modeling_tf_utils.py 94.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF general model utils."""
Julien Plu's avatar
Julien Plu committed
17

18
import functools
Julien Plu's avatar
Julien Plu committed
19
import inspect
thomwolf's avatar
thomwolf committed
20
import os
21
import pickle
22
import re
Julien Plu's avatar
Julien Plu committed
23
import warnings
Sylvain Gugger's avatar
Sylvain Gugger committed
24
from typing import Dict, List, Optional, Union
thomwolf's avatar
thomwolf committed
25

Aymeric Augustin's avatar
Aymeric Augustin committed
26
import h5py
Julien Chaumond's avatar
Julien Chaumond committed
27
import numpy as np
thomwolf's avatar
thomwolf committed
28
import tensorflow as tf
Julien Plu's avatar
Julien Plu committed
29
from tensorflow.python.keras import backend as K
Matt's avatar
Matt committed
30
from tensorflow.python.keras.engine import data_adapter
31
from tensorflow.python.keras.engine.keras_tensor import KerasTensor
thomwolf's avatar
thomwolf committed
32
from tensorflow.python.keras.saving import hdf5_format
thomwolf's avatar
thomwolf committed
33

34
from huggingface_hub import Repository, list_repo_files
35
from requests import HTTPError
36

37
from .activations_tf import get_tf_activation
thomwolf's avatar
thomwolf committed
38
from .configuration_utils import PretrainedConfig
39
from .dynamic_module_utils import custom_object_save
40
41
42
43
44
from .generation_tf_utils import TFGenerationMixin
from .modeling_tf_outputs import TFSeq2SeqLMOutput
from .tf_utils import shape_list
from .tokenization_utils_base import BatchEncoding
from .utils import (
Julien Plu's avatar
Julien Plu committed
45
46
47
    DUMMY_INPUTS,
    TF2_WEIGHTS_NAME,
    WEIGHTS_NAME,
48
    EntryNotFoundError,
Julien Plu's avatar
Julien Plu committed
49
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
50
    PushToHubMixin,
51
52
    RepositoryNotFoundError,
    RevisionNotFoundError,
Julien Plu's avatar
Julien Plu committed
53
    cached_path,
54
    copy_func,
55
    has_file,
Julien Plu's avatar
Julien Plu committed
56
    hf_bucket_url,
57
    is_offline_mode,
Julien Plu's avatar
Julien Plu committed
58
    is_remote_url,
59
    logging,
Julien Plu's avatar
Julien Plu committed
60
)
thomwolf's avatar
thomwolf committed
61

Aymeric Augustin's avatar
Aymeric Augustin committed
62

Lysandre Debut's avatar
Lysandre Debut committed
63
logger = logging.get_logger(__name__)
64
tf_logger = tf.get_logger()
thomwolf's avatar
thomwolf committed
65

Julien Plu's avatar
Julien Plu committed
66
TFModelInputType = Union[
67
68
69
70
71
72
73
74
75
    List[tf.Tensor],
    List[np.ndarray],
    List[KerasTensor],
    Dict[str, tf.Tensor],
    Dict[str, np.ndarray],
    Dict[str, KerasTensor],
    tf.Tensor,
    np.ndarray,
    KerasTensor,
Julien Plu's avatar
Julien Plu committed
76
77
]

78

Matt's avatar
Matt committed
79
80
81
82
def dummy_loss(y_true, y_pred):
    return tf.reduce_mean(y_pred)


83
class TFModelUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
84
    """
85
    A few utilities for `tf.keras.Model`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
86
87
88
89
    """

    def num_parameters(self, only_trainable: bool = False) -> int:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
90
91
92
        Get the number of (optionally, trainable) parameters in the model.

