"...lm-evaluation-harness.git" did not exist on "35a2465256c4a6ad85076aeba69fc316e05acff1"
run_squad.py 50.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run BERT on SQuAD."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
19

20
import argparse
thomwolf's avatar
thomwolf committed
21
22
import collections
import json
thomwolf's avatar
thomwolf committed
23
import logging
thomwolf's avatar
thomwolf committed
24
25
import math
import os
26
import random
thomwolf's avatar
thomwolf committed
27
28
import sys
from io import open
thomwolf's avatar
thomwolf committed
29

thomwolf's avatar
thomwolf committed
30
import numpy as np
31
import torch
thomwolf's avatar
thomwolf committed
32
33
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
34
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
35
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
36

thomwolf's avatar
thomwolf committed
37
38
from tensorboardX import SummaryWriter

39
40
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForQuestionAnswering, BertConfig
41
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
thomwolf's avatar
thomwolf committed
42
43
from pytorch_pretrained_bert.tokenization import (BasicTokenizer,
                                                  BertTokenizer,
44
                                                  whitespace_tokenize)
thomwolf's avatar
thomwolf committed
45
46
47
48
49

if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle
thomwolf's avatar
thomwolf committed
50

51
logger = logging.getLogger(__name__)
thomwolf's avatar
thomwolf committed
52
53
54


class SquadExample(object):
thomwolf's avatar
thomwolf committed
55
56
57
58
    """
    A single training/test example for the Squad dataset.
    For examples without an answer, the start and end position are -1.
    """
59
60
61
62
63
64
65

    def __init__(self,
                 qas_id,
                 question_text,
                 doc_tokens,
                 orig_answer_text=None,
                 start_position=None,
thomwolf's avatar
thomwolf committed
66
67
                 end_position=None,
                 is_impossible=None):
68
69
70
71
72
73
        self.qas_id = qas_id
        self.question_text = question_text
        self.doc_tokens = doc_tokens
        self.orig_answer_text = orig_answer_text
        self.start_position = start_position
        self.end_position = end_position
thomwolf's avatar
thomwolf committed
74
        self.is_impossible = is_impossible
75
76
77
78
79
80

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        s = ""
81
        s += "qas_id: %s" % (self.qas_id)
82
        s += ", question_text: %s" % (
83
            self.question_text)
84
85
86
        s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
        if self.start_position:
            s += ", start_position: %d" % (self.start_position)
thomwolf's avatar
thomwolf committed
87
        if self.end_position:
88
            s += ", end_position: %d" % (self.end_position)
thomwolf's avatar
thomwolf committed
89
        if self.is_impossible:
thomwolf's avatar
thomwolf committed
90
            s += ", is_impossible: %r" % (self.is_impossible)
91
        return s
thomwolf's avatar
thomwolf committed
92
93
94


class InputFeatures(object):
95
96
97
98
99
100
101
102
103
104
105
106
107
    """A single set of features of data."""

    def __init__(self,
                 unique_id,
                 example_index,
                 doc_span_index,
                 tokens,
                 token_to_orig_map,
                 token_is_max_context,
                 input_ids,
                 input_mask,
                 segment_ids,
                 start_position=None,
thomwolf's avatar
thomwolf committed
108
109
                 end_position=None,
                 is_impossible=None):
110
111
112
113
114
115
116
117
118
119
120
        self.unique_id = unique_id
        self.example_index = example_index
        self.doc_span_index = doc_span_index
        self.tokens = tokens
        self.token_to_orig_map = token_to_orig_map
        self.token_is_max_context = token_is_max_context
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.start_position = start_position
        self.end_position = end_position
thomwolf's avatar
thomwolf committed
121
        self.is_impossible = is_impossible
thomwolf's avatar
thomwolf committed
122
123


thomwolf's avatar
thomwolf committed
124
def read_squad_examples(input_file, is_training, version_2_with_negative):
125
    """Read a SQuAD json file into a list of SquadExample."""
126
    with open(input_file, "r", encoding='utf-8') as reader:
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        input_data = json.load(reader)["data"]

    def is_whitespace(c):
        if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
            return True
        return False

    examples = []
    for entry in input_data:
        for paragraph in entry["paragraphs"]:
            paragraph_text = paragraph["context"]
            doc_tokens = []
            char_to_word_offset = []
            prev_is_whitespace = True
            for c in paragraph_text:
                if is_whitespace(c):
                    prev_is_whitespace = True
                else:
                    if prev_is_whitespace:
                        doc_tokens.append(c)
                    else:
                        doc_tokens[-1] += c
                    prev_is_whitespace = False
                char_to_word_offset.append(len(doc_tokens) - 1)

