"vscode:/vscode.git/clone" did not exist on "a33e1b35551acca6e6e80e57460edbcbd74b7202"
modeling_utils.py 49.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

18
19
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
20

21
22
import copy
import json
23
24
import logging
import os
thomwolf's avatar
thomwolf committed
25
from io import open
26

27
import six
28
29
import torch
from torch import nn
30
31
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
32
33
34
35
36
37
38

from .file_utils import cached_path

logger = logging.getLogger(__name__)

CONFIG_NAME = "config.json"
WEIGHTS_NAME = "pytorch_model.bin"
39
TF_WEIGHTS_NAME = 'model.ckpt'
40
41


thomwolf's avatar
thomwolf committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
        r"""A placeholder identity operator that is argument-insensitive.
        """
        def __init__(self, *args, **kwargs):
            super(Identity, self).__init__()

        def forward(self, input):
            return input


56
57
58
59
60
61
if not six.PY2:
    def add_start_docstrings(*docstr):
        def docstring_decorator(fn):
            fn.__doc__ = ''.join(docstr) + fn.__doc__
            return fn
        return docstring_decorator
thomwolf's avatar
thomwolf committed
62
63
64
65
66
67

    def add_end_docstrings(*docstr):
        def docstring_decorator(fn):
            fn.__doc__ = fn.__doc__ + ''.join(docstr)
            return fn
        return docstring_decorator
68
69
70
71
72
73
else:
    # Not possible to update class docstrings on python2
    def add_start_docstrings(*docstr):
        def docstring_decorator(fn):
            return fn
        return docstring_decorator
thomwolf's avatar
thomwolf committed
74

thomwolf's avatar
thomwolf committed
75
76
77
78
79
    def add_end_docstrings(*docstr):
        def docstring_decorator(fn):
            return fn
        return docstring_decorator

thomwolf's avatar
thomwolf committed
80

81
class PretrainedConfig(object):
82
83
84
    r""" Base class for all configuration classes.
        Handles a few parameters common to all models' configurations as well as methods for loading/downloading/saving configurations.

85
86
87
88
        Note:
            A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to initialize a model does **not** load the model weights.
            It only affects the model's configuration.

89
90
91
92
93
94
95
96
97
        Class attributes (overridden by derived classes):
            - ``pretrained_config_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained model configurations as values.

        Parameters:
            ``finetuning_task``: string, default `None`. Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow or PyTorch) checkpoint.
            ``num_labels``: integer, default `2`. Number of classes to use when the model is a classification model (sequences/tokens)
            ``output_attentions``: boolean, default `False`. Should the model returns attentions weights.
            ``output_hidden_states``: string, default `False`. Should the model returns all hidden-states.
            ``torchscript``: string, default `False`. Is the model used with Torchscript.
98
99
100
    """
    pretrained_config_archive_map = {}

thomwolf's avatar
thomwolf committed
101
102
103
104
105
    def __init__(self, **kwargs):
        self.finetuning_task = kwargs.pop('finetuning_task', None)
        self.num_labels = kwargs.pop('num_labels', 2)
        self.output_attentions = kwargs.pop('output_attentions', False)
        self.output_hidden_states = kwargs.pop('output_hidden_states', False)
106
        self.torchscript = kwargs.pop('torchscript', False)
107
        self.pruned_heads = kwargs.pop('pruned_heads', {})
thomwolf's avatar
thomwolf committed
108

thomwolf's avatar
thomwolf committed
109
    def save_pretrained(self, save_directory):
thomwolf's avatar
thomwolf committed
110
        """ Save a configuration object to the directory `save_directory`, so that it
111
            can be re-loaded using the :func:`~pytorch_transformers.PretrainedConfig.from_pretrained` class method.
thomwolf's avatar
thomwolf committed
112
113
114
115
116
117
118
119
        """
        assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"

        # If we save using the predefined names, we can load using `from_pretrained`
        output_config_file = os.path.join(save_directory, CONFIG_NAME)

        self.to_json_file(output_config_file)

120
    @classmethod
121
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
122
        r""" Instantiate a :class:`~pytorch_transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration.
123

thomwolf's avatar
thomwolf committed
124
        Parameters:
125
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
126
127

                - a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``.
128
                - a path to a `directory` containing a configuration file saved using the :func:`~pytorch_transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
thomwolf's avatar
thomwolf committed
129
130
                - a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``.