        Args:
93
            only_trainable (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
94
95
96
                Whether or not to return only the number of trainable parameters

        Returns:
97
            `int`: The number of parameters.
Julien Chaumond's avatar
Julien Chaumond committed
98
99
100
101
102
103
104
        """
        if only_trainable:
            return int(sum(np.prod(w.shape.as_list()) for w in self.trainable_variables))
        else:
            return self.count_params()


105
def keras_serializable(cls):
106
107
108
109
    """
    Decorate a Keras Layer class to support Keras serialization.

    This is done by:
Sylvain Gugger's avatar
Sylvain Gugger committed
110

111
    1. Adding a `transformers_config` dict to the Keras config dictionary in `get_config` (called by Keras at
Sylvain Gugger's avatar
Sylvain Gugger committed
112
       serialization time.
Sylvain Gugger's avatar
Sylvain Gugger committed
113
114
    2. Wrapping `__init__` to accept that `transformers_config` dict (passed by Keras at deserialization time) and
       convert it to a config object for the actual layer initializer.
Sylvain Gugger's avatar
Sylvain Gugger committed
115
    3. Registering the class as a custom object in Keras (if the Tensorflow version supports this), so that it does not
116
       need to be supplied in `custom_objects` in the call to `tf.keras.models.load_model`.
Sylvain Gugger's avatar
Sylvain Gugger committed
117
118

    Args:
119
        cls (a `tf.keras.layers.Layers subclass`):
Sylvain Gugger's avatar
Sylvain Gugger committed
120
121
            Typically a `TF.MainLayer` class in this project, in general must accept a `config` argument to its
            initializer.
Sylvain Gugger's avatar
Sylvain Gugger committed
122
123
124

    Returns:
        The same class object, with modifications for Keras deserialization.
125
    """
126
    initializer = cls.__init__
127

128
129
130
131
    config_class = getattr(cls, "config_class", None)
    if config_class is None:
        raise AttributeError("Must set `config_class` to use @keras_serializable")

132
    @functools.wraps(initializer)
133
    def wrapped_init(self, *args, **kwargs):
134
135
136
137
        config = args[0] if args and isinstance(args[0], PretrainedConfig) else kwargs.pop("config", None)

        if isinstance(config, dict):
            config = config_class.from_dict(config)
138
            initializer(self, config, *args, **kwargs)
139
140
141
142
143
        elif isinstance(config, PretrainedConfig):
            if len(args) > 0:
                initializer(self, *args, **kwargs)
            else:
                initializer(self, config, *args, **kwargs)
144
        else:
145
146
147
            raise ValueError("Must pass either `config` (PretrainedConfig) or `config` (dict)")

        self._config = config
Julien Plu's avatar
Julien Plu committed
148
        self._kwargs = kwargs
149

150
151
152
153
154
155
156
157
    cls.__init__ = wrapped_init

    if not hasattr(cls, "get_config"):
        raise TypeError("Only use @keras_serializable on tf.keras.layers.Layer subclasses")
    if hasattr(cls.get_config, "_is_default"):

        def get_config(self):
            cfg = super(cls, self).get_config()
158
            cfg["config"] = self._config.to_dict()
Julien Plu's avatar
Julien Plu committed
159
            cfg.update(self._kwargs)
160
161
162
163
            return cfg

        cls.get_config = get_config

164
    cls._keras_serializable = True
165
166
167
    if hasattr(tf.keras.utils, "register_keras_serializable"):
        cls = tf.keras.utils.register_keras_serializable()(cls)
    return cls
168
169


170
class TFCausalLanguageModelingLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
171
172
173
    """
    Loss function suitable for causal language modeling (CLM), that is, the task of guessing the next token.

