modeling_bert.py 68.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20
21

import json
import logging
thomwolf's avatar
thomwolf committed
22
23
24
25
import math
import os
import sys
from io import open
thomwolf's avatar
thomwolf committed
26
27
28

import torch
from torch import nn
29
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
30

31
from .modeling_utils import WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel, prune_linear_layer
thomwolf's avatar
thomwolf committed
32
33
34

logger = logging.getLogger(__name__)

35
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
36
37
38
39
40
41
42
43
44
45
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
46
47
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
48
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
49
}
50

51
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
52
53
54
55
56
57
58
59
60
61
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
thomwolf's avatar
thomwolf committed
62
63
64
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
thomwolf's avatar
thomwolf committed
65
66
}

thomwolf's avatar
thomwolf committed
67

68
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
69
70
    """ Load tf checkpoints in a pytorch model
    """
71
72
73
74
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
75
    except ImportError:
76
77
78
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    tf_path = os.path.abspath(tf_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
95
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
96
97
98
99
100
101
102
103
104
105
106
107
108
109
            print("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
110
111
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
112
            else:
113
114
115
116
117
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
                    print("Skipping {}".format("/".join(name)))
                    continue
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
135
136
137
138
def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
139
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
140
141
142
143
144
145
146
147
148
149
150
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


151
class BertConfig(PretrainedConfig):
152
    r"""
153
        :class:`~pytorch_transformers.BertConfig` is the configuration class to store the configuration of a
154
        `BertModel`.
155

156
        Arguments:
thomwolf's avatar
thomwolf committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
177
            layer_norm_eps: The epsilon used by LayerNorm.
178
    """
thomwolf's avatar
thomwolf committed
179
    pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

    def __init__(self,
                 vocab_size_or_config_json_file=30522,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
                 initializer_range=0.02,
                 layer_norm_eps=1e-12,
                 **kwargs):
        """Constructs BertConfig.
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

        Arguments:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.
thomwolf's avatar
thomwolf committed
219
        """
thomwolf's avatar
thomwolf committed
220
        super(BertConfig, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
221
222
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
223
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
239
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
240
241
242
243
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

244

245

246
247
248
try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except ImportError:
249
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    class BertLayerNorm(nn.Module):
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias
thomwolf's avatar
thomwolf committed
264
265
266
267
268
269

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
270
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
271
272
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
273
274
275

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
276
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
thomwolf's avatar
thomwolf committed
297
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
298
299
300
301
302
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
303
        self.output_attentions = config.output_attentions
304

thomwolf's avatar
thomwolf committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

320
    def forward(self, hidden_states, attention_mask, head_mask=None):
thomwolf's avatar
thomwolf committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

342
343
344
345
        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

thomwolf's avatar
thomwolf committed
346
        context_layer = torch.matmul(attention_probs, value_layer)
347

thomwolf's avatar
thomwolf committed
348
349
350
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
351

352
        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
353
        return outputs
thomwolf's avatar
thomwolf committed
354
355
356
357
358
359


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
360
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
361
362
363
364
365
366
367
368
369
370
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
371
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
372
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
373
        self.self = BertSelfAttention(config)
thomwolf's avatar
thomwolf committed
374
375
        self.output = BertSelfOutput(config)

thomwolf's avatar
thomwolf committed
376
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
377
378
        if len(heads) == 0:
            return
thomwolf's avatar
thomwolf committed
379
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
thomwolf's avatar
thomwolf committed
380
381
382
383
384
385
386
387
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
388
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
thomwolf's avatar
thomwolf committed
389
390
391
392
        # Update hyper params
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads

393
    def forward(self, input_tensor, attention_mask, head_mask=None):
394
395
        self_outputs = self.self(input_tensor, attention_mask, head_mask)
        attention_output = self.output(self_outputs[0], input_tensor)
396
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
397
        return outputs
thomwolf's avatar
thomwolf committed
398
399
400
401
402
403


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
404
405
406
407
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
408
409
410
411
412
413
414
415
416
417
418

