006
        eval_len = 16 * n_gpus
2007
2008
2009
2010
2011
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

2012
        # 1. with fp16_full_eval disabled
2013
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

2033
        # 2. with fp16_full_eval enabled
2034
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False)
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
        metrics = trainer.evaluate()
        fp16_init = metrics["init_mem_gpu_alloc_delta"]
        fp16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp16_init {fp16_init}")
            print(f"fp16_eval {fp16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: fp16_init == close to zero
        self.assertLess(fp16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(fp16_eval, 27_000)

        # 3. relative comparison fp32 vs full fp16
        # should be about half of fp16_init
        # perfect world: fp32_init/2 == fp16_eval
        self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000)

2055
2056
    @require_torch_non_multi_gpu
    @require_torchdynamo
2057
    @require_torch_tensorrt_fx
2058
    def test_torchdynamo_full_eval(self):
Yih-Dar's avatar
Yih-Dar committed
2059
2060
        import torchdynamo

2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
        n_gpus = get_gpu_count()

        bs = 8
        eval_len = 16 * n_gpus
        # make the params are somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. Default - without TorchDynamo
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len)
        metrics = trainer.evaluate()
        original_eval_loss = metrics["eval_loss"]
        del trainer

        # 2. TorchDynamo eager
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="eager")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
        del trainer
Yih-Dar's avatar
Yih-Dar committed
2082
        torchdynamo.reset()
2083
2084
2085
2086
2087

        # 3. TorchDynamo nvfuser
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="nvfuser")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
Yih-Dar's avatar
Yih-Dar committed
2088
        torchdynamo.reset()
2089

2090
2091
2092
2093
        # 4. TorchDynamo fx2trt
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="fx2trt")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
Yih-Dar's avatar
Yih-Dar committed
2094
        torchdynamo.reset()
2095

2096
    @unittest.skip("torch 2.0.0 gives `ModuleNotFoundError: No module named 'torchdynamo'`.")
2097
2098
2099
2100
    @require_torch_non_multi_gpu
    @require_torchdynamo
    def test_torchdynamo_memory(self):
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
Yih-Dar's avatar
Yih-Dar committed
2101
2102
        import torchdynamo

2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
        class CustomTrainer(Trainer):
            def compute_loss(self, model, inputs, return_outputs=False):
                x = inputs["x"]
                output = model(x)
                if self.args.n_gpu == 1:
                    return output.mean()
                return output

        class MyModule(torch.nn.Module):
            """Simple module that does aggressive fusion"""

            def __init__(self):
                super().__init__()

            def forward(self, x):
                for _ in range(20):
Yih-Dar's avatar
Yih-Dar committed
2119
                    x = torch.cos(x)
2120
2121
2122
2123
                return x

        mod = MyModule()

2124
        # 1. without TorchDynamo (eager baseline)
2125
2126
2127
2128
2129
2130
2131
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        trainer = CustomTrainer(model=mod)
        # warmup
        for _ in range(10):
            orig_loss = trainer.training_step(mod, {"x": a})

2132
2133
2134
        # resets
        gc.collect()
        torch.cuda.empty_cache()
2135
        torch.cuda.reset_peak_memory_stats()
2136

2137
2138
        orig_loss = trainer.training_step(mod, {"x": a})
        orig_peak_mem = torch.cuda.max_memory_allocated()
Yih-Dar's avatar
Yih-Dar committed
2139
        torchdynamo.reset()
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
        del trainer

        # 2. TorchDynamo nvfuser
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        args = TrainingArguments(output_dir="None", torchdynamo="nvfuser")
        trainer = CustomTrainer(model=mod, args=args)
        # warmup
        for _ in range(10):
            loss = trainer.training_step(mod, {"x": a})

2151
2152
2153
        # resets
        gc.collect()
        torch.cuda.empty_cache()
2154
        torch.cuda.reset_peak_memory_stats()
2155

2156
2157
        loss = trainer.training_step(mod, {"x": a})
        peak_mem = torch.cuda.max_memory_allocated()
Yih-Dar's avatar
Yih-Dar committed
2158
        torchdynamo.reset()
2159
2160
2161
2162
2163
2164
2165
2166
2167
        del trainer