            for qa in paragraph["qas"]:
                qas_id = qa["id"]
                question_text = qa["question"]
                start_position = None
                end_position = None
                orig_answer_text = None
thomwolf's avatar
thomwolf committed
158
                is_impossible = False
159
                if is_training:
thomwolf's avatar
thomwolf committed
160
161
162
                    if version_2_with_negative:
                        is_impossible = qa["is_impossible"]
                    if (len(qa["answers"]) != 1) and (not is_impossible):
163
164
                        raise ValueError(
                            "For training, each question should have exactly 1 answer.")
thomwolf's avatar
thomwolf committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
                    if not is_impossible:
                        answer = qa["answers"][0]
                        orig_answer_text = answer["text"]
                        answer_offset = answer["answer_start"]
                        answer_length = len(orig_answer_text)
                        start_position = char_to_word_offset[answer_offset]
                        end_position = char_to_word_offset[answer_offset + answer_length - 1]
                        # Only add answers where the text can be exactly recovered from the
                        # document. If this CAN'T happen it's likely due to weird Unicode
                        # stuff so we will just skip the example.
                        #
                        # Note that this means for training mode, every example is NOT
                        # guaranteed to be preserved.
                        actual_text = " ".join(doc_tokens[start_position:(end_position + 1)])
                        cleaned_answer_text = " ".join(
                            whitespace_tokenize(orig_answer_text))
                        if actual_text.find(cleaned_answer_text) == -1:
                            logger.warning("Could not find answer: '%s' vs. '%s'",
183
                                           actual_text, cleaned_answer_text)
thomwolf's avatar
thomwolf committed
184
185
186
187
188
                            continue
                    else:
                        start_position = -1
                        end_position = -1
                        orig_answer_text = ""
189
190
191
192
193
194
195

                example = SquadExample(
                    qas_id=qas_id,
                    question_text=question_text,
                    doc_tokens=doc_tokens,
                    orig_answer_text=orig_answer_text,
                    start_position=start_position,
thomwolf's avatar
thomwolf committed
196
197
                    end_position=end_position,
                    is_impossible=is_impossible)
198
199
                examples.append(example)
    return examples
thomwolf's avatar
thomwolf committed
200
201
202
203


def convert_examples_to_features(examples, tokenizer, max_seq_length,
                                 doc_stride, max_query_length, is_training):
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    """Loads a data file into a list of `InputBatch`s."""

    unique_id = 1000000000

    features = []
    for (example_index, example) in enumerate(examples):
        query_tokens = tokenizer.tokenize(example.question_text)

        if len(query_tokens) > max_query_length:
            query_tokens = query_tokens[0:max_query_length]

        tok_to_orig_index = []
        orig_to_tok_index = []
        all_doc_tokens = []
        for (i, token) in enumerate(example.doc_tokens):
            orig_to_tok_index.append(len(all_doc_tokens))
            sub_tokens = tokenizer.tokenize(token)
            for sub_token in sub_tokens:
                tok_to_orig_index.append(i)
                all_doc_tokens.append(sub_token)

        tok_start_position = None
        tok_end_position = None
thomwolf's avatar
thomwolf committed
227
228
229
230
        if is_training and example.is_impossible:
            tok_start_position = -1
            tok_end_position = -1
        if is_training and not example.is_impossible:
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
            tok_start_position = orig_to_tok_index[example.start_position]
            if example.end_position < len(example.doc_tokens) - 1:
                tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
            else:
                tok_end_position = len(all_doc_tokens) - 1
            (tok_start_position, tok_end_position) = _improve_answer_span(
                all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
                example.orig_answer_text)

