serialization.mdx 19.1 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

Steven Liu's avatar
Steven Liu committed
13
# Export to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
14

Steven Liu's avatar
Steven Liu committed
15
16
17
18
If you need to deploy 馃 Transformers models in production environments, we recommend
exporting them to a serialized format that can be loaded and executed on specialized
runtimes and hardware. In this guide, we'll show you how to export 馃 Transformers
models to [ONNX (Open Neural Network eXchange)](http://onnx.ai).
Sylvain Gugger's avatar
Sylvain Gugger committed
19

Steven Liu's avatar
Steven Liu committed
20
21
22
23
24
ONNX is an open standard that defines a common set of operators and a common file format
to represent deep learning models in a wide variety of frameworks, including PyTorch and
TensorFlow. When a model is exported to the ONNX format, these operators are used to
construct a computational graph (often called an _intermediate representation_) which
represents the flow of data through the neural network.
Sylvain Gugger's avatar
Sylvain Gugger committed
25

Steven Liu's avatar
Steven Liu committed
26
27
28
By exposing a graph with standardized operators and data types, ONNX makes it easy to
switch between frameworks. For example, a model trained in PyTorch can be exported to
ONNX format and then imported in TensorFlow (and vice versa).
Sylvain Gugger's avatar
Sylvain Gugger committed
29

Steven Liu's avatar
Steven Liu committed
30
31
32
33
馃 Transformers provides a [`transformers.onnx`](main_classes/onnx) package that enables
you to convert model checkpoints to an ONNX graph by leveraging configuration objects.
These configuration objects come ready made for a number of model architectures, and are
designed to be easily extendable to other architectures.
Sylvain Gugger's avatar
Sylvain Gugger committed
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
<Tip>

You can also export 馃 Transformers models with the [`optimum.exporters.onnx` package](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model)
from 馃 Optimum.

Once exported, a model can be:

- Optimized for inference via techniques such as quantization and graph optimization.
- Run with ONNX Runtime via [`ORTModelForXXX` classes](https://huggingface.co/docs/optimum/onnxruntime/package_reference/modeling_ort),
which follow the same `AutoModel` API as the one you are used to in 馃 Transformers.
- Run with [optimized inference pipelines](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines),
which has the same API as the [`pipeline`] function in 馃 Transformers.

To explore all these features,  check out the [馃 Optimum library](https://github.com/huggingface/optimum).

</Tip>

lewtun's avatar
lewtun committed
52
Ready-made configurations include the following architectures:
Sylvain Gugger's avatar
Sylvain Gugger committed
53

54
<!--This table is automatically generated by `make fix-copies`, do not fill manually!-->
Sylvain Gugger's avatar
Sylvain Gugger committed
55
56
57

- ALBERT
- BART
Jim Rohrer's avatar
Jim Rohrer committed
58
- BEiT
Sylvain Gugger's avatar
Sylvain Gugger committed
59
- BERT
60
- BigBird
61
- BigBird-Pegasus
62
63
- Blenderbot
- BlenderbotSmall
64
- BLOOM
Sylvain Gugger's avatar
Sylvain Gugger committed
65
- CamemBERT
66
- Chinese-CLIP
67
- CLIP
rooa's avatar
rooa committed
68
- CodeGen
69
- Conditional DETR
70
- ConvBERT
71
- ConvNeXT
72
- Data2VecText
73
- Data2VecVision
74
75
- DeBERTa
- DeBERTa-v2
76
- DeiT
regisss's avatar
regisss committed
77
- DETR
Sylvain Gugger's avatar
Sylvain Gugger committed
78
- DistilBERT
79
- ELECTRA
80
- ERNIE
81
- FlauBERT
Sylvain Gugger's avatar
Sylvain Gugger committed
82
- GPT Neo
83
- GPT-J
84
- GPT-Sw3
85
- GroupViT
86
- I-BERT
87
- ImageGPT
Sylvain Gugger's avatar
Sylvain Gugger committed
88
- LayoutLM
89
- LayoutLMv3
gcheron's avatar
gcheron committed
90
- LeViT
91
- Longformer
Daniel Stancl's avatar
Daniel Stancl committed
92
- LongT5
93
- M2M100
94
- Marian
Sylvain Gugger's avatar
Sylvain Gugger committed
95
- mBART
96
- MobileBERT
97
- MobileNetV1
98
- MobileNetV2
99
- MobileViT
100
- MT5
Sylvain Gugger's avatar
Sylvain Gugger committed
101
- OpenAI GPT-2
102
- OWL-ViT
103
- Perceiver
Gunjan Chhablani's avatar
Gunjan Chhablani committed
104
- PLBart
105
- PoolFormer
Erin's avatar
Erin committed
106
- RemBERT
regisss's avatar
regisss committed
107
- ResNet
Sylvain Gugger's avatar
Sylvain Gugger committed
108
- RoBERTa
109
- RoBERTa-PreLayerNorm
110
- RoFormer
111
- SegFormer
112
- SqueezeBERT
113
- Swin Transformer
Sylvain Gugger's avatar
Sylvain Gugger committed
114
- T5
115
- Table Transformer
116
- Vision Encoder decoder
lewtun's avatar
lewtun committed
117
- ViT
118
- Whisper
Ritik Nandwal's avatar
Ritik Nandwal committed
119
- XLM
Sylvain Gugger's avatar
Sylvain Gugger committed
120
- XLM-RoBERTa
121
- XLM-RoBERTa-XL
NielsRogge's avatar
NielsRogge committed
122
- YOLOS
Sylvain Gugger's avatar
Sylvain Gugger committed
123