        # Functional check
        self.assertAlmostEqual(loss, orig_loss)

        # AOT Autograd recomputaion and nvfuser recomputation optimization
        # aggressively fuses the operations and reduce the memory footprint.
        self.assertGreater(orig_peak_mem, peak_mem * 2)

2168
2169
    @require_torch_accelerator
    @require_torch_bf16
2170
2171
2172
2173
2174
2175
    def test_bf16_full_eval(self):
        # note: most of the logic is the same as test_fp16_full_eval

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
2176
        n_gpus = backend_device_count(torch_device)
2177
2178
2179
2180
2181
2182
2183
2184

        bs = 8
        eval_len = 16 * n_gpus
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

2185
        # 1. with bf16_full_eval disabled
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

2206
        # 2. with bf16_full_eval enabled
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, bf16_full_eval=True, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        bf16_init = metrics["init_mem_gpu_alloc_delta"]
        bf16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"bf16_init {bf16_init}")
            print(f"bf16_eval {bf16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: bf16_init == close to zero
        self.assertLess(bf16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(bf16_eval, 27_000)

        # 3. relative comparison fp32 vs full bf16
        # should be about half of bf16_init
        # perfect world: fp32_init/2 == bf16_eval
        self.assertAlmostEqual(bf16_eval, fp32_init / 2, delta=5_000)

2228
    def test_no_wd_param_group(self):
2229
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
2230
2231
        trainer = Trainer(model=model)
        trainer.create_optimizer_and_scheduler(10)
2232
        wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight']  # fmt: skip
2233
2234
2235
2236
2237
        wd_params = [p for n, p in model.named_parameters() if n in wd_names]
        no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names]
        self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params)
        self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params)

2238
    @slow
2239
    @require_torch_multi_accelerator
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
    def test_end_to_end_example(self):
        # Tests that `translation.py` will run without issues
        script_path = os.path.abspath(
            os.path.join(
                os.path.dirname(__file__), "..", "..", "examples", "pytorch", "translation", "run_translation.py"
            )
        )

        with tempfile.TemporaryDirectory() as tmpdir:
            command = [
                "accelerate",
                "launch",
                script_path,
                "--model_name_or_path",
                "t5-small",
                "--per_device_train_batch_size",
                "1",
                "--output_dir",
                tmpdir,
                "--overwrite_output_dir",
                "--do_train",
                "--max_train_samples",
                "64",
                "--num_train_epochs",
                "1",
                "--dataset_name",
                "wmt16",
                "--dataset_config",
                "ro-en",
                "--source_lang",
                "en",
                "--target_lang",
                "ro",
                "--do_predict",
                "--max_predict_samples",
                "64",
                "--predict_with_generate",
                "--ddp_timeout",
                "60",
            ]
            execute_subprocess_async(command)
            # successful return here == success - any errors would have caused an error or a timeout in the sub-call

2283

Sylvain Gugger's avatar
Sylvain Gugger committed
2284
2285
2286
2287
2288
@require_torch
@is_staging_test
class TrainerIntegrationWithHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
2289
2290
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
2291
2292
2293

    @classmethod
    def tearDownClass(cls):
2294
        for model in ["test-trainer", "test-trainer-epoch", "test-trainer-step", "test-trainer-tensorboard"]:
2295
            try:
2296
                delete_repo(token=cls._token, repo_id=model)
2297
2298
            except HTTPError:
                pass
Sylvain Gugger's avatar
Sylvain Gugger committed
2299
2300

        try:
2301
            delete_repo(token=cls._token, repo_id="valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2302
2303
2304
2305
2306
        except HTTPError:
            pass

    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
2307
2308
2309
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer"),
                push_to_hub=True,
2310
                hub_token=self._token,
2311
2312
            )
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
2313
2314
2315
2316
2317
2318

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

2319
            self.assertEqual(repo_name, f"{USER}/test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
2320
2321
2322
2323
2324
2325
2326
2327
2328

            model = RegressionPreTrainedModel.from_pretrained(repo_name)
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(output_dir=tmp_dir)
            trainer.save_model()
2329
2330
2331
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-org"),
                push_to_hub=True,
2332
2333
                hub_model_id="valid_org/test-trainer-org",
                hub_token=self._token,
2334
            )
2335
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
2336
2337
2338
2339
2340

