run_glue.py 28.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19
20

from __future__ import absolute_import, division, print_function

import argparse
thomwolf's avatar
thomwolf committed
21
import glob
thomwolf's avatar
thomwolf committed
22
23
24
25
26
27
28
29
30
import logging
import os
import random

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
31
32
33
34
35
36

try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
37
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
38

39
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
40
                                  BertForSequenceClassification, BertTokenizer,
41
42
43
                                  RobertaConfig,
                                  RobertaForSequenceClassification,
                                  RobertaTokenizer,
thomwolf's avatar
thomwolf committed
44
45
46
                                  XLMConfig, XLMForSequenceClassification,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForSequenceClassification,
47
48
49
50
                                  XLNetTokenizer,
                                  DistilBertConfig,
                                  DistilBertForSequenceClassification,
                                  DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
51

52
from transformers import AdamW, get_linear_schedule_with_warmup
thomwolf's avatar
thomwolf committed
53

54
55
56
57
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
from transformers import glue_convert_examples_to_features as convert_examples_to_features
thomwolf's avatar
thomwolf committed
58
59
60

logger = logging.getLogger(__name__)

Brian Ma's avatar
Brian Ma committed
61
62
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, 
                                                                                RobertaConfig, DistilBertConfig)), ())
63
64

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
65
66
67
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
68
    'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
69
    'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer)
70
}
thomwolf's avatar
thomwolf committed
71

thomwolf's avatar
thomwolf committed
72
73
74
75
76
77
78
79
80

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
81
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
82
83
84
85
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
86
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
87
88
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
89

thomwolf's avatar
thomwolf committed
90
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
91
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
92
93
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
94
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
95

thomwolf's avatar
thomwolf committed
96
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
97
    no_decay = ['bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
98
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
99
100
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
101
        ]
thomwolf's avatar
thomwolf committed
102
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
103
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
thomwolf's avatar
thomwolf committed
104
105
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
106
            from apex import amp
thomwolf's avatar
thomwolf committed
107
108
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
109
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
110

111
112
113
114
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
115
116
117
118
119
120
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
121
122
    # Train!
    logger.info("***** Running training *****")
123
124
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
125
126
127
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
128
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
129
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
130
131

    global_step = 0
thomwolf's avatar
thomwolf committed
132
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
133
    model.zero_grad()
thomwolf's avatar
thomwolf committed
134
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
thomwolf's avatar
thomwolf committed
135
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
thomwolf's avatar
thomwolf committed
136
137
138
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
thomwolf's avatar
thomwolf committed
139
            model.train()
thomwolf's avatar
thomwolf committed
140
            batch = tuple(t.to(args.device) for t in batch)
141
142
143
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
                      'labels':         batch[3]}
144
145
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
Peiqin Lin's avatar
typos  
Peiqin Lin committed
146
            outputs = model(**inputs)
147
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
148
149
150
151
152
153

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
154
155
156
157
158
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
159
160

            tr_loss += loss.item()
Lysandre's avatar
Lysandre committed
161
            if (step + 1) % args.gradient_accumulation_steps == 0 and not args.tpu:
162
163
164
165
166
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

thomwolf's avatar
thomwolf committed
167
                optimizer.step()
thomwolf's avatar
thomwolf committed
168
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
169
                model.zero_grad()
thomwolf's avatar
thomwolf committed
170
                global_step += 1
thomwolf's avatar
thomwolf committed
171

thomwolf's avatar
thomwolf committed
172
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
thomwolf's avatar
thomwolf committed
173
                    # Log metrics
thomwolf's avatar
thomwolf committed
174
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
175
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
176
177
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
thomwolf's avatar
thomwolf committed
178
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
thomwolf's avatar
thomwolf committed
179
180
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
181
182
183
184
185
186
187
188
189

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
190
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
191