131
            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
132
133
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
134

135
            kwargs: (`optional`) dict: key/value pairs with which to update the configuration object after loading.
thomwolf's avatar
thomwolf committed
136

137
138
                - The values in kwargs of any keys which are configuration attributes will be used to override the loaded values.
                - Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled by the `return_unused_kwargs` keyword parameter.
thomwolf's avatar
thomwolf committed
139

140
141
142
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

143
144
145
146
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

147
            return_unused_kwargs: (`optional`) bool:
thomwolf's avatar
thomwolf committed
148

149
150
                - If False, then this function returns just the final configuration object.
                - If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs` is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part of kwargs which has not been used to update `config` and is otherwise ignored.
thomwolf's avatar
thomwolf committed
151
152
153

        Examples::

thomwolf's avatar
thomwolf committed
154
155
            # We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a
            # derived class: BertConfig
thomwolf's avatar
thomwolf committed
156
157
158
159
160
161
162
163
164
            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            config = BertConfig.from_pretrained('./test/saved_model/')  # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
            config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
            config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
            assert config.output_attention == True
            config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True,
                                                               foo=False, return_unused_kwargs=True)
            assert config.output_attention == True
            assert unused_kwargs == {'foo': False}
thomwolf's avatar
thomwolf committed
165

166
        """
167
        cache_dir = kwargs.pop('cache_dir', None)
168
        force_download = kwargs.pop('force_download', False)
169
        proxies = kwargs.pop('proxies', None)
170
        return_unused_kwargs = kwargs.pop('return_unused_kwargs', False)
171
172
173

        if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
            config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
174
        elif os.path.isdir(pretrained_model_name_or_path):
175
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
thomwolf's avatar
thomwolf committed
176
177
        else:
            config_file = pretrained_model_name_or_path
178
179
        # redirect to the cache, if necessary
        try:
180
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
Abhishek Rao's avatar
Abhishek Rao committed
181
        except EnvironmentError as e:
182
183
184
185
186
187
188
189
190
191
192
193
            if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained model configuration file.".format(
                        config_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(cls.pretrained_config_archive_map.keys()),
                        config_file))
Abhishek Rao's avatar
Abhishek Rao committed
194
            raise e
195
196
197
198
199
200
201
202
203
        if resolved_config_file == config_file:
            logger.info("loading configuration file {}".format(config_file))
        else:
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))

        # Load config
        config = cls.from_json_file(resolved_config_file)

204
        if hasattr(config, 'pruned_heads'):
205
            config.pruned_heads = dict((int(key), set(value)) for key, value in config.pruned_heads.items())
206

207
208
209
210
211
212
213
214
215
        # Update config with kwargs if needed
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(config, key):
                setattr(config, key, value)
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)

thomwolf's avatar
thomwolf committed
216
        logger.info("Model config %s", config)
217
        if return_unused_kwargs:
218
219
220
            return config, kwargs
        else:
            return config
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `Config` from a Python dictionary of parameters."""
        config = cls(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
        with open(json_file, "r", encoding='utf-8') as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

thomwolf's avatar
thomwolf committed
237
238
239
    def __eq__(self, other):
        return self.__dict__ == other.__dict__

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())


258
class PreTrainedModel(nn.Module):
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    r""" Base class for all models.

        :class:`~pytorch_transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models
        as well as a few methods commons to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads.

        Class attributes (overridden by derived classes):
            - ``config_class``: a class derived from :class:`~pytorch_transformers.PretrainedConfig` to use as configuration class for this model architecture.
            - ``pretrained_model_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained weights as values.
            - ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments:

                - ``model``: an instance of the relevant subclass of :class:`~pytorch_transformers.PreTrainedModel`,
                - ``config``: an instance of the relevant subclass of :class:`~pytorch_transformers.PretrainedConfig`,
                - ``path``: a path (string) to the TensorFlow checkpoint.

            - ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model.
274
    """
275
    config_class = None
276
277
278
279
280
281
282
283
284
285
286
287
288
    pretrained_model_archive_map = {}
    load_tf_weights = lambda model, config, path: None
    base_model_prefix = ""

    def __init__(self, config, *inputs, **kwargs):
        super(PreTrainedModel, self).__init__()
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
thomwolf's avatar
thomwolf committed
289
        # Save config in model
290
291
        self.config = config

thomwolf's avatar
thomwolf committed
292
293
294
295
296
297
    def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None):
        """ Build a resized Embedding Module from a provided token Embedding Module.
            Increasing the size will add newly initialized vectors at the end
            Reducing the size will remove vectors from the end

        Args:
thomwolf's avatar
thomwolf committed
298
299
            new_num_tokens: (`optional`) int
                New number of tokens in the embedding matrix.
thomwolf's avatar
thomwolf committed
300
301
302
                Increasing the size will add newly initialized vectors at the end
                Reducing the size will remove vectors from the end
                If not provided or None: return the provided token Embedding Module.
thomwolf's avatar
thomwolf committed
303
        Return: ``torch.nn.Embeddings``
thomwolf's avatar
thomwolf committed
304
305
306
307
308
            Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None
        """
        if new_num_tokens is None:
            return old_embeddings

thomwolf's avatar
thomwolf committed
309
        old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
thomwolf's avatar
thomwolf committed
310
311
312
313
        if old_num_tokens == new_num_tokens:
            return old_embeddings

        # Build new embeddings
thomwolf's avatar
thomwolf committed
314
315
316
317
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
        new_embeddings.to(old_embeddings.weight.device)

        # initialize all new embeddings (in particular added tokens)
318
        self._init_weights(new_embeddings)
thomwolf's avatar
thomwolf committed
319
320
321
322
323
324
325

        # Copy word embeddings from the previous weights
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
        new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :]

        return new_embeddings

thomwolf's avatar
thomwolf committed
326
327
328
329
330
331
332
333
    def _tie_or_clone_weights(self, first_module, second_module):
        """ Tie or clone module weights depending of weither we are using TorchScript or not
        """
        if self.config.torchscript:
            first_module.weight = nn.Parameter(second_module.weight.clone())
        else:
            first_module.weight = second_module.weight

LysandreJik's avatar
LysandreJik committed
334
        if hasattr(first_module, 'bias') and first_module.bias is not None:
335
336
337
338
339
340
341
            first_module.bias.data = torch.nn.functional.pad(
                first_module.bias.data,
                (0, first_module.weight.shape[0] - first_module.bias.shape[0]),
                'constant',
                0
            )

thomwolf's avatar
thomwolf committed
342
343
    def resize_token_embeddings(self, new_num_tokens=None):
        """ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size.
344
        Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
345

346
347
348
349
350
        Arguments:

            new_num_tokens: (`optional`) int:
                New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. 
                If not provided or None: does nothing and just returns a pointer to the input tokens ``torch.nn.Embeddings`` Module of the model.
thomwolf's avatar
thomwolf committed
351

thomwolf's avatar
thomwolf committed
352
        Return: ``torch.nn.Embeddings``
353
            Pointer to the input tokens Embeddings Module of the model
thomwolf's avatar
thomwolf committed
354
355
        """
        base_model = getattr(self, self.base_model_prefix, self)  # get the base model if needed
thomwolf's avatar
thomwolf committed
356
357
358
        model_embeds = base_model._resize_token_embeddings(new_num_tokens)
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
359
360
361
362
363
364
365
366
367

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
        base_model.vocab_size = new_num_tokens

        # Tie weights again if needed
        if hasattr(self, 'tie_weights'):
            self.tie_weights()

thomwolf's avatar
thomwolf committed
368
369
        return model_embeds

370
371
372
373
374
375
376
377
378
    def init_weights(self):
        """ Initialize and prunes weights if needed. """
        # Initialize weights
        self.apply(self._init_weights)