        # The -3 accounts for [CLS], [SEP] and [SEP]
        max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

        # We can have documents that are longer than the maximum sequence length.
        # To deal with this we do a sliding window approach, where we take chunks
        # of the up to our max length with a stride of `doc_stride`.
        _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
            "DocSpan", ["start", "length"])
        doc_spans = []
        start_offset = 0
        while start_offset < len(all_doc_tokens):
            length = len(all_doc_tokens) - start_offset
            if length > max_tokens_for_doc:
                length = max_tokens_for_doc
            doc_spans.append(_DocSpan(start=start_offset, length=length))
            if start_offset + length == len(all_doc_tokens):
                break
            start_offset += min(length, doc_stride)

        for (doc_span_index, doc_span) in enumerate(doc_spans):
            tokens = []
            token_to_orig_map = {}
            token_is_max_context = {}
            segment_ids = []
            tokens.append("[CLS]")
            segment_ids.append(0)
            for token in query_tokens:
                tokens.append(token)
                segment_ids.append(0)
            tokens.append("[SEP]")
            segment_ids.append(0)

            for i in range(doc_span.length):
                split_token_index = doc_span.start + i
                token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]

                is_max_context = _check_is_max_context(doc_spans, doc_span_index,
                                                       split_token_index)
                token_is_max_context[len(tokens)] = is_max_context
                tokens.append(all_doc_tokens[split_token_index])
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)

            # The mask has 1 for real tokens and 0 for padding tokens. Only real
            # tokens are attended to.
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            while len(input_ids) < max_seq_length:
                input_ids.append(0)
                input_mask.append(0)
                segment_ids.append(0)

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            start_position = None
            end_position = None
thomwolf's avatar
thomwolf committed
302
            if is_training and not example.is_impossible:
303
304
305
306
                # For training, if our document chunk does not contain an annotation
                # we throw it out, since there is nothing to predict.
                doc_start = doc_span.start
                doc_end = doc_span.start + doc_span.length - 1
thomwolf's avatar
thomwolf committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
                out_of_span = False
                if not (tok_start_position >= doc_start and
                        tok_end_position <= doc_end):
                    out_of_span = True
                if out_of_span:
                    start_position = 0
                    end_position = 0
                else:
                    doc_offset = len(query_tokens) + 2
                    start_position = tok_start_position - doc_start + doc_offset
                    end_position = tok_end_position - doc_start + doc_offset
            if is_training and example.is_impossible:
                start_position = 0
                end_position = 0
321
            if example_index < 20:
322
323
324
325
                logger.info("*** Example ***")
                logger.info("unique_id: %s" % (unique_id))
                logger.info("example_index: %s" % (example_index))
                logger.info("doc_span_index: %s" % (doc_span_index))
326
                logger.info("tokens: %s" % " ".join(tokens))
thomwolf's avatar
thomwolf committed
327
328
                logger.info("token_to_orig_map: %s" % " ".join([
                    "%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()]))
329
                logger.info("token_is_max_context: %s" % " ".join([
thomwolf's avatar
thomwolf committed
330
                    "%d:%s" % (x, y) for (x, y) in token_is_max_context.items()
331
                ]))
332
333
                logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
                logger.info(
334
                    "input_mask: %s" % " ".join([str(x) for x in input_mask]))
335
                logger.info(
336
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
thomwolf's avatar
thomwolf committed
337
338
339
                if is_training and example.is_impossible:
                    logger.info("impossible example")
                if is_training and not example.is_impossible:
340
                    answer_text = " ".join(tokens[start_position:(end_position + 1)])
341
342
343
                    logger.info("start_position: %d" % (start_position))
                    logger.info("end_position: %d" % (end_position))
                    logger.info(
344
                        "answer: %s" % (answer_text))
345
346
347
348
349
350
351
352
353
354
355
356
357

            features.append(
                InputFeatures(
                    unique_id=unique_id,
                    example_index=example_index,
                    doc_span_index=doc_span_index,
                    tokens=tokens,
                    token_to_orig_map=token_to_orig_map,
                    token_is_max_context=token_is_max_context,
                    input_ids=input_ids,
                    input_mask=input_mask,
                    segment_ids=segment_ids,
                    start_position=start_position,
thomwolf's avatar
thomwolf committed
358
359
                    end_position=end_position,
                    is_impossible=example.is_impossible))
360
361
362
            unique_id += 1

    return features
thomwolf's avatar
thomwolf committed
363
364
365
366


def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
                         orig_answer_text):
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    """Returns tokenized answer spans that better match the annotated answer."""