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
419
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
420
421
422
423
424
425
426
427
428
429
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
430
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
431
        super(BertLayer, self).__init__()
thomwolf's avatar
thomwolf committed
432
        self.attention = BertAttention(config)
thomwolf's avatar
thomwolf committed
433
434
435
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

436
    def forward(self, hidden_states, attention_mask, head_mask=None):
437
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
438
439
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
thomwolf's avatar
thomwolf committed
440
        layer_output = self.output(intermediate_output, attention_output)
441
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
442
        return outputs
thomwolf's avatar
thomwolf committed
443
444
445


class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
446
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
447
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
448
449
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
450
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
451

452
    def forward(self, hidden_states, attention_mask, head_mask=None):
453
454
        all_hidden_states = ()
        all_attentions = ()
455
        for i, layer_module in enumerate(self.layer):
456
            if self.output_hidden_states:
457
                all_hidden_states = all_hidden_states + (hidden_states,)
458
459
460
461

            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i])
            hidden_states = layer_outputs[0]

thomwolf's avatar
thomwolf committed
462
            if self.output_attentions:
463
                all_attentions = all_attentions + (layer_outputs[1],)
464
465
466

        # Add last layer
        if self.output_hidden_states:
467
            all_hidden_states = all_hidden_states + (hidden_states,)
468

469
        outputs = (hidden_states,)
470
        if self.output_hidden_states:
471
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
472
        if self.output_attentions:
473
            outputs = outputs + (all_attentions,)
474
        return outputs  # outputs, (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
496
497
498
499
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
500
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
501
502
503
504
505
506
507
508
509
510
511
512

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)
513
        self.torchscript = config.torchscript
thomwolf's avatar
thomwolf committed
514
515
516
517
518
519

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
                                 bert_model_embedding_weights.size(0),
                                 bias=False)
520
521
522
523
524
525

        if self.torchscript:
            self.decoder.weight = nn.Parameter(bert_model_embedding_weights.clone())
        else:
            self.decoder.weight = bert_model_embedding_weights

thomwolf's avatar
thomwolf committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
        self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertOnlyMLMHead, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertPreTrainingHeads, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


566
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
567
568
569
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
570
    config_class = BertConfig
571
    pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP
572
573
574
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

575
576
577
    def __init__(self, *inputs, **kwargs):
        super(BertPreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
578
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
579
580
581
582
583
584
585
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
586
587
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
588
589
590
591
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
592
class BertModel(BertPreTrainedModel):
593
594
    r"""BERT model ("Bidirectional Embedding Representations from a Transformer").

595
    :class:`~pytorch_transformers.BertModel` is the basic BERT Transformer model with a layer of summed token, \
596
597
598
599
600
601
602
603
    position and sequence embeddings followed by a series of identical self-attention blocks (12 for BERT-base, 24 \
    for BERT-large). The model is instantiated with the following parameters.

    Arguments:
        config: a BertConfig class instance with the configuration to build a new model
        output_attentions: If True, also output attentions weights computed by the model at each layer. Default: False
        output_hidden_states: If True, also output hidden states computed by the model at each layer. Default: Fals

thomwolf's avatar
thomwolf committed
604

605
    Example::
thomwolf's avatar
thomwolf committed
606

607
608
609
610
        config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = modeling.BertModel(config=config)
thomwolf's avatar
thomwolf committed
611
612

    """
thomwolf's avatar
thomwolf committed
613
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
614
        super(BertModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
615

thomwolf's avatar
thomwolf committed
616
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
617
        self.encoder = BertEncoder(config)
thomwolf's avatar
thomwolf committed
618
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
619

thomwolf's avatar
thomwolf committed
620
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
621

thomwolf's avatar
thomwolf committed
622
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
623
624
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
thomwolf's avatar
thomwolf committed
625
            See base class PreTrainedModel
thomwolf's avatar
thomwolf committed
626
627
628
629
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

630
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, head_mask=None):
631
        """
632
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
633
634
635