        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

thomwolf's avatar
thomwolf committed
379
380
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the base model.
381
382
383
384

            Arguments:

                heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`).
385
                E.g. {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
386
        """
thomwolf's avatar
thomwolf committed
387
        base_model = getattr(self, self.base_model_prefix, self)  # get the base model if needed
388

389
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
390
        for layer, heads in heads_to_prune.items():
391
392
393
394
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

        base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
395

396
    def save_pretrained(self, save_directory):
397
398
        """ Save a model and its configuration file to a directory, so that it
            can be re-loaded using the `:func:`~pytorch_transformers.PreTrainedModel.from_pretrained`` class method.
399
400
401
402
403
404
        """
        assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"

        # Only save the model it-self if we are using distributed training
        model_to_save = self.module if hasattr(self, 'module') else self

thomwolf's avatar
thomwolf committed
405
406
407
        # Save configuration file
        model_to_save.config.save_pretrained(save_directory)

408
409
410
411
412
        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, WEIGHTS_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)

413
    @classmethod
414
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
415
416
        r"""Instantiate a pretrained pytorch model from a pre-trained model configuration.

417
418
419
        The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with ``model.train()``

420
421
422
423
424
        The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model.
        It is up to you to train those weights with a downstream fine-tuning task.

        The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded.

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        Parameters:
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
thomwolf's avatar
typos  
thomwolf committed
444
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
445
446
447
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
448
449
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
450

451
452
453
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

454
455
456
457
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

458
            output_loading_info: (`optional`) boolean:
thomwolf's avatar
thomwolf committed
459
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
460
461
462
463
464
465
466
467

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.

        Examples::
thomwolf's avatar
thomwolf committed
468

thomwolf's avatar
thomwolf committed
469
470
471
472
473
474
475
            model = BertModel.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = BertModel.from_pretrained('./test/saved_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = BertModel.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
            model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
476

477
        """
thomwolf's avatar
thomwolf committed
478
        config = kwargs.pop('config', None)
thomwolf's avatar
thomwolf committed
479
480
        state_dict = kwargs.pop('state_dict', None)
        cache_dir = kwargs.pop('cache_dir', None)
thomwolf's avatar
thomwolf committed
481
        from_tf = kwargs.pop('from_tf', False)
482
        force_download = kwargs.pop('force_download', False)
483
        proxies = kwargs.pop('proxies', None)
thomwolf's avatar
thomwolf committed
484
        output_loading_info = kwargs.pop('output_loading_info', False)
thomwolf's avatar
thomwolf committed
485
486

        # Load config
thomwolf's avatar
thomwolf committed
487
        if config is None:
488
489
            config, model_kwargs = cls.config_class.from_pretrained(
                pretrained_model_name_or_path, *model_args,
490
                cache_dir=cache_dir, return_unused_kwargs=True,
491
                force_download=force_download,
492
                **kwargs
493
494
495
            )
        else:
            model_kwargs = kwargs
496

thomwolf's avatar
thomwolf committed
497
        # Load model
498
499
        if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
            archive_file = cls.pretrained_model_archive_map[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
500
        elif os.path.isdir(pretrained_model_name_or_path):
501
502
503
504
505
            if from_tf:
                # Directly load from a TensorFlow checkpoint
                archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
            else:
                archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
506
507
508
509
510
511
        else:
            if from_tf:
                # Directly load from a TensorFlow checkpoint
                archive_file = pretrained_model_name_or_path + ".index"
            else:
                archive_file = pretrained_model_name_or_path
512
513
        # redirect to the cache, if necessary
        try:
514
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
515
        except EnvironmentError as e:
516
517
518
519
520
521
522
523
524
525
526
527
            if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained weights.".format(
                        archive_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(cls.pretrained_model_archive_map.keys()),
                        archive_file))
528
            raise e
thomwolf's avatar
thomwolf committed
529
        if resolved_archive_file == archive_file:
530
531
532
533
534
535
            logger.info("loading weights file {}".format(archive_file))
        else:
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))