    # The SQuAD annotations are character based. We first project them to
    # whitespace-tokenized words. But then after WordPiece tokenization, we can
    # often find a "better match". For example:
    #
    #   Question: What year was John Smith born?
    #   Context: The leader was John Smith (1895-1943).
    #   Answer: 1895
    #
    # The original whitespace-tokenized answer will be "(1895-1943).". However
    # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match
    # the exact answer, 1895.
    #
    # However, this is not always possible. Consider the following:
    #
    #   Question: What country is the top exporter of electornics?
    #   Context: The Japanese electronics industry is the lagest in the world.
    #   Answer: Japan
    #
    # In this case, the annotator chose "Japan" as a character sub-span of
    # the word "Japanese". Since our WordPiece tokenizer does not split
    # "Japanese", we just use "Japanese" as the annotation. This is fairly rare
    # in SQuAD, but does happen.
    tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))

    for new_start in range(input_start, input_end + 1):
        for new_end in range(input_end, new_start - 1, -1):
            text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
            if text_span == tok_answer_text:
                return (new_start, new_end)

    return (input_start, input_end)
thomwolf's avatar
thomwolf committed
400
401
402


def _check_is_max_context(doc_spans, cur_span_index, position):
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    """Check if this is the 'max context' doc span for the token."""

    # Because of the sliding window approach taken to scoring documents, a single
    # token can appear in multiple documents. E.g.
    #  Doc: the man went to the store and bought a gallon of milk
    #  Span A: the man went to the
    #  Span B: to the store and bought
    #  Span C: and bought a gallon of
    #  ...
    #
    # Now the word 'bought' will have two scores from spans B and C. We only
    # want to consider the score with "maximum context", which we define as
    # the *minimum* of its left and right context (the *sum* of left and
    # right context will always be the same, of course).
    #
    # In the example the maximum context for 'bought' would be span C since
    # it has 1 left context and 3 right context, while span B has 4 left context
    # and 0 right context.
    best_score = None
    best_span_index = None
    for (span_index, doc_span) in enumerate(doc_spans):
        end = doc_span.start + doc_span.length - 1
        if position < doc_span.start:
            continue
        if position > end:
            continue
        num_left_context = position - doc_span.start
        num_right_context = end - position
        score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
        if best_score is None or score > best_score:
            best_score = score
            best_span_index = span_index

    return cur_span_index == best_span_index
thomwolf's avatar
thomwolf committed
437
438
439
440
441
442
443
444


RawResult = collections.namedtuple("RawResult",
                                   ["unique_id", "start_logits", "end_logits"])


def write_predictions(all_examples, all_features, all_results, n_best_size,
                      max_answer_length, do_lower_case, output_prediction_file,
thomwolf's avatar
thomwolf committed
445
446
447
                      output_nbest_file, output_null_log_odds_file, verbose_logging,
                      version_2_with_negative, null_score_diff_threshold):
    """Write final predictions to the json file and log-odds of null if needed."""
448
449
    logger.info("Writing predictions to: %s" % (output_prediction_file))
    logger.info("Writing nbest to: %s" % (output_nbest_file))
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

    example_index_to_features = collections.defaultdict(list)
    for feature in all_features:
        example_index_to_features[feature.example_index].append(feature)

    unique_id_to_result = {}
    for result in all_results:
        unique_id_to_result[result.unique_id] = result

    _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "PrelimPrediction",
        ["feature_index", "start_index", "end_index", "start_logit", "end_logit"])

    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
thomwolf's avatar
thomwolf committed
465
466
    scores_diff_json = collections.OrderedDict()

467
468
469
470
    for (example_index, example) in enumerate(all_examples):
        features = example_index_to_features[example_index]