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]
2341
            self.assertEqual(repo_name, "valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2342

2343
            model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2344
2345
2346
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
    def get_commit_history(self, repo):
        commit_logs = subprocess.run(
            "git log".split(),
            stderr=subprocess.PIPE,
            stdout=subprocess.PIPE,
            check=True,
            encoding="utf-8",
            cwd=repo,
        ).stdout
        commits = commit_logs.split("\n\n")[1::2]
        return [commit.strip() for commit in commits]

    def test_push_to_hub_with_saves_each_epoch(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-epoch"),
                push_to_hub=True,
                hub_token=self._token,
2365
2366
                # To avoid any flakiness if the training goes faster than the uploads.
                hub_always_push=True,
2367
2368
2369
2370
                save_strategy="epoch",
            )
            trainer.train()

2371
2372
2373
2374
2375
        commits = list_repo_commits(f"{USER}/test-trainer-epoch", token=self._token)
        commits = [c.title for c in commits]
        self.assertIn("initial commit", commits)
        for i in range(1, 4):
            self.assertIn(f"Training in progress, epoch {i}", commits)
2376
2377

    def test_push_to_hub_with_saves_each_n_steps(self):
2378
        num_gpus = max(1, backend_device_count(torch_device))
2379
2380
2381
        if num_gpus > 2:
            return

2382
2383
2384
2385
2386
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-step"),
                push_to_hub=True,
                hub_token=self._token,
2387
2388
                # To avoid any flakiness if the training goes faster than the uploads.
                hub_always_push=True,
2389
2390
2391
2392
2393
                save_strategy="steps",
                save_steps=5,
            )
            trainer.train()

2394
2395
2396
        commits = list_repo_commits(f"{USER}/test-trainer-step", token=self._token)
        commits = [c.title for c in commits]
        self.assertIn("initial commit", commits)
2397

2398
2399
2400
2401
        # max_steps depend on the number of available GPUs
        max_steps = math.ceil(trainer.args.num_train_epochs * len(trainer.get_train_dataloader()))
        for i in range(5, max_steps, 5):
            self.assertIn(f"Training in progress, step {i}", commits)
2402

2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
    @require_tensorboard
    def test_push_to_hub_with_tensorboard_logs(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-tensorboard"),
                hub_token=self._token,
                save_strategy="epoch",
                report_to=["tensorboard"],
                keep_report_to=True,
            )
            trainer.train()
            # Push the runs via `push_to_hub()`
            trainer.push_to_hub()

        files = list_repo_files(f"{USER}/test-trainer-tensorboard", token=self._token)
        found_log = False
        for f in files:
            if len(f.split("runs")) > 1 and "events.out.tfevents" in f:
                found_log = True

        assert found_log is True, "No tensorboard log found in repo"

Sylvain Gugger's avatar
Sylvain Gugger committed
2425

2426
2427
@require_torch
@require_optuna
2428
class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase):
2429
    def setUp(self):
2430
        args = TrainingArguments("..")
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

2455
2456
2457
2458
2459
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
2460
                evaluation_strategy=IntervalStrategy.EPOCH,
2461
                save_strategy=IntervalStrategy.EPOCH,
2462
2463
2464
2465
2466
2467
2468
2469
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)
2470
2471


2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
@require_torch
@require_optuna
class TrainerHyperParameterMultiObjectOptunaIntegrationTest(unittest.TestCase):
    def setUp(self):
        args = TrainingArguments("..")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

        def compute_objective(metrics: Dict[str, float]) -> List[float]:
            return metrics["eval_loss"], metrics["eval_accuracy"]

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=10,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
                compute_metrics=AlmostAccuracy(),
            )
            trainer.hyperparameter_search(
                direction=["minimize", "maximize"],
                hp_space=hp_space,
                hp_name=hp_name,
                n_trials=4,
                compute_objective=compute_objective,
            )


2528
2529
2530
2531
@require_torch
@require_ray
class TrainerHyperParameterRayIntegrationTest(unittest.TestCase):
    def setUp(self):
2532
        args = TrainingArguments("..")
2533
2534
2535
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