        # Instantiate model.
536
        model = cls(config, *model_args, **model_kwargs)
thomwolf's avatar
thomwolf committed
537

538
539
540
541
        if state_dict is None and not from_tf:
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
        if from_tf:
            # Directly load from a TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
542
            return cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
543

thomwolf's avatar
thomwolf committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
        # Convert old format to new format if needed from a PyTorch state_dict
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if 'gamma' in key:
                new_key = key.replace('gamma', 'weight')
            if 'beta' in key:
                new_key = key.replace('beta', 'bias')
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
        # Load from a PyTorch state_dict
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')

thomwolf's avatar
thomwolf committed
577
        # Make sure we are able to load base models as well as derived models (with heads)
578
        start_prefix = ''
thomwolf's avatar
thomwolf committed
579
        model_to_load = model
580
        if not hasattr(model, cls.base_model_prefix) and any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
thomwolf's avatar
thomwolf committed
581
582
583
584
585
            start_prefix = cls.base_model_prefix + '.'
        if hasattr(model, cls.base_model_prefix) and not any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
            model_to_load = getattr(model, cls.base_model_prefix)

        load(model_to_load, prefix=start_prefix)
586
587
588
589
590
591
592
593
594
595
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                               model.__class__.__name__, "\n\t".join(error_msgs)))

thomwolf's avatar
thomwolf committed
596
        if hasattr(model, 'tie_weights'):
597
598
            model.tie_weights()  # make sure word embedding weights are still tied

599
600
601
        # Set model in evaluation mode to desactivate DropOut modules by default
        model.eval()

thomwolf's avatar
thomwolf committed
602
603
604
605
        if output_loading_info:
            loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs}
            return model, loading_info

606
607
608
        return model


thomwolf's avatar
thomwolf committed
609
610
class Conv1D(nn.Module):
    def __init__(self, nf, nx):
thomwolf's avatar
thomwolf committed
611
        """ Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2)
thomwolf's avatar
thomwolf committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
            Basically works like a Linear layer but the weights are transposed
        """
        super(Conv1D, self).__init__()
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = nn.Parameter(w)
        self.bias = nn.Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x


thomwolf's avatar
thomwolf committed
628
629
class PoolerStartLogits(nn.Module):
    """ Compute SQuAD start_logits from sequence hidden states. """
thomwolf's avatar
thomwolf committed
630
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
631
632
633
634
635
        super(PoolerStartLogits, self).__init__()
        self.dense = nn.Linear(config.hidden_size, 1)

    def forward(self, hidden_states, p_mask=None):
        """ Args:
636
637
638
            **p_mask**: (`optional`) ``torch.FloatTensor`` of shape `(batch_size, seq_len)`
                invalid position mask such as query and special symbols (PAD, SEP, CLS)
                1.0 means token should be masked.
thomwolf's avatar
thomwolf committed
639
        """
thomwolf's avatar
thomwolf committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
            x = x * (1 - p_mask) - 1e30 * p_mask

        return x


class PoolerEndLogits(nn.Module):
    """ Compute SQuAD end_logits from sequence hidden states and start token hidden state.
    """
    def __init__(self, config):
        super(PoolerEndLogits, self).__init__()
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

    def forward(self, hidden_states, start_states=None, start_positions=None, p_mask=None):
        """ Args:
660
661
662
663
664
665
            One of ``start_states``, ``start_positions`` should be not None.
            If both are set, ``start_positions`` overrides ``start_states``.

            **start_states**: ``torch.LongTensor`` of shape identical to hidden_states
                hidden states of the first tokens for the labeled span.
            **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
666
                position of the first token for the labeled span:
667
668
669
            **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
                Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
                1.0 means token should be masked.
thomwolf's avatar
thomwolf committed
670
671
672
        """
        assert start_states is not None or start_positions is not None, "One of start_states, start_positions should be not None"
        if start_positions is not None:
673
            slen, hsz = hidden_states.shape[-2:]
thomwolf's avatar
thomwolf committed
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz)

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
            x = x * (1 - p_mask) - 1e30 * p_mask

        return x


class PoolerAnswerClass(nn.Module):
    """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """
    def __init__(self, config):
        super(PoolerAnswerClass, self).__init__()
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

    def forward(self, hidden_states, start_states=None, start_positions=None, cls_index=None):
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
        """
        Args:
            One of ``start_states``, ``start_positions`` should be not None.
            If both are set, ``start_positions`` overrides ``start_states``.