lewtun's avatar
lewtun committed
124
In the next two sections, we'll show you how to:
Sylvain Gugger's avatar
Sylvain Gugger committed
125

lewtun's avatar
lewtun committed
126
127
* Export a supported model using the `transformers.onnx` package.
* Export a custom model for an unsupported architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
128

Steven Liu's avatar
Steven Liu committed
129
## Exporting a model to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
130

131
132
133
134
135
136
137
138
<Tip>

The recommended way of exporting a model is now to use
[`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli),
do not worry it is very similar to `transformers.onnx`!

</Tip>

Steven Liu's avatar
Steven Liu committed
139
140
To export a 馃 Transformers model to ONNX, you'll first need to install some extra
dependencies:
Sylvain Gugger's avatar
Sylvain Gugger committed
141

lewtun's avatar
lewtun committed
142
143
144
145
146
```bash
pip install transformers[onnx]
```

The `transformers.onnx` package can then be used as a Python module:
Sylvain Gugger's avatar
Sylvain Gugger committed
147
148
149
150

```bash
python -m transformers.onnx --help

lewtun's avatar
lewtun committed
151
usage: Hugging Face Transformers ONNX exporter [-h] -m MODEL [--feature {causal-lm, ...}] [--opset OPSET] [--atol ATOL] output
Sylvain Gugger's avatar
Sylvain Gugger committed
152
153
154
155
156
157
158

positional arguments:
  output                Path indicating where to store generated ONNX model.

optional arguments:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
lewtun's avatar
lewtun committed
159
160
161
162
                        Model ID on huggingface.co or path on disk to load model from.
  --feature {causal-lm, ...}
                        The type of features to export the model with.
  --opset OPSET         ONNX opset version to export the model with.
163
  --atol ATOL           Absolute difference tolerance when validating the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
164
165
166
167
168
```

Exporting a checkpoint using a ready-made configuration can be done as follows:

```bash
lewtun's avatar
lewtun committed
169
python -m transformers.onnx --model=distilbert-base-uncased onnx/
Sylvain Gugger's avatar
Sylvain Gugger committed
170
171
```

Steven Liu's avatar
Steven Liu committed
172
You should see the following logs:
Sylvain Gugger's avatar
Sylvain Gugger committed
173
174
175

```bash
Validating ONNX model...
176
        -[鉁揮 ONNX model output names match reference model ({'last_hidden_state'})
lewtun's avatar
lewtun committed
177
178
179
180
        - Validating ONNX Model output "last_hidden_state":
                -[鉁揮 (2, 8, 768) matches (2, 8, 768)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
181
182
```

