run_squad.py 20.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run BERT on SQuAD."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
19

20
import argparse
thomwolf's avatar
thomwolf committed
21
import logging
thomwolf's avatar
thomwolf committed
22
import os
23
import random
thomwolf's avatar
thomwolf committed
24
25
import sys
from io import open
thomwolf's avatar
thomwolf committed
26

thomwolf's avatar
thomwolf committed
27
import numpy as np
28
import torch
thomwolf's avatar
thomwolf committed
29
30
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
31
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
32
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
33

thomwolf's avatar
thomwolf committed
34
35
from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
36
37
from pytorch_pretrained_bert.file_utils import WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForQuestionAnswering
38
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
thomwolf's avatar
thomwolf committed
39
40
41
from pytorch_pretrained_bert.tokenization import BertTokenizer

from run_squad_dataset_utils import read_squad_examples, convert_examples_to_features, RawResult, write_predictions
thomwolf's avatar
thomwolf committed
42
43
44
45
46

if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle
thomwolf's avatar
thomwolf committed
47

48
logger = logging.getLogger(__name__)
thomwolf's avatar
thomwolf committed
49
50


51
52
53
54
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
55
56
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
57
58
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
59
    parser.add_argument("--output_dir", default=None, type=str, required=True,
60
                        help="The output directory where the model checkpoints and predictions will be written.")
61
62
63
64
65
66
67
68
69
70
71
72
73

    ## Other parameters
    parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
74
75
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.")
76
77
78
79
80
81
    parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
    parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
thomwolf's avatar
thomwolf committed
82
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
83
84
85
86
87
88
89
                             "of training.")
    parser.add_argument("--n_best_size", default=20, type=int,
                        help="The total number of n-best predictions to generate in the nbest_predictions.json "
                             "output file.")
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
90
    parser.add_argument("--verbose_logging", action='store_true',
91
92
93
94
95
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
96
97
    parser.add_argument('--seed',
                        type=int,
thomwolf's avatar
thomwolf committed
98
99
                        default=42,
                        help="random seed for initialization")
100
101
102
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
103
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
104
105
106
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
107
108
109
110
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
111
112
113
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
thomwolf's avatar
thomwolf committed
114
    parser.add_argument('--loss_scale',
115
116
117
118
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
thomwolf's avatar
thomwolf committed
119
120
121
122
123
124
    parser.add_argument('--version_2_with_negative',
                        action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold',
                        type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")
thomwolf's avatar
thomwolf committed
125
126
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
127
    args = parser.parse_args()
thomwolf's avatar
thomwolf committed
128
129
130
131
132
133
134
135
    print(args)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()
136
137
138
139
140

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
141
        torch.cuda.set_device(args.local_rank)
142
143
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
144
145
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
146
147
148
149
150

    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

151
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
thomwolf's avatar
thomwolf committed
152
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
153

154
155
156
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
157

158
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
159
160
161
162

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
163
164
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
165
166

    if not args.do_train and not args.do_predict:
167
168
        raise ValueError("At least one of `do_train` or `do_predict` must be True.")

169
170
    if args.do_train:
        if not args.train_file:
171
172
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
173
174
    if args.do_predict:
        if not args.predict_file:
175
176
177
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified.")

178
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
179
        raise ValueError("Output directory () already exists and is not empty.")
thomwolf's avatar
thomwolf committed
180
181
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
182

183
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
184

samuel.broscheit's avatar
samuel.broscheit committed
185
    # Prepare model
thomwolf's avatar
oups  
thomwolf committed
186
    model = BertForQuestionAnswering.from_pretrained(args.bert_model)
samuel.broscheit's avatar
samuel.broscheit committed
187
188
189
190
191

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
192
193
194
195
        model = torch.nn.parallel.DistributedDataParallel(model,
                                                          device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
samuel.broscheit's avatar
samuel.broscheit committed
196
197
198
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