Lysandre's avatar
Lysandre committed
192
193
194
195
196
            if args.tpu:
                args.xla_model.optimizer_step(optimizer, barrier=True)
                model.zero_grad()
                global_step += 1

thomwolf's avatar
thomwolf committed
197
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
198
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
199
200
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
201
            train_iterator.close()
thomwolf's avatar
thomwolf committed
202
            break
thomwolf's avatar
thomwolf committed
203

thomwolf's avatar
thomwolf committed
204
205
206
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
207
208
209
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
210
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
211
212
213
214
215
216
217
218
219
220
221
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
222
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
223
224
225
226
227
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

        # Eval!
thomwolf's avatar
thomwolf committed
228
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
229
230
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
231
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
232
233
234
235
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
236
            model.eval()
thomwolf's avatar
thomwolf committed
237
238
239
240
241
242
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
                inputs = {'input_ids':      batch[0],
                          'attention_mask': batch[1],
                          'labels':         batch[3]}
243
244
                if args.model_type != 'distilbert':
                    inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
245
246
247
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
248
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

265
        output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
thomwolf's avatar
thomwolf committed
266
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
267
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
268
269
270
271
272
273
274
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
275
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
276
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
277
278
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
279
    processor = processors[task]()
280
281
282
283
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
284
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
thomwolf's avatar
thomwolf committed
285
286
        str(args.max_seq_length),
        str(task)))
287
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
thomwolf's avatar
thomwolf committed
288
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
289
290
        features = torch.load(cached_features_file)
    else:
291
292
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
293
294
295
        if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta']:
            # HACK(label indices are swapped in RoBERTa pretrained model)
            label_list[1], label_list[2] = label_list[2], label_list[1] 
296
        examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
thomwolf's avatar
thomwolf committed
297
298
        features = convert_examples_to_features(examples,
                                                tokenizer,
thomwolf's avatar
thomwolf committed
299
300
301
                                                label_list=label_list,
                                                max_length=args.max_seq_length,
                                                output_mode=output_mode,
thomwolf's avatar
thomwolf committed
302
303
304
                                                pad_on_left=bool(args.model_type in ['xlnet']),                 # pad on the left for xlnet
                                                pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
                                                pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
305
        )
306
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
307
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
308
309
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
310
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
311
312
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

313
314
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
315
316
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
317
    if output_mode == "classification":
thomwolf's avatar
thomwolf committed
318
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
319
    elif output_mode == "regression":
thomwolf's avatar
thomwolf committed
320
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
321

thomwolf's avatar
thomwolf committed
322
    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
323
    return dataset
thomwolf's avatar
thomwolf committed
324
325


thomwolf's avatar
thomwolf committed
326
327
328
329
330
331
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
332
333
334
335
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
thomwolf's avatar
thomwolf committed
336
    parser.add_argument("--task_name", default=None, type=str, required=True,
337
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
thomwolf's avatar
thomwolf committed
338
339
340
341
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
thomwolf's avatar
thomwolf committed
342
343
344
345
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
thomwolf's avatar
thomwolf committed
346
347
348
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
349
350
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
thomwolf's avatar
thomwolf committed
351
352
353
354
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
355
356
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
357
358
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
359
360

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
361
                        help="Batch size per GPU/CPU for training.")
thomwolf's avatar
thomwolf committed
362
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
363
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
364
365
366
367
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
thomwolf's avatar
thomwolf committed
368
369
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
thomwolf's avatar
thomwolf committed
370
371
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
thomwolf's avatar
thomwolf committed
372
373
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
thomwolf's avatar
thomwolf committed
374
375
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
thomwolf's avatar
thomwolf committed
376
377
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
thomwolf's avatar
thomwolf committed
378
379
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
thomwolf's avatar
thomwolf committed
380

thomwolf's avatar
thomwolf committed
381
    parser.add_argument('--logging_steps', type=int, default=50,
thomwolf's avatar
thomwolf committed
382
                        help="Log every X updates steps.")
thomwolf's avatar
thomwolf committed
383
384
385
386
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
387
388
389
390
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
391
392
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
393
394
395
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

