"official/legacy/bert/run_squad.py" did not exist on "81d031d0c1da3c15cc08f4becebf83b5dfea1887"
modeling_bert.py 69.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20
21

import json
import logging
thomwolf's avatar
thomwolf committed
22
23
24
25
import math
import os
import sys
from io import open
thomwolf's avatar
thomwolf committed
26
27
28

import torch
from torch import nn
29
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
30

31
from .modeling_utils import WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel, prune_linear_layer
thomwolf's avatar
thomwolf committed
32
33
34

logger = logging.getLogger(__name__)

35
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
36
37
38
39
40
41
42
43
44
45
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
46
47
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
48
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
49
}
50

51
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
52
53
54
55
56
57
58
59
60
61
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
thomwolf's avatar
thomwolf committed
62
63
64
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
thomwolf's avatar
thomwolf committed
65
66
}

thomwolf's avatar
thomwolf committed
67

68
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
69
70
    """ Load tf checkpoints in a pytorch model
    """
71
72
73
74
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
75
    except ImportError:
thomwolf's avatar
thomwolf committed
76
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
77
78
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
79
    tf_path = os.path.abspath(tf_checkpoint_path)
thomwolf's avatar
thomwolf committed
80
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
81
82
83
84
85
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
86
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
87
88
89
90
91
92
93
94
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
95
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
thomwolf's avatar
thomwolf committed
96
            logger.info("Skipping {}".format("/".join(name)))
97
98
99
100
101
102
103
104
105
106
107
108
109
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
110
111
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
112
            else:
113
114
115
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
thomwolf's avatar
thomwolf committed
116
                    logger.info("Skipping {}".format("/".join(name)))
117
                    continue
118
119
120
121
122
123
124
125
126
127
128
129
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
130
        logger.info("Initialize PyTorch weight {}".format(name))
131
132
133
134
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
135
136
137
138
def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
139
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
140
141
142
143
144
145
146
147
148
149
150
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


151
class BertConfig(PretrainedConfig):
152
    r"""
153
        :class:`~pytorch_transformers.BertConfig` is the configuration class to store the configuration of a
154
        `BertModel`.
155

156
        Arguments:
thomwolf's avatar
thomwolf committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
177
            layer_norm_eps: The epsilon used by LayerNorm.
178
    """
thomwolf's avatar
thomwolf committed
179
    pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

    def __init__(self,
                 vocab_size_or_config_json_file=30522,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
                 initializer_range=0.02,
                 layer_norm_eps=1e-12,
                 **kwargs):
        """Constructs BertConfig.
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

        Arguments:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.
thomwolf's avatar
thomwolf committed
219
        """
thomwolf's avatar
thomwolf committed
220
        super(BertConfig, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
221
222
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
223
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
239
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
240
241
242
243
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

244

245

246
247
248
try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except ImportError:
249
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    class BertLayerNorm(nn.Module):
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias
thomwolf's avatar
thomwolf committed
264
265
266
267
268
269

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
270
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
271
272
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
273
274
275

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
276
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
thomwolf's avatar
thomwolf committed
297
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
298
299
300
301
302
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
303
        self.output_attentions = config.output_attentions
304

thomwolf's avatar
thomwolf committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

320
    def forward(self, hidden_states, attention_mask, head_mask=None):
thomwolf's avatar
thomwolf committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

342
343
344
345
        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

thomwolf's avatar
thomwolf committed
346
        context_layer = torch.matmul(attention_probs, value_layer)
347

thomwolf's avatar
thomwolf committed
348
349
350
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
351

352
        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
353
        return outputs
thomwolf's avatar
thomwolf committed
354
355
356
357
358
359


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
360
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
361
362
363
364
365
366
367
368
369
370
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
371
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
372
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
373
        self.self = BertSelfAttention(config)
thomwolf's avatar
thomwolf committed
374
375
        self.output = BertSelfOutput(config)

thomwolf's avatar
thomwolf committed
376
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
377
378
        if len(heads) == 0:
            return
thomwolf's avatar
thomwolf committed
379
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
thomwolf's avatar
thomwolf committed
380
381
382
383
384
385
386
387
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
388
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
thomwolf's avatar
thomwolf committed
389
390
391
392
        # Update hyper params
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads

393
    def forward(self, input_tensor, attention_mask, head_mask=None):
394
395
        self_outputs = self.self(input_tensor, attention_mask, head_mask)
        attention_output = self.output(self_outputs[0], input_tensor)
396
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
397
        return outputs
thomwolf's avatar
thomwolf committed
398
399
400
401
402
403


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
404
405
406
407
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
408
409
410
411
412
413
414
415
416
417
418

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
419
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
420
421
422
423
424
425
426
427
428
429
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
430
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
431
        super(BertLayer, self).__init__()
thomwolf's avatar
thomwolf committed
432
        self.attention = BertAttention(config)
thomwolf's avatar
thomwolf committed
433
434
435
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

436
    def forward(self, hidden_states, attention_mask, head_mask=None):
437
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
438
439
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
thomwolf's avatar
thomwolf committed
440
        layer_output = self.output(intermediate_output, attention_output)
441
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
442
        return outputs
thomwolf's avatar
thomwolf committed
443
444
445


class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
446
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
447
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
448
449
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
450
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
451

452
    def forward(self, hidden_states, attention_mask, head_mask=None):
453
454
        all_hidden_states = ()
        all_attentions = ()
455
        for i, layer_module in enumerate(self.layer):
456
            if self.output_hidden_states:
457
                all_hidden_states = all_hidden_states + (hidden_states,)
458
459
460
461

            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i])
            hidden_states = layer_outputs[0]

thomwolf's avatar
thomwolf committed
462
            if self.output_attentions:
463
                all_attentions = all_attentions + (layer_outputs[1],)
464
465
466

        # Add last layer
        if self.output_hidden_states:
467
            all_hidden_states = all_hidden_states + (hidden_states,)
468

469
        outputs = (hidden_states,)
470
        if self.output_hidden_states:
471
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
472
        if self.output_attentions:
473
            outputs = outputs + (all_attentions,)
474
        return outputs  # outputs, (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
496
497
498
499
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
500
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
501
502
503
504
505
506
507
508
509

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
thomwolf's avatar
thomwolf committed
510
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
511
512
513
514
515
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
thomwolf's avatar
thomwolf committed
516
517
        self.decoder = nn.Linear(config.hidden_size,
                                 config.vocab_size,
thomwolf's avatar
thomwolf committed
518
                                 bias=False)
519

thomwolf's avatar
thomwolf committed
520
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
thomwolf's avatar
thomwolf committed
521
522
523
524
525
526
527
528

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
529
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
530
        super(BertOnlyMLMHead, self).__init__()
thomwolf's avatar
thomwolf committed
531
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
thomwolf's avatar
thomwolf committed
549
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
550
        super(BertPreTrainingHeads, self).__init__()
thomwolf's avatar
thomwolf committed
551
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
552
553
554
555
556
557
558
559
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


560
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
561
562
563
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
564
    config_class = BertConfig
565
    pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP
566
567
568
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

569
570
571
    def __init__(self, *inputs, **kwargs):
        super(BertPreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
572
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
573
574
575
576
577
578
579
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
580
581
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
582
583
584
585
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
586
class BertModel(BertPreTrainedModel):
587
588
    r"""BERT model ("Bidirectional Embedding Representations from a Transformer").

589
    :class:`~pytorch_transformers.BertModel` is the basic BERT Transformer model with a layer of summed token, \
590
591
592
593
594
595
596
597
    position and sequence embeddings followed by a series of identical self-attention blocks (12 for BERT-base, 24 \
    for BERT-large). The model is instantiated with the following parameters.

    Arguments:
        config: a BertConfig class instance with the configuration to build a new model
        output_attentions: If True, also output attentions weights computed by the model at each layer. Default: False
        output_hidden_states: If True, also output hidden states computed by the model at each layer. Default: Fals

thomwolf's avatar
thomwolf committed
598

599
    Example::
thomwolf's avatar
thomwolf committed
600

601
602
603
604
        config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = modeling.BertModel(config=config)
thomwolf's avatar
thomwolf committed
605
606

    """
thomwolf's avatar
thomwolf committed
607
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
608
        super(BertModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
609

thomwolf's avatar
thomwolf committed
610
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
611
        self.encoder = BertEncoder(config)
thomwolf's avatar
thomwolf committed
612
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
613

thomwolf's avatar
thomwolf committed
614
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
615

thomwolf's avatar
thomwolf committed
616
617
618
619
    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings
thomwolf's avatar
thomwolf committed
620
        return self.embeddings.word_embeddings
thomwolf's avatar
thomwolf committed
621

thomwolf's avatar
thomwolf committed
622
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
623
624
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
thomwolf's avatar
thomwolf committed
625
            See base class PreTrainedModel
thomwolf's avatar
thomwolf committed
626
627
628
629
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