        prelim_predictions = []
thomwolf's avatar
thomwolf committed
471
472
        # keep track of the minimum score of null start+end of position 0
        score_null = 1000000  # large and positive
Yongbo Wang's avatar
typo  
Yongbo Wang committed
473
        min_null_feature_index = 0  # the paragraph slice with min null score
thomwolf's avatar
thomwolf committed
474
475
        null_start_logit = 0  # the start logit at the slice with min null score
        null_end_logit = 0  # the end logit at the slice with min null score
476
477
478
479
        for (feature_index, feature) in enumerate(features):
            result = unique_id_to_result[feature.unique_id]
            start_indexes = _get_best_indexes(result.start_logits, n_best_size)
            end_indexes = _get_best_indexes(result.end_logits, n_best_size)
thomwolf's avatar
thomwolf committed
480
481
482
483
484
485
486
487
            # if we could have irrelevant answers, get the min score of irrelevant
            if version_2_with_negative:
                feature_null_score = result.start_logits[0] + result.end_logits[0]
                if feature_null_score < score_null:
                    score_null = feature_null_score
                    min_null_feature_index = feature_index
                    null_start_logit = result.start_logits[0]
                    null_end_logit = result.end_logits[0]
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
            for start_index in start_indexes:
                for end_index in end_indexes:
                    # We could hypothetically create invalid predictions, e.g., predict
                    # that the start of the span is in the question. We throw out all
                    # invalid predictions.
                    if start_index >= len(feature.tokens):
                        continue
                    if end_index >= len(feature.tokens):
                        continue
                    if start_index not in feature.token_to_orig_map:
                        continue
                    if end_index not in feature.token_to_orig_map:
                        continue
                    if not feature.token_is_max_context.get(start_index, False):
                        continue
                    if end_index < start_index:
                        continue
                    length = end_index - start_index + 1
                    if length > max_answer_length:
                        continue
                    prelim_predictions.append(
                        _PrelimPrediction(
                            feature_index=feature_index,
                            start_index=start_index,
                            end_index=end_index,
                            start_logit=result.start_logits[start_index],
                            end_logit=result.end_logits[end_index]))
thomwolf's avatar
thomwolf committed
515
516
517
518
519
520
521
522
        if version_2_with_negative:
            prelim_predictions.append(
                _PrelimPrediction(
                    feature_index=min_null_feature_index,
                    start_index=0,
                    end_index=0,
                    start_logit=null_start_logit,
                    end_logit=null_end_logit))
523
524
525
526
527
528
529
530
531
532
533
534
535
536
        prelim_predictions = sorted(
            prelim_predictions,
            key=lambda x: (x.start_logit + x.end_logit),
            reverse=True)

        _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
            "NbestPrediction", ["text", "start_logit", "end_logit"])

        seen_predictions = {}
        nbest = []
        for pred in prelim_predictions:
            if len(nbest) >= n_best_size:
                break
            feature = features[pred.feature_index]
thomwolf's avatar
thomwolf committed
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
            if pred.start_index > 0:  # this is a non-null prediction
                tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
                orig_doc_start = feature.token_to_orig_map[pred.start_index]
                orig_doc_end = feature.token_to_orig_map[pred.end_index]
                orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
                tok_text = " ".join(tok_tokens)

                # De-tokenize WordPieces that have been split off.
                tok_text = tok_text.replace(" ##", "")
                tok_text = tok_text.replace("##", "")

                # Clean whitespace
                tok_text = tok_text.strip()
                tok_text = " ".join(tok_text.split())
                orig_text = " ".join(orig_tokens)

                final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
                if final_text in seen_predictions:
                    continue
556

thomwolf's avatar
thomwolf committed
557
558
559
560
                seen_predictions[final_text] = True
            else:
                final_text = ""
                seen_predictions[final_text] = True
561
562
563
564
565
566

            nbest.append(
                _NbestPrediction(
                    text=final_text,
                    start_logit=pred.start_logit,
                    end_logit=pred.end_logit))
thomwolf's avatar
thomwolf committed
567
568
569
570
571
572
573
574
        # if we didn't include the empty option in the n-best, include it
        if version_2_with_negative:
            if "" not in seen_predictions:
                nbest.append(
                    _NbestPrediction(
                        text="",
                        start_logit=null_start_logit,
                        end_logit=null_end_logit))
575
576
577
578
579
580
581
                
            # In very rare edge cases we could only have single null prediction.
            # So we just create a nonce prediction in this case to avoid failure.
            if len(nbest)==1:
                nbest.insert(0,
                    _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
                
582
583
584
585
586
587
588
589
590
        # In very rare edge cases we could have no valid predictions. So we
        # just create a nonce prediction in this case to avoid failure.
        if not nbest:
            nbest.append(
                _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))

        assert len(nbest) >= 1

        total_scores = []
thomwolf's avatar
thomwolf committed
591
        best_non_null_entry = None
592
593
        for entry in nbest:
            total_scores.append(entry.start_logit + entry.end_logit)
thomwolf's avatar
thomwolf committed
594
595
596
            if not best_non_null_entry:
                if entry.text:
                    best_non_null_entry = entry
597
598
599
600
601
602
603
604
605
606
607
608
609
610

        probs = _compute_softmax(total_scores)

        nbest_json = []
        for (i, entry) in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text
            output["probability"] = probs[i]
            output["start_logit"] = entry.start_logit
            output["end_logit"] = entry.end_logit
            nbest_json.append(output)