        Arguments:
636
            input_ids: a ``torch.LongTensor`` of shape [batch_size, sequence_length] with the word token indices in the \
637
638
                vocabulary(see the tokens pre-processing logic in the scripts `run_bert_extract_features.py`, \
                `run_bert_classifier.py` and `run_bert_squad.py`)
639
            token_type_ids: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token \
640
641
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to \
                a `sentence B` token (see BERT paper for more details).
642
            attention_mask: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices \
643
644
645
646
647
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max \
                input sequence length in the current batch. It's the mask that we typically use for attention when \
                a batch has varying length sentences.
            output_all_encoded_layers: boolean which controls the content of the `encoded_layers` output as described \
            below. Default: `True`.
648
            head_mask: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 \
649
650
651
652
653
654
655
656
657
658
659
            and 1. It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 \
            => head is not masked.


        Returns:
            A tuple composed of (encoded_layers, pooled_output). Encoded layers are controlled by the \
            ``output_all_encoded_layers`` argument.

            If ``output_all_encoded_layers`` is set to True, outputs a list of the full sequences of \
            encoded-hidden-states at the end of each attention \
            block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a\
660
            ``torch.FloatTensor`` of size [batch_size, sequence_length, hidden_size].
661
662
663
664

            If set to False, outputs only the full sequence of hidden-states corresponding \
            to the last attention block of shape [batch_size, sequence_length, hidden_size].

665
            ``pooled_output`` is a ``torch.FloatTensor`` of size [batch_size, hidden_size] which is the output of a \
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
            classifier pretrained on top of the hidden state associated to the first character of the \
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])


            all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
            # or
            all_encoder_layers, pooled_output = model.forward(input_ids, token_type_ids, input_mask)


        """
thomwolf's avatar
thomwolf committed
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

thomwolf's avatar
thomwolf committed
703
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
704
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
705
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
706
707
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
708
709
        if head_mask is not None:
            if head_mask.dim() == 1:
710
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
711
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
712
            elif head_mask.dim() == 2:
713
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
thomwolf's avatar
thomwolf committed
714
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
715
716
        else:
            head_mask = [None] * self.config.num_hidden_layers
thomwolf's avatar
thomwolf committed
717

thomwolf's avatar
thomwolf committed
718
        embedding_output = self.embeddings(input_ids, token_type_ids)
719
720
721
722
        encoder_outputs = self.encoder(embedding_output,
                                       extended_attention_mask,
                                       head_mask=head_mask)
        sequence_output = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
723
        pooled_output = self.pooler(sequence_output)
724

725
        outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]  # add hidden_states and attentions if they are here
726
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
727
728


thomwolf's avatar
thomwolf committed
729
class BertForPreTraining(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
730
731
732
733
734
    """BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads:
        - the masked language modeling head, and
        - the next sentence classification head.

735
    Args:
736
737
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
738
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
739

740
741
742
743
744
745
    Example ::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForPreTraining(config)
thomwolf's avatar
thomwolf committed
746
    """
thomwolf's avatar
thomwolf committed
747
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
748
        super(BertForPreTraining, self).__init__(config)
749

thomwolf's avatar
thomwolf committed
750
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
751
        self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
thomwolf's avatar
thomwolf committed
752

thomwolf's avatar
thomwolf committed
753
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
754

755
756
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
                next_sentence_label=None, head_mask=None):
757
        """
758
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
759
760

        Args:
761
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
762
763
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
764
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
765
766
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
767
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
768
769
770
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
771
            `masked_lm_labels`: optional masked language modeling labels: ``torch.LongTensor`` of shape [batch_size, sequence_length]
772
773
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
774
            `next_sentence_label`: optional next sentence classification loss: ``torch.LongTensor`` of shape [batch_size]
775
776
                with indices selected in [0, 1].
                0 => next sentence is the continuation, 1 => next sentence is a random sentence.
777
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
778
779
780
781
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


        Returns:
782
            Either a ``torch.Tensor`` or ``tuple(torch.Tensor, torch.Tensor)``.
783
784
785
786
787

            if ``masked_lm_labels`` and ``next_sentence_label`` are not ``None``, outputs the total_loss which is the \
             sum of the masked language modeling loss and the next \
            sentence classification loss.