630
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, head_mask=None):
631
        """
632
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
633
634
635


        Arguments:
636
            input_ids: a ``torch.LongTensor`` of shape [batch_size, sequence_length] with the word token indices in the \
637
638
                vocabulary(see the tokens pre-processing logic in the scripts `run_bert_extract_features.py`, \
                `run_bert_classifier.py` and `run_bert_squad.py`)
639
            token_type_ids: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token \
640
641
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to \
                a `sentence B` token (see BERT paper for more details).
642
            attention_mask: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices \
643
644
645
646
647
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max \
                input sequence length in the current batch. It's the mask that we typically use for attention when \
                a batch has varying length sentences.
            output_all_encoded_layers: boolean which controls the content of the `encoded_layers` output as described \
            below. Default: `True`.
648
            head_mask: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 \
649
650
651
652
653
654
655
656
657
658
659
            and 1. It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 \
            => head is not masked.


        Returns:
            A tuple composed of (encoded_layers, pooled_output). Encoded layers are controlled by the \
            ``output_all_encoded_layers`` argument.

            If ``output_all_encoded_layers`` is set to True, outputs a list of the full sequences of \
            encoded-hidden-states at the end of each attention \
            block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a\
660
            ``torch.FloatTensor`` of size [batch_size, sequence_length, hidden_size].
661
662
663
664

            If set to False, outputs only the full sequence of hidden-states corresponding \
            to the last attention block of shape [batch_size, sequence_length, hidden_size].

665
            ``pooled_output`` is a ``torch.FloatTensor`` of size [batch_size, hidden_size] which is the output of a \
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
            classifier pretrained on top of the hidden state associated to the first character of the \
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])


            all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
            # or
            all_encoder_layers, pooled_output = model.forward(input_ids, token_type_ids, input_mask)


        """
thomwolf's avatar
thomwolf committed
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

thomwolf's avatar
thomwolf committed
703
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
704
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
705
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
706
707
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
708
709
        if head_mask is not None:
            if head_mask.dim() == 1:
710
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
711
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
712
            elif head_mask.dim() == 2:
713
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
thomwolf's avatar
thomwolf committed
714
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
715
716
        else:
            head_mask = [None] * self.config.num_hidden_layers
thomwolf's avatar
thomwolf committed
717

thomwolf's avatar
thomwolf committed
718
        embedding_output = self.embeddings(input_ids, token_type_ids)
719
720
721
722
        encoder_outputs = self.encoder(embedding_output,
                                       extended_attention_mask,
                                       head_mask=head_mask)
        sequence_output = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
723
        pooled_output = self.pooler(sequence_output)
724

725
        outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]  # add hidden_states and attentions if they are here
726
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
727
728


thomwolf's avatar
thomwolf committed
729
class BertForPreTraining(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
730
731
    """BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads:
732

thomwolf's avatar
thomwolf committed
733
        - the masked language modeling head, and
734

thomwolf's avatar
thomwolf committed
735
736
        - the next sentence classification head.

737
    Args:
738
739
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
740
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
741

742
743
744
745
746
747
    Example ::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForPreTraining(config)
thomwolf's avatar
thomwolf committed
748
    """
thomwolf's avatar
thomwolf committed
749
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
750
        super(BertForPreTraining, self).__init__(config)
751

thomwolf's avatar
thomwolf committed
752
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
753
        self.cls = BertPreTrainingHeads(config)
thomwolf's avatar
thomwolf committed
754

thomwolf's avatar
thomwolf committed
755
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
756
757
758
759
760
761
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
thomwolf's avatar
thomwolf committed
762
763
        self._tie_or_clone_weights(self.cls.predictions.decoder,
                                   self.bert.embeddings.word_embeddings)
thomwolf's avatar
thomwolf committed
764

765
766
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
                next_sentence_label=None, head_mask=None):
767
        """
768
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
769
770