199
    if args.do_train:
thomwolf's avatar
thomwolf committed
200
        if args.local_rank in [-1, 0]:
thomwolf's avatar
fix  
thomwolf committed
201
            tb_writer = SummaryWriter()
samuel.broscheit's avatar
samuel.broscheit committed
202
        # Prepare data loader
203
        train_examples = read_squad_examples(
thomwolf's avatar
thomwolf committed
204
            input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
            list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length))
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s", cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)
thomwolf's avatar
thomwolf committed
222

223
224
225
226
227
228
229
230
231
232
233
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                   all_start_positions, all_end_positions)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
thomwolf's avatar
thomwolf committed
234

235
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
236
        num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
237
238
        # if args.local_rank != -1:
        #     num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
239

samuel.broscheit's avatar
samuel.broscheit committed
240
        # Prepare optimizer
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]

        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                                 t_total=num_train_optimization_steps)
270
        else:
271
272
273
274
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
275

samuel.broscheit's avatar
samuel.broscheit committed
276
277
        global_step = 0

278
279
280
281
        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
282
        logger.info("  Num steps = %d", num_train_optimization_steps)
283
284

        model.train()
thomwolf's avatar
thomwolf committed
285
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
286
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
thomwolf's avatar
thomwolf committed
287
288
                if n_gpu == 1:
                    batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
thomwolf's avatar
thomwolf committed
289
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
290
                loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
thomwolf's avatar
thomwolf committed
291
292
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
293
294
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
295
296
297
298
299

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
thomwolf's avatar
thomwolf committed
300
                if (step + 1) % args.gradient_accumulation_steps == 0:
301
302
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
thomwolf's avatar
thomwolf committed
303
                        # if args.fp16 is False, BertAdam is used and handles this automatically
304
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
305
306
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
307
308
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
309
                    global_step += 1
310
311
312
                    if args.local_rank in [-1, 0]:
                        tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
                        tb_writer.add_scalar('loss', loss.item(), global_step)
313

314
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
315
        # Save a trained model, configuration and tokenizer
316
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
317
318

        # If we save using the predefined names, we can load using `from_pretrained`
319
320
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
321
322
323

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
324
        tokenizer.save_vocabulary(args.output_dir)
325

326
327
        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForQuestionAnswering.from_pretrained(args.output_dir)
328
        tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
329
330
    else:
        model = BertForQuestionAnswering.from_pretrained(args.bert_model)
331

332
    model.to(device)
333

334
    if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
335
        eval_examples = read_squad_examples(
thomwolf's avatar
thomwolf committed
336
            input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
337
338
339
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
340
341
342
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
343
344
            is_training=False)

345
346
347
348
349
350
351
352
353
354
        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
355
356
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
357
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)
358

359
        model.eval()
360
        all_results = []
thomwolf's avatar
thomwolf committed
361
        logger.info("Start evaluating")
362
        for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating", disable=args.local_rank not in [-1, 0]):
363
            if len(all_results) % 1000 == 0:
364
365
                logger.info("Processing example: %d" % (len(all_results)))
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
366
            input_mask = input_mask.to(device)
367
            segment_ids = segment_ids.to(device)
368
369
370
371
372
373
374
375
376
377
            with torch.no_grad():
                batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(RawResult(unique_id=unique_id,
                                             start_logits=start_logits,
                                             end_logits=end_logits))
378
379
        output_prediction_file = os.path.join(args.output_dir, "predictions.json")
        output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
thomwolf's avatar
thomwolf committed
380
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
381
        write_predictions(eval_examples, eval_features, all_results,
382
383
                          args.n_best_size, args.max_answer_length,
                          args.do_lower_case, output_prediction_file,
thomwolf's avatar
thomwolf committed
384
385
                          output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                          args.version_2_with_negative, args.null_score_diff_threshold)
thomwolf's avatar
thomwolf committed
386
387
388


if __name__ == "__main__":
389
    main()