788
789
790
791
            if ``masked_lm_labels`` or ``next_sentence_label`` is ``None``, outputs a tuple made of:

                - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size]

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
                - the next sentence classification logits of shape [batch_size, 2].

        Example ::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
                num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

            model = BertForPreTraining(config)
            masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
            # or
            masked_lm_logits_scores, seq_relationship_logits = model.forward(input_ids, token_type_ids, input_mask)
        """
809
810
811
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
812
813
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

814
        outputs = (prediction_scores, seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
815

thomwolf's avatar
thomwolf committed
816
817
        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
818
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
819
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
820
            total_loss = masked_lm_loss + next_sentence_loss
821
            outputs = (total_loss,) + outputs
822
823

        return outputs  # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
824
825


thomwolf's avatar
thomwolf committed
826
class BertForMaskedLM(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
827
828
829
    """BERT model with the masked language modeling head.
    This module comprises the BERT model followed by the masked language modeling head.

830
    Args:
831
832
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
833
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
834

835
836
837
838
839
840
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForMaskedLM(config)
thomwolf's avatar
thomwolf committed
841
    """
thomwolf's avatar
thomwolf committed
842
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
843
        super(BertForMaskedLM, self).__init__(config)
thomwolf's avatar
thomwolf committed
844

thomwolf's avatar
thomwolf committed
845
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
846
        self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
thomwolf's avatar
thomwolf committed
847

thomwolf's avatar
thomwolf committed
848
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
849

850
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, head_mask=None):
851
        """
852
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
853
854

        Args:
855
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
856
857
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
858
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
859
860
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
861
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
862
863
864
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
865
            `masked_lm_labels`: masked language modeling labels: ``torch.LongTensor`` of shape [batch_size, sequence_length]
866
867
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
868
            `head_mask`: an optional ``torch.LongTensor`` of shape [num_heads] with indices
869
870
871
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
872
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
873
874
875
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
876
            Masked language modeling loss if ``masked_lm_labels`` is specified, masked language modeling
877
878
879
880
881
882
883
884
885
886
887
888
889
            logits of shape [batch_size, sequence_length, vocab_size] otherwise.

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
            # or
            masked_lm_logits_scores = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
890
891
892
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
893
894
        prediction_scores = self.cls(sequence_output)

895
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention is they are here
thomwolf's avatar
thomwolf committed
896
897
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
898
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
899
            outputs = (masked_lm_loss,) + outputs
thomwolf's avatar
thomwolf committed
900
901

        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
902
903


thomwolf's avatar
thomwolf committed
904
class BertForNextSentencePrediction(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
905
906
907
    """BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence classification head.

908
    Args:
909
910
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
911
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
912

913
914
915
916
917
918
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForNextSentencePrediction(config)
thomwolf's avatar
thomwolf committed
919
    """
thomwolf's avatar
thomwolf committed
920
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
921
        super(BertForNextSentencePrediction, self).__init__(config)
thomwolf's avatar
thomwolf committed
922

thomwolf's avatar
thomwolf committed
923
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
924
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
925

thomwolf's avatar
thomwolf committed
926
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
927

928
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None, head_mask=None):
929
        """
930
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
931
932

        Args:
933
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
934
935
                with the word token indices in the vocabulary(see the tokens pre-processing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
936
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
937
938
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
939
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
940
941
942
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
943
            `next_sentence_label`: next sentence classification loss: ``torch.LongTensor`` of shape [batch_size]
944
945
                with indices selected in [0, 1].
                0 => next sentence is the continuation, 1 => next sentence is a random sentence.
946
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between
947
948
949
950
                0 and 1.It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked,
                0.0 => head is not masked.

