run_squad.py 20.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run BERT on SQuAD."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
19

20
import argparse
thomwolf's avatar
thomwolf committed
21
22
import collections
import json
thomwolf's avatar
thomwolf committed
23
import logging
thomwolf's avatar
thomwolf committed
24
25
import math
import os
26
import random
thomwolf's avatar
thomwolf committed
27
28
import sys
from io import open
thomwolf's avatar
thomwolf committed
29

thomwolf's avatar
thomwolf committed
30
import numpy as np
31
import torch
thomwolf's avatar
thomwolf committed
32
33
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
34
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
35
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
36

thomwolf's avatar
thomwolf committed
37
38
from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
39
40
from pytorch_pretrained_bert.file_utils import WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForQuestionAnswering
41
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
thomwolf's avatar
thomwolf committed
42
43
44
from pytorch_pretrained_bert.tokenization import BertTokenizer

from run_squad_dataset_utils import read_squad_examples, convert_examples_to_features, RawResult, write_predictions
thomwolf's avatar
thomwolf committed
45
46
47
48
49

if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle
thomwolf's avatar
thomwolf committed
50

51
logger = logging.getLogger(__name__)
thomwolf's avatar
thomwolf committed
52
53


54
55
56
57
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
58
59
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
60
61
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
62
    parser.add_argument("--output_dir", default=None, type=str, required=True,
63
                        help="The output directory where the model checkpoints and predictions will be written.")
64
65
66
67
68
69
70
71
72
73
74
75
76

    ## Other parameters
    parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
77
78
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.")
79
80
81
82
83
84
    parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
    parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
thomwolf's avatar
thomwolf committed
85
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
86
87
88
89
90
91
92
                             "of training.")
    parser.add_argument("--n_best_size", default=20, type=int,
                        help="The total number of n-best predictions to generate in the nbest_predictions.json "
                             "output file.")
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
93
    parser.add_argument("--verbose_logging", action='store_true',
94
95
96
97
98
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
99
100
    parser.add_argument('--seed',
                        type=int,
thomwolf's avatar
thomwolf committed
101
102
                        default=42,
                        help="random seed for initialization")
103
104
105
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
106
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
107
108
109
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
110
111
112
113
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
114
115
116
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
thomwolf's avatar
thomwolf committed
117
    parser.add_argument('--loss_scale',
118
119
120
121
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
thomwolf's avatar
thomwolf committed
122
123
124
125
126
127
    parser.add_argument('--version_2_with_negative',
                        action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold',
                        type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")
thomwolf's avatar
thomwolf committed
128
129
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
130
    args = parser.parse_args()
thomwolf's avatar
thomwolf committed
131
132
133
134
135
136
137
138
    print(args)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()
139
140
141
142
143

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
144
        torch.cuda.set_device(args.local_rank)
145
146
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
147
148
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
149
150
151
152
153

    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

154
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
thomwolf's avatar
thomwolf committed
155
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
156

157
158
159
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
160

161
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
162
163
164
165

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
166
167
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
168
169

    if not args.do_train and not args.do_predict:
170
171
        raise ValueError("At least one of `do_train` or `do_predict` must be True.")

172
173
    if args.do_train:
        if not args.train_file:
174
175
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
176
177
    if args.do_predict:
        if not args.predict_file:
178
179
180
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified.")