174
    <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
175

176
    Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
Sylvain Gugger's avatar
Sylvain Gugger committed
177

178
    </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
179
180
    """

181
    def hf_compute_loss(self, labels, logits):
182
183
184
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
Muennighoff's avatar
Muennighoff committed
185
        # make sure only labels that are not equal to -100 affect the loss
186
        active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
187
188
189
190
191
        reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
        labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)
        return loss_fn(labels, reduced_logits)


Julien Plu's avatar
Julien Plu committed
192
class TFQuestionAnsweringLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
193
    """
194
    Loss function suitable for question answering.
Sylvain Gugger's avatar
Sylvain Gugger committed
195
196
    """

197
    def hf_compute_loss(self, labels, logits):
Julien Plu's avatar
Julien Plu committed
198
199
200
201
202
203
204
205
206
207
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
        start_loss = loss_fn(labels["start_position"], logits[0])
        end_loss = loss_fn(labels["end_position"], logits[1])

        return (start_loss + end_loss) / 2.0


class TFTokenClassificationLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
208
209
210
    """
    Loss function suitable for token classification.

211
    <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
212

213
    Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
Sylvain Gugger's avatar
Sylvain Gugger committed
214

215
    </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
216
217
    """

218
    def hf_compute_loss(self, labels, logits):
Julien Plu's avatar
Julien Plu committed
219
220
221
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
222
223
        # make sure only labels that are not equal to -100
        # are taken into account as loss
224
        if tf.math.reduce_any(labels == -1):
225
            tf.print("Using `-1` to mask the loss for the token is deprecated. Please use `-100` instead.")
Julien Plu's avatar
Julien Plu committed
226
227
228
            active_loss = tf.reshape(labels, (-1,)) != -1
        else:
            active_loss = tf.reshape(labels, (-1,)) != -100
Julien Plu's avatar
Julien Plu committed
229
230
231
232
233
234
235
        reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
        labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)

        return loss_fn(labels, reduced_logits)


class TFSequenceClassificationLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
236
237
238
239
    """
    Loss function suitable for sequence classification.
    """

240
    def hf_compute_loss(self, labels, logits):
241
        if len(shape_list(logits)) == 1 or shape_list(logits)[1] == 1:
Julien Plu's avatar
Julien Plu committed
242
243
244
245
246
247
248
249
250
            loss_fn = tf.keras.losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.NONE)
        else:
            loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
                from_logits=True, reduction=tf.keras.losses.Reduction.NONE
            )

        return loss_fn(labels, logits)


Matt's avatar
Matt committed
251
class TFMultipleChoiceLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
252
253
    """Loss function suitable for multiple choice tasks."""

254
    def hf_compute_loss(self, labels, logits):
Matt's avatar
Matt committed
255
256
257
258
259
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
        return loss_fn(labels, logits)

Sylvain Gugger's avatar
Sylvain Gugger committed
260
261
262

class TFMaskedLanguageModelingLoss(TFCausalLanguageModelingLoss):
    """
Lysandre's avatar
Lysandre committed
263
    Loss function suitable for masked language modeling (MLM), that is, the task of guessing the masked tokens.
Sylvain Gugger's avatar
Sylvain Gugger committed
264

265
    <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
266

267
268
269
    Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.

    </Tip>
Lysandre's avatar
Lysandre committed
270
    """
Julien Plu's avatar
Julien Plu committed
271
272


273
274
275
276
class TFNextSentencePredictionLoss:
    """
    Loss function suitable for next sentence prediction (NSP), that is, the task of guessing the next sentence.

277
278
279
280
281
    <Tip>

    Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.

    </Tip>
282
283
    """

284
    def hf_compute_loss(self, labels, logits):
285
286
287
288
289
290
291
292
293
294
295
296
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
        # make sure only labels that are not equal to -100
        # are taken into account as loss
        next_sentence_active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
        next_sentence_reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, 2)), next_sentence_active_loss)
        next_sentence_label = tf.boolean_mask(tf.reshape(labels, (-1,)), next_sentence_active_loss)

        return loss_fn(next_sentence_label, next_sentence_reduced_logits)


297
298
299
300
301
302
def booleans_processing(config, **kwargs):
    """
    Process the input booleans of each model in order to be sure they are compliant with the execution mode (eager or
    graph)

    Args:
303
        config ([`PretrainedConfig`]):
304
305
306
307
308
309
310
311
312
313
            The config of the running model.
        **kwargs:
            The boolean parameters