        Args:
771
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
772
773
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
774
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
775
776
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
777
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
778
779
780
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
781
            `masked_lm_labels`: optional masked language modeling labels: ``torch.LongTensor`` of shape [batch_size, sequence_length]
782
783
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
784
            `next_sentence_label`: optional next sentence classification loss: ``torch.LongTensor`` of shape [batch_size]
785
786
                with indices selected in [0, 1].
                0 => next sentence is the continuation, 1 => next sentence is a random sentence.
787
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
788
789
790
791
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


        Returns:
792
            Either a ``torch.Tensor`` or ``tuple(torch.Tensor, torch.Tensor)``.
793
794
795
796
797

            if ``masked_lm_labels`` and ``next_sentence_label`` are not ``None``, outputs the total_loss which is the \
             sum of the masked language modeling loss and the next \
            sentence classification loss.

798
799
800
801
            if ``masked_lm_labels`` or ``next_sentence_label`` is ``None``, outputs a tuple made of:

                - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size]

802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
                - the next sentence classification logits of shape [batch_size, 2].

        Example ::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
                num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

            model = BertForPreTraining(config)
            masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
            # or
            masked_lm_logits_scores, seq_relationship_logits = model.forward(input_ids, token_type_ids, input_mask)
        """
819
820
821
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
822
823
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

824
        outputs = (prediction_scores, seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
825

thomwolf's avatar
thomwolf committed
826
827
        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
828
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
829
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
830
            total_loss = masked_lm_loss + next_sentence_loss
831
            outputs = (total_loss,) + outputs
832
833

        return outputs  # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
834
835


thomwolf's avatar
thomwolf committed
836
class BertForMaskedLM(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
837
838
839
    """BERT model with the masked language modeling head.
    This module comprises the BERT model followed by the masked language modeling head.

840
    Args:
841
842
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
843
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
844

845
846
847
848
849
850
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForMaskedLM(config)
thomwolf's avatar
thomwolf committed
851
    """
thomwolf's avatar
thomwolf committed
852
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
853
        super(BertForMaskedLM, self).__init__(config)
thomwolf's avatar
thomwolf committed
854

thomwolf's avatar
thomwolf committed
855
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
856
        self.cls = BertOnlyMLMHead(config)
thomwolf's avatar
thomwolf committed
857

thomwolf's avatar
thomwolf committed
858
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
859
860
861
862
863
864
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
thomwolf's avatar
thomwolf committed
865
866
        self._tie_or_clone_weights(self.cls.predictions.decoder,
                                   self.bert.embeddings.word_embeddings)
thomwolf's avatar
thomwolf committed
867

868
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, head_mask=None):
869
        """
870
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
871
872

        Args:
873
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
874
875
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
876
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
877
878
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
879
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
880
881
882
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
883
            `masked_lm_labels`: masked language modeling labels: ``torch.LongTensor`` of shape [batch_size, sequence_length]
884
885
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
886
            `head_mask`: an optional ``torch.LongTensor`` of shape [num_heads] with indices
887
888
889
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
890
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
891
892
893
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
894
            Masked language modeling loss if ``masked_lm_labels`` is specified, masked language modeling
895
896
897
898
899
900
901
902
903
904
905
906
907
            logits of shape [batch_size, sequence_length, vocab_size] otherwise.

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
            # or
            masked_lm_logits_scores = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
908
909
910
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
911
912
        prediction_scores = self.cls(sequence_output)

913
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention is they are here
thomwolf's avatar
thomwolf committed
914
915
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
916
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
917
            outputs = (masked_lm_loss,) + outputs
thomwolf's avatar
thomwolf committed
918
919

        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
920
921


thomwolf's avatar
thomwolf committed
922
class BertForNextSentencePrediction(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
923
924
925
    """BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence classification head.

926
    Args:
927
928
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
929
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
930

931
932
933
934
935
936
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForNextSentencePrediction(config)
thomwolf's avatar
thomwolf committed
937
    """
thomwolf's avatar
thomwolf committed
938
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
939
        super(BertForNextSentencePrediction, self).__init__(config)
thomwolf's avatar
thomwolf committed
940

thomwolf's avatar
thomwolf committed
941
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
942
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
943

thomwolf's avatar
thomwolf committed
944
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
945

946
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None, head_mask=None):
947
        """
948
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
949
950

        Args:
951
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
952
953
                with the word token indices in the vocabulary(see the tokens pre-processing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
954
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
955
956
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
957
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
958
959
960
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
961
            `next_sentence_label`: next sentence classification loss: ``torch.LongTensor`` of shape [batch_size]
962
963
                with indices selected in [0, 1].
                0 => next sentence is the continuation, 1 => next sentence is a random sentence.
964
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between
965
966
967
968
                0 and 1.It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked,
                0.0 => head is not masked.