Steven Liu's avatar
Steven Liu committed
183
184
185
This exports an ONNX graph of the checkpoint defined by the `--model` argument. In this
example, it is `distilbert-base-uncased`, but it can be any checkpoint on the Hugging
Face Hub or one that's stored locally.
Sylvain Gugger's avatar
Sylvain Gugger committed
186

lewtun's avatar
lewtun committed
187
The resulting `model.onnx` file can then be run on one of the [many
Steven Liu's avatar
Steven Liu committed
188
189
accelerators](https://onnx.ai/supported-tools.html#deployModel) that support the ONNX
standard. For example, we can load and run the model with [ONNX
lewtun's avatar
lewtun committed
190
Runtime](https://onnxruntime.ai/) as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
191

lewtun's avatar
lewtun committed
192
193
194
195
196
197
198
199
200
201
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession

>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
Sylvain Gugger's avatar
Sylvain Gugger committed
202

Steven Liu's avatar
Steven Liu committed
203
204
The required output names (like `["last_hidden_state"]`) can be obtained by taking a
look at the ONNX configuration of each model. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
205

lewtun's avatar
lewtun committed
206
207
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
208

lewtun's avatar
lewtun committed
209
210
211
212
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
```

Steven Liu's avatar
Steven Liu committed
215
216
The process is identical for TensorFlow checkpoints on the Hub. For example, we can
export a pure TensorFlow checkpoint from the [Keras
217
218
219
220
221
222
organization](https://huggingface.co/keras-io) as follows:

```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```

Steven Liu's avatar
Steven Liu committed
223
224
225
To export a model that's stored locally, you'll need to have the model's weights and
tokenizer files stored in a directory. For example, we can load and save a checkpoint as
follows:
226

Steven Liu's avatar
Steven Liu committed
227
<frameworkcontent> <pt>
228
229
230
231
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification

>>> # Load tokenizer and PyTorch weights form the Hub
232
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
233
234
235
236
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-pt-checkpoint")
>>> pt_model.save_pretrained("local-pt-checkpoint")
Sylvain Gugger's avatar
Sylvain Gugger committed
237
238
239
240
241
242
243
244
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```
Steven Liu's avatar
Steven Liu committed
245
</pt> <tf>
Sylvain Gugger's avatar
Sylvain Gugger committed
246
```python
247
248
249
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification

>>> # Load tokenizer and TensorFlow weights from the Hub
250
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
251
252
253
254
255
256
257
258
259
260
261
262
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-tf-checkpoint")
>>> tf_model.save_pretrained("local-tf-checkpoint")
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-tf-checkpoint onnx/
```
Steven Liu's avatar
Steven Liu committed
263
</tf> </frameworkcontent>
264

Steven Liu's avatar
Steven Liu committed
265
## Selecting features for different model tasks
lewtun's avatar
lewtun committed
266

267
268
269
270
271
272
273
274
<Tip>

The recommended way of exporting a model is now to use `optimum.exporters.onnx`.
You can check the [馃 Optimum documentation](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#selecting-a-task)
to learn how to select a task.

</Tip>

Steven Liu's avatar
Steven Liu committed
275
276
277
Each ready-made configuration comes with a set of _features_ that enable you to export
models for different types of tasks. As shown in the table below, each feature is
associated with a different `AutoClass`:
lewtun's avatar
lewtun committed
278
279
280
281
282
283
284
285
286
287
288
289

| Feature                              | Auto Class                           |
| ------------------------------------ | ------------------------------------ |
| `causal-lm`, `causal-lm-with-past`   | `AutoModelForCausalLM`               |
| `default`, `default-with-past`       | `AutoModel`                          |
| `masked-lm`                          | `AutoModelForMaskedLM`               |
| `question-answering`                 | `AutoModelForQuestionAnswering`      |
| `seq2seq-lm`, `seq2seq-lm-with-past` | `AutoModelForSeq2SeqLM`              |
| `sequence-classification`            | `AutoModelForSequenceClassification` |
| `token-classification`               | `AutoModelForTokenClassification`    |

For each configuration, you can find the list of supported features via the
Steven Liu's avatar
Steven Liu committed
290
[`~transformers.onnx.FeaturesManager`]. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
291
292

```python
lewtun's avatar
lewtun committed
293
>>> from transformers.onnx.features import FeaturesManager
Sylvain Gugger's avatar
Sylvain Gugger committed
294

lewtun's avatar
lewtun committed
295
296
297
>>> distilbert_features = list(FeaturesManager.get_supported_features_for_model_type("distilbert").keys())
>>> print(distilbert_features)
["default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "question-answering"]
Sylvain Gugger's avatar
Sylvain Gugger committed
298
299
```

lewtun's avatar
lewtun committed
300
You can then pass one of these features to the `--feature` argument in the
Steven Liu's avatar
Steven Liu committed
301
302
`transformers.onnx` package. For example, to export a text-classification model we can
pick a fine-tuned model from the Hub and run:
Sylvain Gugger's avatar
Sylvain Gugger committed
303

lewtun's avatar
lewtun committed
304
305
306
307
```bash
python -m transformers.onnx --model=distilbert-base-uncased-finetuned-sst-2-english \
                            --feature=sequence-classification onnx/
```
Sylvain Gugger's avatar
Sylvain Gugger committed
308