    Returns:
        A dictionary with the proper values for each boolean
    """
    final_booleans = {}

    if tf.executing_eagerly():
Sayak Paul's avatar
Sayak Paul committed
314
315
316
317
        # Pure conv models (such as ConvNext) do not have `output_attentions`
        final_booleans["output_attentions"] = kwargs.get("output_attentions", None)
        if final_booleans["output_attentions"] is None:
            final_booleans["output_attentions"] = config.output_attentions
318
319
320
321
322
        final_booleans["output_hidden_states"] = (
            kwargs["output_hidden_states"]
            if kwargs["output_hidden_states"] is not None
            else config.output_hidden_states
        )
Julien Plu's avatar
Julien Plu committed
323
324
325
        final_booleans["return_dict"] = (
            kwargs["return_dict"] if kwargs["return_dict"] is not None else config.return_dict
        )
326
327

        if "use_cache" in kwargs:
328
329
330
            final_booleans["use_cache"] = (
                kwargs["use_cache"] if kwargs["use_cache"] is not None else getattr(config, "use_cache", None)
            )
331
332
333
334
    else:
        final_booleans["output_attentions"] = config.output_attentions
        final_booleans["output_hidden_states"] = config.output_hidden_states

335
        if kwargs.get("return_dict", None) not in (None, True):
336
337
338
            tf_logger.warning(
                "The parameter `return_dict` cannot be set in graph mode and will always be set to `True`."
            )
Julien Plu's avatar
Julien Plu committed
339
        final_booleans["return_dict"] = True
340
341

        if "use_cache" in kwargs:
342
            final_booleans["use_cache"] = getattr(config, "use_cache", None)
343
344
345
346

    return final_booleans


347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
def unpack_inputs(func):
    """
    Decorator that processes the inputs to a Keras layer, passing them to the layer as keyword arguments. This enables
    downstream use of the inputs by their variable name, even if they arrive packed as a dictionary in the first input
    (common case in Keras).

    Args:
        func (`callable`):
            The callable function of the TensorFlow model.

    Returns:
        A callable that wraps the original `func` with the behavior described above.
    """

    original_signature = inspect.signature(func)

    @functools.wraps(func)
    def run_call_with_unpacked_inputs(self, *args, **kwargs):
        # isolates the actual `**kwargs` for the decorated function
        kwargs_call = {key: val for key, val in kwargs.items() if key not in dict(original_signature.parameters)}
        fn_args_and_kwargs = {key: val for key, val in kwargs.items() if key not in kwargs_call}
        fn_args_and_kwargs.update({"kwargs_call": kwargs_call})

        # move any arg into kwargs, if they exist
        fn_args_and_kwargs.update(dict(zip(func.__code__.co_varnames[1:], args)))

        # process the inputs and call the wrapped function
        main_input_name = getattr(self, "main_input_name", func.__code__.co_varnames[1])
        main_input = fn_args_and_kwargs.pop(main_input_name)
        unpacked_inputs = input_processing(func, self.config, main_input, **fn_args_and_kwargs)
        return func(self, **unpacked_inputs)

    # Keras enforces the first layer argument to be passed, and checks it through `inspect.getfullargspec()`. This
    # function does not follow wrapper chains (i.e. ignores `functools.wraps()`), meaning that without the line below
    # Keras would attempt to check the first argument against the literal signature of the wrapper.
    run_call_with_unpacked_inputs.__signature__ = original_signature

    return run_call_with_unpacked_inputs


387
388
def input_processing(func, config, input_ids, **kwargs):
    """
Julien Plu's avatar
Julien Plu committed
389
390
391
    Process the input of each TensorFlow model including the booleans. In case of a list of symbolic inputs, each input
    has to be named accordingly to the parameters name, i.e. `input_ids = tf.keras.Input(shape=(128,), dtype='int32',
    name="input_ids")` otherwise the order of the tensors will not be guaranteed during the training.
392
393

    Args:
394
        func (`callable`):
395
            The callable function of the TensorFlow model.
396
        config ([`PretrainedConfig`]):
397
398
399
400
401
402
403
            The config of the running model.
        **kwargs:
            The inputs of the model.