        assert len(nbest_json) >= 1

thomwolf's avatar
thomwolf committed
611
612
613
614
615
616
617
618
619
620
621
        if not version_2_with_negative:
            all_predictions[example.qas_id] = nbest_json[0]["text"]
        else:
            # predict "" iff the null score - the score of best non-null > threshold
            score_diff = score_null - best_non_null_entry.start_logit - (
                best_non_null_entry.end_logit)
            scores_diff_json[example.qas_id] = score_diff
            if score_diff > null_score_diff_threshold:
                all_predictions[example.qas_id] = ""
            else:
                all_predictions[example.qas_id] = best_non_null_entry.text
tguens's avatar
tguens committed
622
        all_nbest_json[example.qas_id] = nbest_json
623

624
    with open(output_prediction_file, "w") as writer:
625
626
        writer.write(json.dumps(all_predictions, indent=4) + "\n")

627
    with open(output_nbest_file, "w") as writer:
628
        writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
thomwolf's avatar
thomwolf committed
629

thomwolf's avatar
thomwolf committed
630
631
632
633
    if version_2_with_negative:
        with open(output_null_log_odds_file, "w") as writer:
            writer.write(json.dumps(scores_diff_json, indent=4) + "\n")

thomwolf's avatar
thomwolf committed
634

thomwolf's avatar
thomwolf committed
635
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
    """Project the tokenized prediction back to the original text."""

    # When we created the data, we kept track of the alignment between original
    # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
    # now `orig_text` contains the span of our original text corresponding to the
    # span that we predicted.
    #
    # However, `orig_text` may contain extra characters that we don't want in
    # our prediction.
    #
    # For example, let's say:
    #   pred_text = steve smith
    #   orig_text = Steve Smith's
    #
    # We don't want to return `orig_text` because it contains the extra "'s".
    #
    # We don't want to return `pred_text` because it's already been normalized
    # (the SQuAD eval script also does punctuation stripping/lower casing but
    # our tokenizer does additional normalization like stripping accent
    # characters).
    #
    # What we really want to return is "Steve Smith".
    #
Yongbo Wang's avatar
Yongbo Wang committed
659
660
    # Therefore, we have to apply a semi-complicated alignment heuristic between
    # `pred_text` and `orig_text` to get a character-to-character alignment. This
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
    # can fail in certain cases in which case we just return `orig_text`.

    def _strip_spaces(text):
        ns_chars = []
        ns_to_s_map = collections.OrderedDict()
        for (i, c) in enumerate(text):
            if c == " ":
                continue
            ns_to_s_map[len(ns_chars)] = i
            ns_chars.append(c)
        ns_text = "".join(ns_chars)
        return (ns_text, ns_to_s_map)

    # We first tokenize `orig_text`, strip whitespace from the result
    # and `pred_text`, and check if they are the same length. If they are
    # NOT the same length, the heuristic has failed. If they are the same
    # length, we assume the characters are one-to-one aligned.
thomwolf's avatar
thomwolf committed
678
    tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
679
680
681
682
683

    tok_text = " ".join(tokenizer.tokenize(orig_text))

    start_position = tok_text.find(pred_text)
    if start_position == -1:
thomwolf's avatar
thomwolf committed
684
        if verbose_logging:
685
            logger.info(
686
687
688
689
690
691
692
693
                "Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
        return orig_text
    end_position = start_position + len(pred_text) - 1

    (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
    (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

    if len(orig_ns_text) != len(tok_ns_text):
thomwolf's avatar
thomwolf committed
694
        if verbose_logging:
695
            logger.info("Length not equal after stripping spaces: '%s' vs '%s'",
thomwolf's avatar
thomwolf committed
696
                        orig_ns_text, tok_ns_text)
697
698
699
700
701
        return orig_text