Steven Liu's avatar
Steven Liu committed
309
This displays the following logs:
lewtun's avatar
lewtun committed
310
311
312

```bash
Validating ONNX model...
313
        -[鉁揮 ONNX model output names match reference model ({'logits'})
lewtun's avatar
lewtun committed
314
315
316
317
        - Validating ONNX Model output "logits":
                -[鉁揮 (2, 2) matches (2, 2)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
318
319
```

Steven Liu's avatar
Steven Liu committed
320
321
322
Notice that in this case, the output names from the fine-tuned model are `logits`
instead of the `last_hidden_state` we saw with the `distilbert-base-uncased` checkpoint
earlier. This is expected since the fine-tuned model has a sequence classification head.
lewtun's avatar
lewtun committed
323
324
325

<Tip>

Steven Liu's avatar
Steven Liu committed
326
327
328
The features that have a `with-past` suffix (like `causal-lm-with-past`) correspond to
model classes with precomputed hidden states (key and values in the attention blocks)
that can be used for fast autoregressive decoding.
lewtun's avatar
lewtun committed
329
330

</Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
331

332
333
334
335
336
337
338
<Tip>

For `VisionEncoderDecoder` type models, the encoder and decoder parts are
exported separately as two ONNX files named `encoder_model.onnx` and `decoder_model.onnx` respectively.

</Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
339

Steven Liu's avatar
Steven Liu committed
340
## Exporting a model for an unsupported architecture
Sylvain Gugger's avatar
Sylvain Gugger committed
341

342
343
344
345
346
347
348
349
350
<Tip>

If you wish to contribute by adding support for a model that cannot be currently exported, you should first check if it is
supported in [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/package_reference/configuration#supported-architectures),
and if it is not, [contribute to 馃 Optimum](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/contribute)
directly.

</Tip>

Steven Liu's avatar
Steven Liu committed
351
352
If you wish to export a model whose architecture is not natively supported by the
library, there are three main steps to follow:
Sylvain Gugger's avatar
Sylvain Gugger committed
353

lewtun's avatar
lewtun committed
354
355
356
1. Implement a custom ONNX configuration.
2. Export the model to ONNX.
3. Validate the outputs of the PyTorch and exported models.
Sylvain Gugger's avatar
Sylvain Gugger committed
357

Steven Liu's avatar
Steven Liu committed
358
359
In this section, we'll look at how DistilBERT was implemented to show what's involved
with each step.
Sylvain Gugger's avatar
Sylvain Gugger committed
360

Steven Liu's avatar
Steven Liu committed
361
### Implementing a custom ONNX configuration
Sylvain Gugger's avatar
Sylvain Gugger committed
362

Steven Liu's avatar
Steven Liu committed
363
364
Let's start with the ONNX configuration object. We provide three abstract classes that
you should inherit from, depending on the type of model architecture you wish to export:
Sylvain Gugger's avatar
Sylvain Gugger committed
365

366
367
368
* Encoder-based models inherit from [`~onnx.config.OnnxConfig`]
* Decoder-based models inherit from [`~onnx.config.OnnxConfigWithPast`]
* Encoder-decoder models inherit from [`~onnx.config.OnnxSeq2SeqConfigWithPast`]
Sylvain Gugger's avatar
Sylvain Gugger committed
369
370
371

<Tip>

lewtun's avatar
lewtun committed
372
373
A good way to implement a custom ONNX configuration is to look at the existing
implementation in the `configuration_<model_name>.py` file of a similar architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
374
375
376