    Returns:
        Two lists, one for the missing layers, and another one for the unexpected layers.
    """
Julien Plu's avatar
Julien Plu committed
404
405
    signature = dict(inspect.signature(func).parameters)
    signature.pop("kwargs", None)
Julien Plu's avatar
Julien Plu committed
406
    signature.pop("self", None)
Julien Plu's avatar
Julien Plu committed
407
408
    parameter_names = list(signature.keys())
    output = {}
409
    allowed_types = (tf.Tensor, bool, int, ModelOutput, tuple, list, dict, np.ndarray, KerasTensor)
Julien Plu's avatar
Julien Plu committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

    if "inputs" in kwargs["kwargs_call"]:
        warnings.warn(
            "The `inputs` argument is deprecated and will be removed in a future version, use `input_ids` instead.",
            FutureWarning,
        )

        output["input_ids"] = kwargs["kwargs_call"].pop("inputs")

    if "decoder_cached_states" in kwargs["kwargs_call"]:
        warnings.warn(
            "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
            FutureWarning,
        )
        output["past_key_values"] = kwargs["kwargs_call"].pop("decoder_cached_states")

426
427
428
429
430
431
432
433
434
    if "past" in kwargs["kwargs_call"] and "past_key_values" in kwargs:
        warnings.warn(
            "The `past` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
            FutureWarning,
        )
        kwargs["past_key_values"] = kwargs["kwargs_call"].pop("past")
    elif "past_key_values" in kwargs["kwargs_call"] and "past" in kwargs:
        kwargs["past"] = kwargs["kwargs_call"].pop("past_key_values")

Julien Plu's avatar
Julien Plu committed
435
436
437
438
439
    if len(kwargs["kwargs_call"]) > 0:
        raise ValueError(
            f"The following keyword arguments are not supported by this model: {list(kwargs['kwargs_call'].keys())}."
        )

Julien Plu's avatar
Julien Plu committed
440
441
    kwargs.pop("kwargs_call")

Julien Plu's avatar
Julien Plu committed
442
443
444
445
    for k, v in kwargs.items():
        if isinstance(v, allowed_types) or v is None:
            output[k] = v
        else:
Julien Plu's avatar
Julien Plu committed
446
            raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.")
Julien Plu's avatar
Julien Plu committed
447
448
449
450
451

    if isinstance(input_ids, (tuple, list)):
        for i, input in enumerate(input_ids):
            # EagerTensors don't allow to use the .name property so we check for a real Tensor
            if type(input) == tf.Tensor:
Julien Plu's avatar
Julien Plu committed
452
453
                # Tensor names have always the pattern `name:id` then we check only the
                # `name` part
Julien Plu's avatar
Julien Plu committed
454
455
456
457
458
                tensor_name = input.name.split(":")[0]

                if tensor_name in parameter_names:
                    output[tensor_name] = input
                else:
Julien Plu's avatar
Julien Plu committed
459
                    output[parameter_names[i]] = input
Julien Plu's avatar
Julien Plu committed
460
461
462
463
            elif isinstance(input, allowed_types) or input is None:
                output[parameter_names[i]] = input
            else:
                raise ValueError(
Julien Plu's avatar
Julien Plu committed
464
                    f"Data of type {type(input)} is not allowed only {allowed_types} is accepted for {parameter_names[i]}."
Julien Plu's avatar
Julien Plu committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
                )
    elif isinstance(input_ids, (dict, BatchEncoding)):
        if "inputs" in input_ids:
            warnings.warn(
                "The `inputs` argument is deprecated and will be removed in a future version, use `input_ids` instead.",
                FutureWarning,
            )

            output["input_ids"] = input_ids.pop("inputs")