2536
    def ray_hyperparameter_search(self):
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            from ray import tune

            return {
                "a": tune.randint(-4, 4),
                "b": tune.randint(-4, 4),
            }

        def model_init(config):
2549
2550
2551
2552
2553
2554
2555
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
2567
                evaluation_strategy=IntervalStrategy.EPOCH,
2568
                save_strategy=IntervalStrategy.EPOCH,
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4
            )
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589

    def test_hyperparameter_search(self):
        self.ray_hyperparameter_search()

    def test_hyperparameter_search_ray_client(self):
        import ray
        from ray.util.client.ray_client_helpers import ray_start_client_server

        with ray_start_client_server():
            assert ray.util.client.ray.is_connected()
            self.ray_hyperparameter_search()
2590
2591


2592
@slow
2593
2594
2595
2596
@require_torch
@require_sigopt
class TrainerHyperParameterSigOptIntegrationTest(unittest.TestCase):
    def setUp(self):
2597
        args = TrainingArguments("..")
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return [
                {"bounds": {"min": -4, "max": 4}, "name": "a", "type": "int"},
                {"bounds": {"min": -4, "max": 4}, "name": "b", "type": "int"},
            ]

        def model_init(trial):
            if trial is not None:
                a = trial.assignments["a"]
                b = trial.assignments["b"]
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.assignments)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="sigopt", n_trials=4
            )
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651


optim_test_params = []
if is_torch_available():
    default_adam_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "eps": TrainingArguments.adam_epsilon,
        "lr": TrainingArguments.learning_rate,
    }

2652
2653
2654
2655
2656
    default_lion_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "lr": TrainingArguments.learning_rate,
    }

2657
2658
2659
2660
2661
2662
2663
    default_anyprecision_kwargs = {
        "use_kahan_summation": False,
        "momentum_dtype": torch.float32,
        "variance_dtype": torch.float32,
        "compensation_buffer_dtype": torch.bfloat16,
    }

2664
2665
    optim_test_params = [
        (
2666
            TrainingArguments(optim=OptimizerNames.ADAMW_HF, output_dir="None"),
2667
2668
2669
2670
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
2671
            TrainingArguments(optim=OptimizerNames.ADAMW_HF.value, output_dir="None"),
2672
2673
2674
2675
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
2676
            TrainingArguments(optim=OptimizerNames.ADAMW_TORCH, output_dir="None"),
2677
2678
2679
2680
            torch.optim.AdamW,
            default_adam_kwargs,
        ),
        (
2681
            TrainingArguments(optim=OptimizerNames.ADAFACTOR, output_dir="None"),
2682
2683
2684
2685
2686
2687
2688
2689
            transformers.optimization.Adafactor,
            {
                "scale_parameter": False,
                "relative_step": False,
                "lr": TrainingArguments.learning_rate,
            },
        ),
    ]
2690

2691
2692
2693
2694
2695
    if is_apex_available():
        import apex

        optim_test_params.append(
            (
2696
                TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
2697
2698
2699
2700
2701
                apex.optimizers.FusedAdam,
                default_adam_kwargs,
            )
        )

2702
2703
2704
2705
2706
    if is_bitsandbytes_available():
        import bitsandbytes as bnb

        optim_test_params.append(
            (
2707
                TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
2708
                bnb.optim.AdamW,
2709
2710
2711
2712
                default_adam_kwargs,
            )
        )

2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.ADAMW_8BIT, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.LION, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.LION_8BIT, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
    if is_torchdistx_available():
        import torchdistx

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
                torchdistx.optimizers.AnyPrecisionAdamW,
                dict(default_adam_kwargs, **default_anyprecision_kwargs),
            )
        )

2772
2773
2774

@require_torch
class TrainerOptimizerChoiceTest(unittest.TestCase):
2775
2776
    def check_optim_and_kwargs(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
        actual_cls, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
2777
2778
2779
        self.assertEqual(expected_cls, actual_cls)
        self.assertIsNotNone(optim_kwargs)

2780
        for p, v in expected_kwargs.items():
2781
2782
2783
2784
2785
            self.assertTrue(p in optim_kwargs)
            actual_v = optim_kwargs[p]
            self.assertTrue(actual_v == v, f"Failed check for {p}. Expected {v}, but got {actual_v}.")