        Returns:
951
952
953
            If ``next_sentence_label`` is specified, outputs the total_loss which is the sum of the masked language
            modeling loss and the next sentence classification loss. If ``next_sentence_label`` is ``None``, outputs
            the next sentence classification logits of shape [batch_size, 2].
954
955
956
957
958
959
960
961
962
963
964
965
966


        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
            # or
            seq_relationship_logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
967
968
969
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

970
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
971

972
        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
973
974
        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
975
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
976
            outputs = (next_sentence_loss,) + outputs
thomwolf's avatar
thomwolf committed
977
978

        return outputs  # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
979
980


thomwolf's avatar
thomwolf committed
981
class BertForSequenceClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
982
983
984
985
986
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
987
988
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
989
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
990
991
        `num_labels`: the number of classes for the classifier. Default = 2.

992
993
994
995
996
997
998
999
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        num_labels = 2

        model = BertForSequenceClassification(config, num_labels)
thomwolf's avatar
thomwolf committed
1000
    """
thomwolf's avatar
thomwolf committed
1001
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1002
        super(BertForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1003
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1004

thomwolf's avatar
thomwolf committed
1005
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
1006
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1007
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
thomwolf's avatar
thomwolf committed
1008

thomwolf's avatar
thomwolf committed
1009
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1010

1011
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1012
        """
1013
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
1014
1015

        Parameters:
1016
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
1017
1018
                with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1019
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
1020
1021
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
1022
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
1023
1024
1025
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
1026
            `labels`: labels for the classification output: ``torch.LongTensor`` of shape [batch_size]
1027
                with indices selected in [0, ..., num_labels].
1028
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
1029
1030
1031
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
1032
1033
            If ``labels`` is not ``None``, outputs the CrossEntropy classification loss of the output with the labels.
            If ``labels`` is ``None``, outputs the classification logits of shape [batch_size, num_labels].
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            logits = model(input_ids, token_type_ids, input_mask)
            # or
            logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1046
1047
1048
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
1049
1050
1051
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

1052
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1053

thomwolf's avatar
thomwolf committed
1054
        if labels is not None:
1055
1056
1057
1058
1059
1060
1061
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1062
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1063
1064

        return outputs  # (loss), logits, (hidden_states), (attentions)
1065
1066


thomwolf's avatar
thomwolf committed
1067
class BertForMultipleChoice(BertPreTrainedModel):
1068
    """BERT model for multiple choice tasks.
1069
    This module is composed of the BERT model with a linear layer on top of the pooled output.
1070

1071
    Parameters:
1072
1073
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1074
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
1075

1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
    Example::

        # Already been converted into WordPiece token ids
        input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
        input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
        token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForMultipleChoice(config)
        logits = model(input_ids, token_type_ids, input_mask)
1087
    """
thomwolf's avatar
thomwolf committed
1088
    def __init__(self, config):
1089
        super(BertForMultipleChoice, self).__init__(config)
thomwolf's avatar
thomwolf committed
1090

thomwolf's avatar
thomwolf committed
1091
        self.bert = BertModel(config)
1092
1093
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
1094

thomwolf's avatar
thomwolf committed
1095
        self.apply(self.init_weights)
1096

1097
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1098
        """
1099
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
1100
1101

        Parameters:
1102
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length]
1103
1104
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1105
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length]
1106
1107
                with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
                and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
1108
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length] with indices
1109
1110
1111
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
1112
            `labels`: labels for the classification output: ``torch.LongTensor`` of shape [batch_size]
1113
                with indices selected in [0, ..., num_choices].
1114
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
1115
1116
1117
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
1118
1119
            If ``labels`` is not ``None``, outputs the CrossEntropy classification loss of the output with the labels.
            If ``labels`` is ``None``, outputs the classification logits of shape [batch_size, num_labels].
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
            input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
            token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
            config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
                num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

            model = BertForMultipleChoice(config)
            logits = model(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1133
1134
1135
        """ Input shapes should be [bsz, num choices, seq length] """
        num_choices = input_ids.shape[1]