        if "decoder_cached_states" in input_ids:
            warnings.warn(
                "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
                FutureWarning,
            )
            output["past_key_values"] = input_ids.pop("decoder_cached_states")

        for k, v in dict(input_ids).items():
483
            if isinstance(v, allowed_types) or v is None:
Julien Plu's avatar
Julien Plu committed
484
                output[k] = v
485
            elif k not in parameter_names and "args" not in parameter_names:
486
                logger.warning(
487
488
489
490
                    f"The parameter {k} does not belongs to the parameter list {parameter_names} and will be ignored."
                )
                continue
            else:
Julien Plu's avatar
Julien Plu committed
491
                raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.")
Julien Plu's avatar
Julien Plu committed
492
    else:
493
        if isinstance(input_ids, (tf.Tensor, KerasTensor)) or input_ids is None:
Julien Plu's avatar
Julien Plu committed
494
495
496
            output[parameter_names[0]] = input_ids
        else:
            raise ValueError(
Julien Plu's avatar
Julien Plu committed
497
                f"Data of type {type(input_ids)} is not allowed only {allowed_types} is accepted for {parameter_names[0]}."
Julien Plu's avatar
Julien Plu committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
            )

    for name in parameter_names:
        if name not in list(output.keys()) and name != "args":
            output[name] = kwargs.pop(name, signature[name].default)

    # When creating a SavedModel TF calls the method with LayerCall.__call__(args, **kwargs)
    # So to respect the proper output we have to add this exception
    if "args" in output:
        if output["args"] is not None and type(output["args"]) == tf.Tensor:
            tensor_name = output["args"].name.split(":")[0]
            output[tensor_name] = output["args"]
        else:
            # `args` in this case is always the first parameter, then `input_ids`
            output["input_ids"] = output["args"]

        del output["args"]

    if "kwargs" in output:
        del output["kwargs"]

519
520
521
522
523
524
525
526
527
528
529
530
531
    boolean_dict = {
        k: v
        for k, v in output.items()
        if k in ["return_dict", "output_attentions", "output_hidden_states", "use_cache"]
    }

    output.update(
        booleans_processing(
            config=config,
            **boolean_dict,
        )
    )

Julien Plu's avatar
Julien Plu committed
532
533
534
    return output


535
def load_tf_weights(model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None):
Julien Plu's avatar
Julien Plu committed
536
    """
Julien Plu's avatar
Julien Plu committed
537
    Detect missing and unexpected layers and load the TF weights accordingly to their names and shapes.
Julien Plu's avatar
Julien Plu committed
538
539

    Args:
540
        model (`tf.keras.models.Model`):
Julien Plu's avatar
Julien Plu committed
541
            The model to load the weights into.
542
        resolved_archive_file (`str`):
Julien Plu's avatar
Julien Plu committed
543
            The location of the H5 file.
544
        ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
545
            Whether or not to ignore weights with shapes that don't match between the checkpoint of the model.
Julien Plu's avatar
Julien Plu committed
546
547

    Returns:
548
549
        Three lists, one for the missing layers, another one for the unexpected layers, and a last one for the
        mismatched layers.
Julien Plu's avatar
Julien Plu committed
550
551
552
    """
    missing_layers = []
    unexpected_layers = []
553
    mismatched_layers = []
Julien Plu's avatar
Julien Plu committed
554

Julien Plu's avatar
Julien Plu committed
555
    # Read the H5 file
Julien Plu's avatar
Julien Plu committed
556
    with h5py.File(resolved_archive_file, "r") as f:
Julien Plu's avatar
Julien Plu committed
557
558
        # Retrieve the name of each layer from the H5 file
        saved_h5_model_layers_name = set(hdf5_format.load_attributes_from_hdf5_group(f, "layer_names"))
Julien Plu's avatar
Julien Plu committed
559

Julien Plu's avatar
Julien Plu committed
560
561
        # Find the missing layers from the high level list of layers
        missing_layers = list(set([layer.name for layer in model.layers]) - saved_h5_model_layers_name)
Julien Plu's avatar
Julien Plu committed
562