            **start_states**: ``torch.LongTensor`` of shape identical to ``hidden_states``.
                hidden states of the first tokens for the labeled span.
            **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
                position of the first token for the labeled span.
            **cls_index**: torch.LongTensor of shape ``(batch_size,)``
                position of the CLS token. If None, take the last token.

            note(Original repo):
                no dependency on end_feature so that we can obtain one single `cls_logits`
                for each sample
thomwolf's avatar
thomwolf committed
713
        """
714
        hsz = hidden_states.shape[-1]
thomwolf's avatar
thomwolf committed
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
        assert start_states is not None or start_positions is not None, "One of start_states, start_positions should be not None"
        if start_positions is not None:
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz)

        if cls_index is not None:
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz)
        else:
            cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz)

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


class SQuADHead(nn.Module):
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
    r""" A SQuAD head inspired by XLNet.

    Parameters:
        config (:class:`~pytorch_transformers.XLNetConfig`): Model configuration class with all the parameters of the model.

    Inputs:
        **hidden_states**: ``torch.FloatTensor`` of shape ``(batch_size, seq_len, hidden_size)``
            hidden states of sequence tokens
        **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
            position of the first token for the labeled span.
        **end_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
            position of the last token for the labeled span.
        **cls_index**: torch.LongTensor of shape ``(batch_size,)``
            position of the CLS token. If None, take the last token.
        **is_impossible**: ``torch.LongTensor`` of shape ``(batch_size,)``
            Whether the question has a possible answer in the paragraph or not.
        **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
            Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
            1.0 means token should be masked.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.
thomwolf's avatar
thomwolf committed
757
        **start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
758
759
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
760
        **start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
761
762
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``
            Indices for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
763
        **end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
764
765
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
766
        **end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
767
768
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
769
        **cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
770
771
            ``torch.FloatTensor`` of shape ``(batch_size,)``
            Log probabilities for the ``is_impossible`` label of the answers.
thomwolf's avatar
thomwolf committed
772
773
774
775
776
777
778
779
780
781
782
783
784
785
    """
    def __init__(self, config):
        super(SQuADHead, self).__init__()
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

    def forward(self, hidden_states, start_positions=None, end_positions=None,
                cls_index=None, is_impossible=None, p_mask=None):
        outputs = ()

thomwolf's avatar
thomwolf committed
786
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
810
811

            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
812
813
814
815
816
817
818

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
            start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) # shape (bsz, start_n_top)
819
820
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) # shape (bsz, slen, start_n_top, hsz)
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
            end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)

            end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) # shape (bsz, end_n_top, start_n_top)
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

            outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs

        # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits
838
        # or (if labels are provided) (total_loss,)
thomwolf's avatar
thomwolf committed
839
840
841
842
        return outputs


class SequenceSummary(nn.Module):
thomwolf's avatar
thomwolf committed
843
    r""" Compute a single vector summary of a sequence hidden states according to various possibilities:
thomwolf's avatar
thomwolf committed
844
845
846
847
848
        Args of the config class:
            summary_type:
                - 'last' => [default] take the last token hidden state (like XLNet)
                - 'first' => take the first token hidden state (like Bert)
                - 'mean' => take the mean of all tokens hidden states
thomwolf's avatar
thomwolf committed
849
                - 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2)
thomwolf's avatar
thomwolf committed
850
851
                - 'attn' => Not implemented now, use multi-head attention
            summary_use_proj: Add a projection after the vector extraction
852
            summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False.
853
            summary_activation: 'tanh' => add a tanh activation to the output, Other => no activation. Default
854
855
            summary_first_dropout: Add a dropout before the projection and activation
            summary_last_dropout: Add a dropout after the projection and activation
thomwolf's avatar
thomwolf committed
856
857
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
858
859
860
        super(SequenceSummary, self).__init__()