    # We then project the characters in `pred_text` back to `orig_text` using
    # the character-to-character alignment.
    tok_s_to_ns_map = {}
thomwolf's avatar
thomwolf committed
702
    for (i, tok_index) in tok_ns_to_s_map.items():
703
704
705
706
707
708
709
710
711
        tok_s_to_ns_map[tok_index] = i

    orig_start_position = None
    if start_position in tok_s_to_ns_map:
        ns_start_position = tok_s_to_ns_map[start_position]
        if ns_start_position in orig_ns_to_s_map:
            orig_start_position = orig_ns_to_s_map[ns_start_position]

    if orig_start_position is None:
thomwolf's avatar
thomwolf committed
712
        if verbose_logging:
713
            logger.info("Couldn't map start position")
714
715
716
717
718
719
720
721
722
        return orig_text

    orig_end_position = None
    if end_position in tok_s_to_ns_map:
        ns_end_position = tok_s_to_ns_map[end_position]
        if ns_end_position in orig_ns_to_s_map:
            orig_end_position = orig_ns_to_s_map[ns_end_position]

    if orig_end_position is None:
thomwolf's avatar
thomwolf committed
723
        if verbose_logging:
724
            logger.info("Couldn't map end position")
725
726
727
728
        return orig_text

    output_text = orig_text[orig_start_position:(orig_end_position + 1)]
    return output_text
thomwolf's avatar
thomwolf committed
729
730
731


def _get_best_indexes(logits, n_best_size):
732
733
    """Get the n-best logits from a list."""
    index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
thomwolf's avatar
thomwolf committed
734

735
736
737
738
739
740
    best_indexes = []
    for i in range(len(index_and_score)):
        if i >= n_best_size:
            break
        best_indexes.append(index_and_score[i][0])
    return best_indexes
thomwolf's avatar
thomwolf committed
741
742
743


def _compute_softmax(scores):
744
745
746
    """Compute softmax probability over raw logits."""
    if not scores:
        return []
thomwolf's avatar
thomwolf committed
747

748
749
750
751
    max_score = None
    for score in scores:
        if max_score is None or score > max_score:
            max_score = score
thomwolf's avatar
thomwolf committed
752

753
754
755
756
757
758
    exp_scores = []
    total_sum = 0.0
    for score in scores:
        x = math.exp(score - max_score)
        exp_scores.append(x)
        total_sum += x
thomwolf's avatar
thomwolf committed
759

760
761
762
763
    probs = []
    for score in exp_scores:
        probs.append(score / total_sum)
    return probs
thomwolf's avatar
thomwolf committed
764

765
766
767
768
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
769
770
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
771
772
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
773
    parser.add_argument("--output_dir", default=None, type=str, required=True,
774
                        help="The output directory where the model checkpoints and predictions will be written.")
775
776
777
778
779
780
781
782
783
784
785
786
787

    ## Other parameters
    parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
788
789
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.")
790
791
792
793
794
795
    parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
    parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
thomwolf's avatar
thomwolf committed
796
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
797
798
799
800
801
802
803
                             "of training.")
    parser.add_argument("--n_best_size", default=20, type=int,
                        help="The total number of n-best predictions to generate in the nbest_predictions.json "
                             "output file.")
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
804
    parser.add_argument("--verbose_logging", action='store_true',
805
806
807
808
809
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
810
811
    parser.add_argument('--seed',
                        type=int,
thomwolf's avatar
thomwolf committed
812
813
                        default=42,
                        help="random seed for initialization")
814
815
816
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
817
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
818
819
820
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
821
822
823
824
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
825
826
827
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
thomwolf's avatar
thomwolf committed
828
    parser.add_argument('--loss_scale',
829
830
831
832
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
thomwolf's avatar
thomwolf committed
833
834
835
836
837
838
    parser.add_argument('--version_2_with_negative',
                        action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold',
                        type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")
thomwolf's avatar
thomwolf committed
839
840
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
841
    args = parser.parse_args()
thomwolf's avatar
thomwolf committed
842
843
844
845
846
847
848
849
    print(args)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()
850
851
852
853
854

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
855
        torch.cuda.set_device(args.local_rank)
856
857
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
858
859
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
860
861
862
863
864

    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

865
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
thomwolf's avatar
thomwolf committed
866
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
867

868
869
870
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
871

872
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
873
874
875
876

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
877
878
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
879
880

    if not args.do_train and not args.do_predict:
881
882
        raise ValueError("At least one of `do_train` or `do_predict` must be True.")

883
884
    if args.do_train:
        if not args.train_file:
885
886
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
887
888
    if args.do_predict:
        if not args.predict_file:
889
890
891
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified.")