Julien Plu's avatar
Julien Plu committed
563
564
565
566
        # Find the unexpected layers from the high level list of layers
        unexpected_layers = list(saved_h5_model_layers_name - set([layer.name for layer in model.layers]))
        saved_weight_names_set = set()
        symbolic_weights_names = set()
Julien Plu's avatar
Julien Plu committed
567
568
        weight_value_tuples = []

Julien Plu's avatar
Julien Plu committed
569
570
        # Compute missing and unexpected sub layers
        # Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...]
Julien Plu's avatar
Julien Plu committed
571
        for layer in model.layers:
Julien Plu's avatar
Julien Plu committed
572
573
574
575
576
            # if layer_name from the H5 file belongs to the layers from the instantiated model
            if layer.name in saved_h5_model_layers_name:
                # Get the H5 layer object from its name
                h5_layer_object = f[layer.name]
                # Get all the weights as a list from the layer object
Julien Plu's avatar
Julien Plu committed
577
                symbolic_weights = layer.trainable_weights + layer.non_trainable_weights
Julien Plu's avatar
Julien Plu committed
578
                saved_weights = {}
Julien Plu's avatar
Julien Plu committed
579

Julien Plu's avatar
Julien Plu committed
580
581
582
583
                # Create a dict from the H5 saved model that looks like {"weight_name": weight_value}
                # And a set with only the names
                for weight_name in hdf5_format.load_attributes_from_hdf5_group(h5_layer_object, "weight_names"):
                    # TF names always start with the model name so we ignore it
Julien Plu's avatar
Julien Plu committed
584
                    name = "/".join(weight_name.split("/")[1:])
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
585
586
587
588

                    if _prefix is not None:
                        name = _prefix + "/" + name

Julien Plu's avatar
Julien Plu committed
589
                    saved_weights[name] = np.asarray(h5_layer_object[weight_name])
Julien Plu's avatar
Julien Plu committed
590

Julien Plu's avatar
Julien Plu committed
591
592
593
594
                    # Add the updated name to the final list for computing missing/unexpected values
                    saved_weight_names_set.add(name)

                # Loop over each weights from the instantiated model and compare with the weights from the H5 file
Julien Plu's avatar
Julien Plu committed
595
                for symbolic_weight in symbolic_weights:
Julien Plu's avatar
Julien Plu committed
596
                    # TF names always start with the model name so we ignore it
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
597
598
599
600
601
602
603
604
                    if _prefix is not None:
                        delimeter = len(_prefix.split("/"))
                        symbolic_weight_name = "/".join(
                            symbolic_weight.name.split("/")[:delimeter]
                            + symbolic_weight.name.split("/")[delimeter + 1 :]
                        )
                    else:
                        symbolic_weight_name = "/".join(symbolic_weight.name.split("/")[1:])
Julien Plu's avatar
Julien Plu committed
605
606
607
608
609

                    # here we check if the current weight is among the weights from the H5 file
                    # If yes, get the weight_value of the corresponding weight from the H5 file
                    # If not, make the value to None
                    saved_weight_value = saved_weights.get(symbolic_weight_name, None)
Julien Plu's avatar
Julien Plu committed
610

Julien Plu's avatar
Julien Plu committed
611
612
                    # Add the updated name to the final list for computing missing/unexpected values
                    symbolic_weights_names.add(symbolic_weight_name)
Julien Plu's avatar
Julien Plu committed
613