</Tip>

lewtun's avatar
lewtun committed
377
378
Since DistilBERT is an encoder-based model, its configuration inherits from
`OnnxConfig`:
Sylvain Gugger's avatar
Sylvain Gugger committed
379

lewtun's avatar
lewtun committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
```python
>>> from typing import Mapping, OrderedDict
>>> from transformers.onnx import OnnxConfig


>>> class DistilBertOnnxConfig(OnnxConfig):
...     @property
...     def inputs(self) -> Mapping[str, Mapping[int, str]]:
...         return OrderedDict(
...             [
...                 ("input_ids", {0: "batch", 1: "sequence"}),
...                 ("attention_mask", {0: "batch", 1: "sequence"}),
...             ]
...         )
Sylvain Gugger's avatar
Sylvain Gugger committed
394
395
```

Steven Liu's avatar
Steven Liu committed
396
397
398
399
400
Every configuration object must implement the `inputs` property and return a mapping,
where each key corresponds to an expected input, and each value indicates the axis of
that input. For DistilBERT, we can see that two inputs are required: `input_ids` and
`attention_mask`. These inputs have the same shape of `(batch_size, sequence_length)`
which is why we see the same axes used in the configuration.
Sylvain Gugger's avatar
Sylvain Gugger committed
401
402
403

<Tip>

Steven Liu's avatar
Steven Liu committed
404
405
406
407
408
Notice that `inputs` property for `DistilBertOnnxConfig` returns an `OrderedDict`. This
ensures that the inputs are matched with their relative position within the
`PreTrainedModel.forward()` method when tracing the graph. We recommend using an
`OrderedDict` for the `inputs` and `outputs` properties when implementing custom ONNX
configurations.
Sylvain Gugger's avatar
Sylvain Gugger committed
409
410
411

</Tip>

Steven Liu's avatar
Steven Liu committed
412
413
Once you have implemented an ONNX configuration, you can instantiate it by providing the
base model's configuration as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
414

lewtun's avatar
lewtun committed
415
416
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
417

lewtun's avatar
lewtun committed
418
419
420
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config = DistilBertOnnxConfig(config)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
421

Steven Liu's avatar
Steven Liu committed
422
423
The resulting object has several useful properties. For example, you can view the ONNX
operator set that will be used during the export:
Sylvain Gugger's avatar
Sylvain Gugger committed
424

lewtun's avatar
lewtun committed
425
426
427
428
```python
>>> print(onnx_config.default_onnx_opset)
11
```
Sylvain Gugger's avatar
Sylvain Gugger committed
429

lewtun's avatar
lewtun committed
430
You can also view the outputs associated with the model as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
431

lewtun's avatar
lewtun committed
432
433
434
435
```python
>>> print(onnx_config.outputs)
OrderedDict([("last_hidden_state", {0: "batch", 1: "sequence"})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
436

Steven Liu's avatar
Steven Liu committed
437
438
439
440
441
442
443
444
Notice that the outputs property follows the same structure as the inputs; it returns an
`OrderedDict` of named outputs and their shapes. The output structure is linked to the
choice of feature that the configuration is initialised with. By default, the ONNX
configuration is initialized with the `default` feature that corresponds to exporting a
model loaded with the `AutoModel` class. If you want to export a model for another task,
just provide a different feature to the `task` argument when you initialize the ONNX
configuration. For example, if we wished to export DistilBERT with a sequence
classification head, we could use:
Sylvain Gugger's avatar
Sylvain Gugger committed
445

lewtun's avatar
lewtun committed
446
447
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
448

lewtun's avatar
lewtun committed
449
450
451
452
453
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config_for_seq_clf = DistilBertOnnxConfig(config, task="sequence-classification")
>>> print(onnx_config_for_seq_clf.outputs)
OrderedDict([('logits', {0: 'batch'})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
454
455
456

<Tip>

Steven Liu's avatar
Steven Liu committed
457
All of the base properties and methods associated with [`~onnx.config.OnnxConfig`] and
458
the other configuration classes can be overridden if needed. Check out [`BartOnnxConfig`]
Steven Liu's avatar
Steven Liu committed
459
for an advanced example.
Sylvain Gugger's avatar
Sylvain Gugger committed
460
461
462

</Tip>

Steven Liu's avatar
Steven Liu committed
463
### Exporting the model
Sylvain Gugger's avatar
Sylvain Gugger committed
464

Steven Liu's avatar
Steven Liu committed
465
466
467
468
Once you have implemented the ONNX configuration, the next step is to export the model.
Here we can use the `export()` function provided by the `transformers.onnx` package.
This function expects the ONNX configuration, along with the base model and tokenizer,
and the path to save the exported file:
Sylvain Gugger's avatar
Sylvain Gugger committed
469

lewtun's avatar
lewtun committed
470
471
472
473
```python
>>> from pathlib import Path
>>> from transformers.onnx import export
>>> from transformers import AutoTokenizer, AutoModel
Sylvain Gugger's avatar
Sylvain Gugger committed
474