892
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
893
        raise ValueError("Output directory () already exists and is not empty.")
thomwolf's avatar
thomwolf committed
894
895
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
896

897
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
898

samuel.broscheit's avatar
samuel.broscheit committed
899
    # Prepare model
thomwolf's avatar
oups  
thomwolf committed
900
    model = BertForQuestionAnswering.from_pretrained(args.bert_model)
thomwolf's avatar
thomwolf committed
901
                # cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)))
samuel.broscheit's avatar
samuel.broscheit committed
902
903
904
905
906

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
907
908
909
910
    #     try:
    #         from apex.parallel import DistributedDataParallel as DDP
    #     except ImportError:
    #         raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
samuel.broscheit's avatar
samuel.broscheit committed
911

912
913
914
915
        model = torch.nn.parallel.DistributedDataParallel(model,
                                                          device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
samuel.broscheit's avatar
samuel.broscheit committed
916
917
918
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

919
    if args.do_train:
thomwolf's avatar
thomwolf committed
920
921
        if args.local_rank in [-1, 0]:
            writer = SummaryWriter()
samuel.broscheit's avatar
samuel.broscheit committed
922
        # Prepare data loader
923
        train_examples = read_squad_examples(
thomwolf's avatar
thomwolf committed
924
            input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
        cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
            list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length))
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s", cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                   all_start_positions, all_end_positions)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
954
        num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
955
956
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
957

samuel.broscheit's avatar
samuel.broscheit committed
958
        # Prepare optimizer
959

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]

        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                                 t_total=num_train_optimization_steps)
989
        else:
990
991
992
993
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
994

samuel.broscheit's avatar
samuel.broscheit committed
995
996
        global_step = 0

997
998
999
1000
        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
1001
        logger.info("  Num steps = %d", num_train_optimization_steps)
1002
1003

        model.train()
thomwolf's avatar
thomwolf committed
1004
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
1005
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
thomwolf's avatar
thomwolf committed
1006
1007
                if n_gpu == 1:
                    batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
thomwolf's avatar
thomwolf committed
1008
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
1009
                loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
thomwolf's avatar
thomwolf committed
1010
1011
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
1012
1013
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
1014
1015
1016
1017
1018

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
thomwolf's avatar
thomwolf committed
1019
                if (step + 1) % args.gradient_accumulation_steps == 0:
thomwolf's avatar
thomwolf committed
1020
1021
1022
                    if args.local_rank in [-1, 0]:
                        writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
                        writer.add_scalar('loss', loss.item(), global_step)
1023
1024
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
thomwolf's avatar
thomwolf committed
1025
                        # if args.fp16 is False, BertAdam is used and handles this automatically
1026
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
1027
1028
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
1029
1030
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
1031
                    global_step += 1
1032

1033
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
1034
        # Save a trained model, configuration and tokenizer
1035
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
1036
1037

        # If we save using the predefined names, we can load using `from_pretrained`
1038
1039
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
1040
1041
1042

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
1043
        tokenizer.save_vocabulary(args.output_dir)
1044

1045
1046
        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForQuestionAnswering.from_pretrained(args.output_dir)
1047
        tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
1048
1049
    else:
        model = BertForQuestionAnswering.from_pretrained(args.bert_model)
1050

1051
    model.to(device)
1052

1053
    if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
1054
        eval_examples = read_squad_examples(
thomwolf's avatar
thomwolf committed
1055
            input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
1056
1057
1058
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
1059
1060
1061
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
1062
1063
            is_training=False)

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
1074
1075
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
1076
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)
1077

1078
        model.eval()
1079
        all_results = []
thomwolf's avatar
thomwolf committed
1080
        logger.info("Start evaluating")
1081
        for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating", disable=args.local_rank not in [-1, 0]):
1082
            if len(all_results) % 1000 == 0:
1083
1084
                logger.info("Processing example: %d" % (len(all_results)))
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
1085
            input_mask = input_mask.to(device)
1086
            segment_ids = segment_ids.to(device)
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
            with torch.no_grad():
                batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(RawResult(unique_id=unique_id,
                                             start_logits=start_logits,
                                             end_logits=end_logits))
1097
1098
        output_prediction_file = os.path.join(args.output_dir, "predictions.json")
        output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
thomwolf's avatar
thomwolf committed
1099
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
1100
        write_predictions(eval_examples, eval_features, all_results,
1101
1102
                          args.n_best_size, args.max_answer_length,
                          args.do_lower_case, output_prediction_file,
thomwolf's avatar
thomwolf committed
1103
1104
                          output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                          args.version_2_with_negative, args.null_score_diff_threshold)
thomwolf's avatar
thomwolf committed
1105
1106
1107


if __name__ == "__main__":
1108
    main()