        Returns:
969
970
971
            If ``next_sentence_label`` is specified, outputs the total_loss which is the sum of the masked language
            modeling loss and the next sentence classification loss. If ``next_sentence_label`` is ``None``, outputs
            the next sentence classification logits of shape [batch_size, 2].
972
973
974
975
976
977
978
979
980
981
982
983
984


        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
            # or
            seq_relationship_logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
985
986
987
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

988
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
989

990
        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
991
992
        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
993
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
994
            outputs = (next_sentence_loss,) + outputs
thomwolf's avatar
thomwolf committed
995
996

        return outputs  # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
997
998


thomwolf's avatar
thomwolf committed
999
class BertForSequenceClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1000
1001
1002
1003
1004
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
1005
1006
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1007
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1008
1009
        `num_labels`: the number of classes for the classifier. Default = 2.

1010
1011
1012
1013
1014
1015
1016
1017
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        num_labels = 2

        model = BertForSequenceClassification(config, num_labels)
thomwolf's avatar
thomwolf committed
1018
    """
thomwolf's avatar
thomwolf committed
1019
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1020
        super(BertForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1021
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1022

thomwolf's avatar
thomwolf committed
1023
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
1024
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1025
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
thomwolf's avatar
thomwolf committed
1026

thomwolf's avatar
thomwolf committed
1027
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1028

1029
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1030
        """
1031
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
1032
1033

        Parameters:
1034
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
1035
1036
                with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1037
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
1038
1039
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
1040
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
1041
1042
1043
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
1044
            `labels`: labels for the classification output: ``torch.LongTensor`` of shape [batch_size]
1045
                with indices selected in [0, ..., num_labels].
1046
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
1047
1048
1049
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
1050
1051
            If ``labels`` is not ``None``, outputs the CrossEntropy classification loss of the output with the labels.
            If ``labels`` is ``None``, outputs the classification logits of shape [batch_size, num_labels].
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            logits = model(input_ids, token_type_ids, input_mask)
            # or
            logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1064
1065
1066
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
1067
1068
1069
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

1070
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1071

thomwolf's avatar
thomwolf committed
1072
        if labels is not None:
1073
1074
1075
1076
1077
1078
1079
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1080
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1081
1082

        return outputs  # (loss), logits, (hidden_states), (attentions)
1083
1084


thomwolf's avatar
thomwolf committed
1085
class BertForMultipleChoice(BertPreTrainedModel):
1086
    """BERT model for multiple choice tasks.
1087
    This module is composed of the BERT model with a linear layer on top of the pooled output.
1088

1089
    Parameters:
1090
1091
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1092
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
1093

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
    Example::

        # Already been converted into WordPiece token ids
        input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
        input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
        token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForMultipleChoice(config)
        logits = model(input_ids, token_type_ids, input_mask)
1105
    """
thomwolf's avatar
thomwolf committed
1106
    def __init__(self, config):
1107
        super(BertForMultipleChoice, self).__init__(config)
thomwolf's avatar
thomwolf committed
1108

thomwolf's avatar
thomwolf committed
1109
        self.bert = BertModel(config)
1110
1111
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
1112

thomwolf's avatar
thomwolf committed
1113
        self.apply(self.init_weights)
1114

1115
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1116
        """
1117
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
1118
1119

        Parameters:
1120
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length]
1121
1122
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1123
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length]
1124
1125
                with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
                and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
1126
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length] with indices
1127
1128
1129
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
1130
            `labels`: labels for the classification output: ``torch.LongTensor`` of shape [batch_size]
1131
                with indices selected in [0, ..., num_choices].
1132
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
1133
1134
1135
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
1136
1137
            If ``labels`` is not ``None``, outputs the CrossEntropy classification loss of the output with the labels.
            If ``labels`` is ``None``, outputs the classification logits of shape [batch_size, num_labels].
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
            input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
            token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
            config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
                num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

            model = BertForMultipleChoice(config)
            logits = model(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1151
1152
1153
        """ Input shapes should be [bsz, num choices, seq length] """
        num_choices = input_ids.shape[1]