181
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
182
        raise ValueError("Output directory () already exists and is not empty.")
thomwolf's avatar
thomwolf committed
183
184
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
185

186
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
187

samuel.broscheit's avatar
samuel.broscheit committed
188
    # Prepare model
thomwolf's avatar
oups  
thomwolf committed
189
    model = BertForQuestionAnswering.from_pretrained(args.bert_model)
samuel.broscheit's avatar
samuel.broscheit committed
190
191
192
193
194

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
195
196
197
198
        model = torch.nn.parallel.DistributedDataParallel(model,
                                                          device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
samuel.broscheit's avatar
samuel.broscheit committed
199
200
201
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

202
    if args.do_train:
thomwolf's avatar
thomwolf committed
203
204
        if args.local_rank in [-1, 0]:
            writer = SummaryWriter()
samuel.broscheit's avatar
samuel.broscheit committed
205
        # Prepare data loader
206
        train_examples = read_squad_examples(
thomwolf's avatar
thomwolf committed
207
            input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
            list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length))
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s", cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)
thomwolf's avatar
thomwolf committed
225

226
227
228
229
230
231
232
233
234
235
236
237
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                   all_start_positions, all_end_positions)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
238
        num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
239
240
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
241

samuel.broscheit's avatar
samuel.broscheit committed
242
        # Prepare optimizer
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]

        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                                 t_total=num_train_optimization_steps)
272
        else:
273
274
275
276
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
277

samuel.broscheit's avatar
samuel.broscheit committed
278
279
        global_step = 0

280
281
282
283
        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
284
        logger.info("  Num steps = %d", num_train_optimization_steps)
285
286

        model.train()
thomwolf's avatar
thomwolf committed
287
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
288
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
thomwolf's avatar
thomwolf committed
289
290
                if n_gpu == 1:
                    batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
thomwolf's avatar
thomwolf committed
291
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
292
                loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
thomwolf's avatar
thomwolf committed
293
294
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
295
296
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
297
298
299
300
301

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
thomwolf's avatar
thomwolf committed
302
                if (step + 1) % args.gradient_accumulation_steps == 0:
thomwolf's avatar
thomwolf committed
303
304
305
                    if args.local_rank in [-1, 0]:
                        writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
                        writer.add_scalar('loss', loss.item(), global_step)
306
307
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
thomwolf's avatar
thomwolf committed
308
                        # if args.fp16 is False, BertAdam is used and handles this automatically
309
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
310
311
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
312
313
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
314
                    global_step += 1
315

316
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
317
        # Save a trained model, configuration and tokenizer
318
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
319
320

        # If we save using the predefined names, we can load using `from_pretrained`
321
322
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
323
324
325

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
326
        tokenizer.save_vocabulary(args.output_dir)
327

328
329
        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForQuestionAnswering.from_pretrained(args.output_dir)
330
        tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
331
332
    else:
        model = BertForQuestionAnswering.from_pretrained(args.bert_model)
333

334
    model.to(device)
335

336
    if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
337
        eval_examples = read_squad_examples(
thomwolf's avatar
thomwolf committed
338
            input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
339
340
341
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
342
343
344
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
345
346
            is_training=False)

347
348
349
350
351
352
353
354
355
356
        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
357
358
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
359
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)
360

361
        model.eval()
362
        all_results = []
thomwolf's avatar
thomwolf committed
363
        logger.info("Start evaluating")
364
        for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating", disable=args.local_rank not in [-1, 0]):
365
            if len(all_results) % 1000 == 0:
366
367
                logger.info("Processing example: %d" % (len(all_results)))
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
368
            input_mask = input_mask.to(device)
369
            segment_ids = segment_ids.to(device)
370
371
372
373
374
375
376
377
378
379
            with torch.no_grad():
                batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(RawResult(unique_id=unique_id,
                                             start_logits=start_logits,
                                             end_logits=end_logits))
380
381
        output_prediction_file = os.path.join(args.output_dir, "predictions.json")
        output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
thomwolf's avatar
thomwolf committed
382
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
383
        write_predictions(eval_examples, eval_features, all_results,
384
385
                          args.n_best_size, args.max_answer_length,
                          args.do_lower_case, output_prediction_file,
thomwolf's avatar
thomwolf committed
386
387
                          output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                          args.version_2_with_negative, args.null_score_diff_threshold)
thomwolf's avatar
thomwolf committed
388
389
390


if __name__ == "__main__":
391
    main()