        self.summary_type = config.summary_type if hasattr(config, 'summary_use_proj') else 'last'
thomwolf's avatar
thomwolf committed
861
        if self.summary_type == 'attn':
thomwolf's avatar
thomwolf committed
862
863
864
865
866
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
867
        self.summary = Identity()
thomwolf's avatar
thomwolf committed
868
        if hasattr(config, 'summary_use_proj') and config.summary_use_proj:
869
870
            if hasattr(config, 'summary_proj_to_labels') and config.summary_proj_to_labels and config.num_labels > 0:
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
871
872
873
874
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

thomwolf's avatar
thomwolf committed
875
        self.activation = Identity()
thomwolf's avatar
thomwolf committed
876
877
878
        if hasattr(config, 'summary_activation') and config.summary_activation == 'tanh':
            self.activation = nn.Tanh()

thomwolf's avatar
thomwolf committed
879
        self.first_dropout = Identity()
880
881
882
        if hasattr(config, 'summary_first_dropout') and config.summary_first_dropout > 0:
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
883
        self.last_dropout = Identity()
884
885
        if hasattr(config, 'summary_last_dropout') and config.summary_last_dropout > 0:
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
886

thomwolf's avatar
thomwolf committed
887
    def forward(self, hidden_states, cls_index=None):
thomwolf's avatar
thomwolf committed
888
        """ hidden_states: float Tensor in shape [bsz, seq_len, hidden_size], the hidden-states of the last layer.
thomwolf's avatar
thomwolf committed
889
            cls_index: [optional] position of the classification token if summary_type == 'cls_index',
thomwolf's avatar
thomwolf committed
890
                shape (bsz,) or more generally (bsz, ...) where ... are optional leading dimensions of hidden_states.
thomwolf's avatar
thomwolf committed
891
                if summary_type == 'cls_index' and cls_index is None:
thomwolf's avatar
thomwolf committed
892
893
894
895
896
897
898
899
                    we take the last token of the sequence as classification token
        """
        if self.summary_type == 'last':
            output = hidden_states[:, -1]
        elif self.summary_type == 'first':
            output = hidden_states[:, 0]
        elif self.summary_type == 'mean':
            output = hidden_states.mean(dim=1)
thomwolf's avatar
thomwolf committed
900
901
902
        elif self.summary_type == 'cls_index':
            if cls_index is None:
                cls_index = torch.full_like(hidden_states[..., :1, :], hidden_states.shape[-2]-1, dtype=torch.long)
thomwolf's avatar
thomwolf committed
903
            else:
thomwolf's avatar
thomwolf committed
904
905
906
907
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
                cls_index = cls_index.expand((-1,) * (cls_index.dim()-1) + (hidden_states.size(-1),))
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
            output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size)
thomwolf's avatar
thomwolf committed
908
909
910
        elif self.summary_type == 'attn':
            raise NotImplementedError

911
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
912
913
        output = self.summary(output)
        output = self.activation(output)
914
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
915
916
917
918

        return output


919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
def prune_linear_layer(layer, index, dim=0):
    """ Prune a linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


def prune_conv1d_layer(layer, index, dim=1):
    """ Prune a Conv1D layer (a model parameters) to keep only entries in index.
        A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if dim == 0:
        b = layer.bias.clone().detach()
    else:
        b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    new_layer.bias.requires_grad = False
    new_layer.bias.copy_(b.contiguous())
    new_layer.bias.requires_grad = True
    return new_layer
966
967
968
969
970
971
972
973
974
975
976
977
978


def prune_layer(layer, index, dim=None):
    """ Prune a Conv1D or nn.Linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    if isinstance(layer, nn.Linear):
        return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
    elif isinstance(layer, Conv1D):
        return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
    else:
        raise ValueError("Can't prune layer of class {}".format(layer.__class__))