lewtun's avatar
lewtun committed
475
476
477
478
>>> onnx_path = Path("model.onnx")
>>> model_ckpt = "distilbert-base-uncased"
>>> base_model = AutoModel.from_pretrained(model_ckpt)
>>> tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
Sylvain Gugger's avatar
Sylvain Gugger committed
479

lewtun's avatar
lewtun committed
480
481
>>> onnx_inputs, onnx_outputs = export(tokenizer, base_model, onnx_config, onnx_config.default_onnx_opset, onnx_path)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
482

Steven Liu's avatar
Steven Liu committed
483
484
485
The `onnx_inputs` and `onnx_outputs` returned by the `export()` function are lists of
the keys defined in the `inputs` and `outputs` properties of the configuration. Once the
model is exported, you can test that the model is well formed as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
486

lewtun's avatar
lewtun committed
487
488
```python
>>> import onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
489

lewtun's avatar
lewtun committed
490
491
492
>>> onnx_model = onnx.load("model.onnx")
>>> onnx.checker.check_model(onnx_model)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
493
494
495

<Tip>

Steven Liu's avatar
Steven Liu committed
496
497
498
499
500
501
If your model is larger than 2GB, you will see that many additional files are created
during the export. This is _expected_ because ONNX uses [Protocol
Buffers](https://developers.google.com/protocol-buffers/) to store the model and these
have a size limit of 2GB. See the [ONNX
documentation](https://github.com/onnx/onnx/blob/master/docs/ExternalData.md) for
instructions on how to load models with external data.
Sylvain Gugger's avatar
Sylvain Gugger committed
502
503
504

</Tip>

Steven Liu's avatar
Steven Liu committed
505
### Validating the model outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
506

Steven Liu's avatar
Steven Liu committed
507
508
509
The final step is to validate that the outputs from the base and exported model agree
within some absolute tolerance. Here we can use the `validate_model_outputs()` function
provided by the `transformers.onnx` package as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
510

lewtun's avatar
lewtun committed
511
512
```python
>>> from transformers.onnx import validate_model_outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
513

lewtun's avatar
lewtun committed
514
515
516
>>> validate_model_outputs(
...     onnx_config, tokenizer, base_model, onnx_path, onnx_outputs, onnx_config.atol_for_validation
... )
Sylvain Gugger's avatar
Sylvain Gugger committed
517
518
```

Steven Liu's avatar
Steven Liu committed
519
520
521
522
This function uses the [`~transformers.onnx.OnnxConfig.generate_dummy_inputs`] method to
generate inputs for the base and exported model, and the absolute tolerance can be
defined in the configuration. We generally find numerical agreement in the 1e-6 to 1e-4
range, although anything smaller than 1e-3 is likely to be OK.
Sylvain Gugger's avatar
Sylvain Gugger committed
523

Steven Liu's avatar
Steven Liu committed
524
## Contributing a new configuration to 馃 Transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
525

Steven Liu's avatar
Steven Liu committed
526
527
528
We are looking to expand the set of ready-made configurations and welcome contributions
from the community! If you would like to contribute your addition to the library, you
will need to:
Sylvain Gugger's avatar
Sylvain Gugger committed
529

lewtun's avatar
lewtun committed
530
531
* Implement the ONNX configuration in the corresponding `configuration_<model_name>.py`
file
Steven Liu's avatar
Steven Liu committed
532
533
* Include the model architecture and corresponding features in
  [`~onnx.features.FeatureManager`]
534
* Add your model architecture to the tests in `test_onnx_v2.py`
Sylvain Gugger's avatar
Sylvain Gugger committed
535

lewtun's avatar
lewtun committed
536
Check out how the configuration for [IBERT was
Steven Liu's avatar
Steven Liu committed
537
contributed](https://github.com/huggingface/transformers/pull/14868/files) to get an
538
idea of what's involved.