1154
        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
1155
1156
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
thomwolf's avatar
thomwolf committed
1157
1158
1159
        outputs = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

1160
1161
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
thomwolf's avatar
thomwolf committed
1162
        reshaped_logits = logits.view(-1, num_choices)
1163

1164
        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1165

1166
1167
1168
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
1169
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1170
1171

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)
1172
1173


thomwolf's avatar
thomwolf committed
1174
class BertForTokenClassification(BertPreTrainedModel):
1175
1176
1177
1178
    """BERT model for token-level classification.
    This module is composed of the BERT model with a linear layer on top of
    the full hidden state of the last layer.

1179
    Parameters:
1180
1181
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1182
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
1183
1184
        `num_labels`: the number of classes for the classifier. Default = 2.

1185
1186
1187
1188
1189
1190
1191
1192
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        num_labels = 2

        model = BertForTokenClassification(config, num_labels)
1193
    """
thomwolf's avatar
thomwolf committed
1194
    def __init__(self, config):
1195
        super(BertForTokenClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1196
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1197

thomwolf's avatar
thomwolf committed
1198
        self.bert = BertModel(config)
1199
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1200
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1201

thomwolf's avatar
thomwolf committed
1202
        self.apply(self.init_weights)
1203

1204
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1205
        """
1206
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
1207
1208

        Parameters:
1209
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
1210
1211
                with the word token indices in the vocabulary(see the tokens pre-processing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1212
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
1213
1214
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
1215
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
1216
1217
1218
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
1219
            `labels`: labels for the classification output: ``torch.LongTensor`` of shape [batch_size, sequence_length]
1220
                with indices selected in [0, ..., num_labels].
1221
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
1222
1223
1224
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
1225
1226
            If ``labels`` is not ``None``, outputs the CrossEntropy classification loss of the output with the labels.
            If ``labels`` is ``None``, outputs the classification logits of shape [batch_size, sequence_length, num_labels].
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            logits = model(input_ids, token_type_ids, input_mask)
            # or
            logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1239
1240
1241
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]

1242
1243
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1244

1245
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
1246
1247
        if labels is not None:
            loss_fct = CrossEntropyLoss()
1248
1249
1250
1251
1252
1253
1254
1255
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1256
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1257
1258

        return outputs  # (loss), logits, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1259
1260


thomwolf's avatar
thomwolf committed
1261
class BertForQuestionAnswering(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1262
1263
1264
1265
    """BERT model for Question Answering (span extraction).
    This module is composed of the BERT model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

1266
    Parameters:
1267
1268
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1269
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1270

1271
1272
1273
1274
1275
1276
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForQuestionAnswering(config)
thomwolf's avatar
thomwolf committed
1277
    """
thomwolf's avatar
thomwolf committed
1278
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1279
        super(BertForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1280
1281
1282
1283
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1284

thomwolf's avatar
thomwolf committed
1285
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1286

thomwolf's avatar
thomwolf committed
1287
1288
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,
                end_positions=None, head_mask=None):
1289
        """
1290
1291
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

1292
        Parameters:
1293
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
1294
1295
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1296
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
1297
1298
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
1299
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
1300
1301
1302
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
1303
            `start_positions`: position of the first token for the labeled span: ``torch.LongTensor`` of shape [batch_size].
1304
1305
                Positions are clamped to the length of the sequence and position outside of the sequence are not taken
                into account for computing the loss.
1306
            `end_positions`: position of the last token for the labeled span: ``torch.LongTensor`` of shape [batch_size].
1307
1308
                Positions are clamped to the length of the sequence and position outside of the sequence are not taken
                into account for computing the loss.
1309
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
1310
1311
1312
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
1313
            If ``start_positions`` and ``end_positions`` are not ``None``, outputs the total_loss which is the sum of the
1314
            CrossEntropy loss for the start and end token positions.
1315
            If ``start_positions`` or ``end_positions`` is ``None``, outputs a tuple of start_logits, end_logits which are the
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
            logits respectively for the start and end position tokens of shape [batch_size, sequence_length].

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1327
1328
1329
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
1330
1331
1332
1333
1334
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1335
        outputs = (start_logits, end_logits,) + outputs[2:]
thomwolf's avatar
thomwolf committed
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1351
            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1352
1353

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)