    @parameterized.expand(optim_test_params, skip_on_empty=True)
2786
    def test_optim_supported(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
2787
        # exercises all the valid --optim options
2788
        self.check_optim_and_kwargs(training_args, expected_cls, expected_kwargs)
2789

2790
        trainer = get_regression_trainer(**training_args.to_dict())
2791
2792
2793
2794
        trainer.train()

    def test_fused_adam(self):
        # Pretend that apex is installed and mock apex.optimizers.FusedAdam exists.
2795
2796
        # Trainer.get_optimizer_cls_and_kwargs does not use FusedAdam. It only has to return the
        # class given, so mocking apex.optimizers.FusedAdam should be fine for testing and allow
2797
2798
2799
2800
2801
2802
2803
2804
2805
        # the test to run without requiring an apex installation.
        mock = Mock()
        modules = {
            "apex": mock,
            "apex.optimizers": mock.optimizers,
            "apex.optimizers.FusedAdam": mock.optimizers.FusedAdam,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
2806
                TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
2807
                mock.optimizers.FusedAdam,
2808
                default_adam_kwargs,
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
            )

    def test_fused_adam_no_apex(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None")

        # Pretend that apex does not exist, even if installed. By setting apex to None, importing
        # apex will fail even if apex is installed.
        with patch.dict("sys.modules", {"apex.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)
2819

2820
2821
2822
2823
2824
2825
2826
2827
2828
    def test_bnb_adam8bit(self):
        # Pretend that Bits and Bytes is installed and mock bnb.optim.Adam8bit exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use Adam8bit. It only has to return the
        # class given, so mocking bnb.optim.Adam8bit should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
2829
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
2830
2831
2832
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
2833
                TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
2834
                mock.optim.AdamW,
2835
                default_adam_kwargs,
2836
2837
            )

2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
    def test_bnb_paged_adam8bit_alias(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.ADAMW_8BIT, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_paged_adam(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_paged_adam8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_lion(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.LION, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_lion8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.LION_8BIT, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_paged_lion8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_paged_lion(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_LION, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

2936
2937
2938
2939
2940
    def test_bnb_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
Younes Belkada's avatar
Younes Belkada committed
2941
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
2942
2943
2944
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
    def test_bnb_paged_adam_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_lion_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_LION, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_lion8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
    def test_anyprecision_adamw(self):
        # Pretend that torchdistx is installed and mock torchdistx.optimizers.AnyPrecisionAdamW exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use AnyPrecisioinAdamW. It only has to return the
        # class given, so mocking torchdistx.optimizers.AnyPrecisionAdamW should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "torchdistx": mock,
            "torchdistx.optimizers": mock.optimizers,
            "torchdistx.optimizers.AnyPrecisionAdamW.": mock.optimizers.AnyPrecisionAdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
                mock.optimizers.AnyPrecisionAdamW,
                dict(default_adam_kwargs, **default_anyprecision_kwargs),
            )

    def test_no_torchdistx_anyprecision_adamw(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None")

        # Pretend that torchdistx does not exist, even if installed. By setting torchdistx to None, importing
        # torchdistx.optimizers will fail even if torchdistx is installed.
        with patch.dict("sys.modules", {"torchdistx.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

3008
3009
3010
3011
3012

@require_torch
@require_wandb
class TrainerHyperParameterWandbIntegrationTest(unittest.TestCase):
    def setUp(self):
3013
        args = TrainingArguments("..")
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {
                "method": "random",
                "metric": {},
                "parameters": {
                    "a": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
                    "b": {"distribution": "int_uniform", "min": 1, "max": 6},
                },
            }

        def model_init(config):
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="wandb", n_trials=4, anonymous="must"
            )
3062
3063
3064
3065
3066
3067
3068
3069


class HyperParameterSearchBackendsTest(unittest.TestCase):
    def test_hyperparameter_search_backends(self):
        self.assertEqual(
            list(ALL_HYPERPARAMETER_SEARCH_BACKENDS.keys()),
            list(HPSearchBackend),
        )