Lysandre's avatar
Lysandre committed
396
397
398
399
400
401
402
403
404
    parser.add_argument('--tpu', action='store_true',
                        help="Whether to run on the TPU defined in the environment variables")
    parser.add_argument('--tpu_ip_address', type=str, default='',
                        help="TPU IP address if none are set in the environment variables")
    parser.add_argument('--tpu_name', type=str, default='',
                        help="TPU name if none are set in the environment variables")
    parser.add_argument('--xrt_tpu_config', type=str, default='',
                        help="XRT TPU config if none are set in the environment variables")

thomwolf's avatar
thomwolf committed
405
    parser.add_argument('--fp16', action='store_true',
thomwolf's avatar
thomwolf committed
406
407
408
409
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
thomwolf's avatar
thomwolf committed
410
    parser.add_argument("--local_rank", type=int, default=-1,
thomwolf's avatar
thomwolf committed
411
412
413
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
thomwolf's avatar
thomwolf committed
414
415
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
416
417
418
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

thomwolf's avatar
thomwolf committed
419
420
421
422
423
424
425
426
427
428
429
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
430
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
431
432
433
434
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
435
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
436
437
    args.device = device

Lysandre's avatar
Lysandre committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    if args.tpu:
        if args.tpu_ip_address:
            os.environ["TPU_IP_ADDRESS"] = args.tpu_ip_address
        if args.tpu_name:
            os.environ["TPU_NAME"] = args.tpu_name
        if args.xrt_tpu_config:
            os.environ["XRT_TPU_CONFIG"] = args.xrt_tpu_config

        assert "TPU_IP_ADDRESS" in os.environ
        assert "TPU_NAME" in os.environ
        assert "XRT_TPU_CONFIG" in os.environ

        import torch_xla
        import torch_xla.core.xla_model as xm
        args.device = xm.xla_device()
        args.xla_model = xm

thomwolf's avatar
thomwolf committed
455
    # Setup logging
thomwolf's avatar
thomwolf committed
456
457
458
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
459
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
thomwolf's avatar
thomwolf committed
460
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
thomwolf's avatar
thomwolf committed
461

thomwolf's avatar
thomwolf committed
462
463
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
464
465

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
466
467
468
469
470
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
471
472
473
474
475
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
476
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
477

478
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
479
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
480
481
482
483
484
485
486
487
488
489
490
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
thomwolf's avatar
thomwolf committed
491
492

    if args.local_rank == 0:
493
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
494

thomwolf's avatar
thomwolf committed
495
    model.to(args.device)
thomwolf's avatar
thomwolf committed
496

thomwolf's avatar
thomwolf committed
497
498
    logger.info("Training/evaluation parameters %s", args)

499

thomwolf's avatar
thomwolf committed
500
    # Training
thomwolf's avatar
thomwolf committed
501
    if args.do_train:
502
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
503
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
504
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
505
506


thomwolf's avatar
thomwolf committed
507
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
Lysandre's avatar
Lysandre committed
508
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0) and not args.tpu:
509
510
511
512
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
513
        logger.info("Saving model checkpoint to %s", args.output_dir)
514
515
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
516
517
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
518
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
519
520

        # Good practice: save your training arguments together with the trained model
521
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
522

523
        # Load a trained model and vocabulary that you have fine-tuned
524
        model = model_class.from_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
525
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
526
        model.to(args.device)
thomwolf's avatar
thomwolf committed
527

528

thomwolf's avatar
thomwolf committed
529
    # Evaluation
thomwolf's avatar
thomwolf committed
530
    results = {}
thomwolf's avatar
thomwolf committed
531
    if args.do_eval and args.local_rank in [-1, 0]:
532
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
533
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
534
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
535
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
536
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
537
538
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
539
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
540
541
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            
thomwolf's avatar
thomwolf committed
542
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
543
            model.to(args.device)
544
            result = evaluate(args, model, tokenizer, prefix=prefix)
thomwolf's avatar
thomwolf committed
545
546
547
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

thomwolf's avatar
thomwolf committed
548
    return results
thomwolf's avatar
thomwolf committed
549
550
551
552


if __name__ == "__main__":
    main()