1136
        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
1137
1138
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
thomwolf's avatar
thomwolf committed
1139
1140
1141
        outputs = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

1142
1143
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
thomwolf's avatar
thomwolf committed
1144
        reshaped_logits = logits.view(-1, num_choices)
1145

1146
        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1147

1148
1149
1150
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
1151
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1152
1153

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)
1154
1155


thomwolf's avatar
thomwolf committed
1156
class BertForTokenClassification(BertPreTrainedModel):
1157
1158
1159
1160
    """BERT model for token-level classification.
    This module is composed of the BERT model with a linear layer on top of
    the full hidden state of the last layer.

1161
    Parameters:
1162
1163
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1164
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
1165
1166
        `num_labels`: the number of classes for the classifier. Default = 2.

1167
1168
1169
1170
1171
1172
1173
1174
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        num_labels = 2

        model = BertForTokenClassification(config, num_labels)
1175
    """
thomwolf's avatar
thomwolf committed
1176
    def __init__(self, config):
1177
        super(BertForTokenClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1178
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1179

thomwolf's avatar
thomwolf committed
1180
        self.bert = BertModel(config)
1181
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1182
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1183

thomwolf's avatar
thomwolf committed
1184
        self.apply(self.init_weights)
1185

1186
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1187
        """
1188
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**
1189
1190

        Parameters:
1191
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
1192
1193
                with the word token indices in the vocabulary(see the tokens pre-processing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1194
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
1195
1196
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
1197
            `attention_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
1198
1199
1200
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
1201
            `labels`: labels for the classification output: ``torch.LongTensor`` of shape [batch_size, sequence_length]
1202
                with indices selected in [0, ..., num_labels].
1203
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
1204
1205
1206
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
1207
1208
            If ``labels`` is not ``None``, outputs the CrossEntropy classification loss of the output with the labels.
            If ``labels`` is ``None``, outputs the classification logits of shape [batch_size, sequence_length, num_labels].
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            logits = model(input_ids, token_type_ids, input_mask)
            # or
            logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1221
1222
1223
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]

1224
1225
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1226

1227
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
1228
1229
        if labels is not None:
            loss_fct = CrossEntropyLoss()
1230
1231
1232
1233
1234
1235
1236
1237
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1238
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1239
1240

        return outputs  # (loss), logits, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1241
1242


thomwolf's avatar
thomwolf committed
1243
class BertForQuestionAnswering(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1244
1245
1246
1247
    """BERT model for Question Answering (span extraction).
    This module is composed of the BERT model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

1248
    Parameters:
1249
1250
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1251
        `output_hidden_states`: If True, also output hidden states computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
1252

1253
1254
1255
1256
1257
1258
    Example::

        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = BertForQuestionAnswering(config)
thomwolf's avatar
thomwolf committed
1259
    """
thomwolf's avatar
thomwolf committed
1260
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1261
        super(BertForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1262
1263
1264
1265
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1266

thomwolf's avatar
thomwolf committed
1267
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1268

thomwolf's avatar
thomwolf committed
1269
1270
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,
                end_positions=None, head_mask=None):
1271
        """
1272
1273
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
        Parameters:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
                Positions are clamped to the length of the sequence and position outside of the sequence are not taken
                into account for computing the loss.
            `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
                Positions are clamped to the length of the sequence and position outside of the sequence are not taken
                into account for computing the loss.
1291
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
1292
1293
1294
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
1295
            If ``start_positions`` and ``end_positions`` are not ``None``, outputs the total_loss which is the sum of the
1296
            CrossEntropy loss for the start and end token positions.
1297
            If ``start_positions`` or ``end_positions`` is ``None``, outputs a tuple of start_logits, end_logits which are the
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
            logits respectively for the start and end position tokens of shape [batch_size, sequence_length].

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1309
1310
1311
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
1312
1313
1314
1315
1316
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1317
        outputs = (start_logits, end_logits,) + outputs[2:]
thomwolf's avatar
thomwolf committed
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1333
            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1334
1335

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)