Julien Plu's avatar
Julien Plu committed
614
615
616
                    # If the current weight is found
                    if saved_weight_value is not None:
                        # Check if the shape of the current weight and the one from the H5 file are different
Julien Plu's avatar
Julien Plu committed
617
                        if K.int_shape(symbolic_weight) != saved_weight_value.shape:
Julien Plu's avatar
Julien Plu committed
618
619
                            # If yes we reshape the weight from the H5 file accordingly to the current weight
                            # If the two shapes are not compatible we raise an issue
Julien Plu's avatar
Julien Plu committed
620
621
                            try:
                                array = np.reshape(saved_weight_value, K.int_shape(symbolic_weight))
622
623
624
625
626
627
628
629
                            except ValueError as e:
                                if ignore_mismatched_sizes:
                                    mismatched_layers.append(
                                        (symbolic_weight_name, saved_weight_value.shape, K.int_shape(symbolic_weight))
                                    )
                                    continue
                                else:
                                    raise e
Julien Plu's avatar
Julien Plu committed
630
631
632
                        else:
                            array = saved_weight_value

Julien Plu's avatar
Julien Plu committed
633
                        # We create the tuple that will be loaded and add it to the final list
Julien Plu's avatar
Julien Plu committed
634
635
                        weight_value_tuples.append((symbolic_weight, array))

Julien Plu's avatar
Julien Plu committed
636
    # Load all the weights
Julien Plu's avatar
Julien Plu committed
637
638
    K.batch_set_value(weight_value_tuples)

Julien Plu's avatar
Julien Plu committed
639
640
641
642
    # Compute the missing and unexpected layers
    missing_layers.extend(list(symbolic_weights_names - saved_weight_names_set))
    unexpected_layers.extend(list(saved_weight_names_set - symbolic_weights_names))

643
    return missing_layers, unexpected_layers, mismatched_layers
Julien Plu's avatar
Julien Plu committed
644

Julien Plu's avatar
Julien Plu committed
645

646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
def init_copy_embeddings(old_embeddings, new_num_tokens):
    r"""
    This function aims to reduce the embeddings in case new_num_tokens < old_num_tokens or to pad with -1 in case
    new_num_tokens > old_num_tokens. A mask is also computed in order to know which weight in the embeddings should be
    kept or not. Example:

        - if new_num_tokens=5 and old_num_tokens=4 and old_embeddings=[w1,w2,w3,w4]

            -  mask=[True,True,True,True,False] and current_weights=[w1,w2,w3,w4,-1]
        - if new_num_tokens=4 and old_num_tokens=5 and old_embeddings=[w1,w2,w3,w4,w5]

            - mask=[True,True,True,True] and current_weights=[w1,w2,w3,w4]
    """
    old_num_tokens, old_embedding_dim = shape_list(old_embeddings)
    size_diff = new_num_tokens - old_num_tokens

    # initialize new embeddings
    # Copy token embeddings from the previous ones
    if tf.math.greater(size_diff, 0):
        # if the new size is greater than the old one, we extend the current embeddings with a padding until getting new size
        # and we create a mask to properly identify the padded values and be replaced by the values of the newly created
        # embeddings
        current_weights = tf.pad(
            old_embeddings.value(), tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=-1
        )
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
        mask = tf.fill(tf.convert_to_tensor([num_tokens_to_copy, 1]), True)
        mask = tf.pad(mask, tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=False)
    else:
        # if the new size if lower than the old one, we take the current embeddings until the new size
        current_weights = tf.slice(
            old_embeddings.value(),
            tf.convert_to_tensor([0, 0]),
            tf.convert_to_tensor([new_num_tokens, old_embedding_dim]),
        )
        mask = tf.fill(tf.convert_to_tensor([new_num_tokens, 1]), True)

    return mask, current_weights


Sylvain Gugger's avatar
Sylvain Gugger committed
686
class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, PushToHubMixin):
687
688
    r"""
    Base class for all TF models.
thomwolf's avatar
thomwolf committed
689

Sylvain Gugger's avatar
Sylvain Gugger committed
690
691
    [`TFPreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
thomwolf's avatar
thomwolf committed
692

693
694
        - resize the input embeddings,
        - prune heads in the self-attention heads.
thomwolf's avatar
thomwolf committed
695

696
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
697

Sylvain Gugger's avatar
Sylvain Gugger committed
698
699
700
701
702
703
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
thomwolf's avatar
thomwolf committed
704
705
706
    """
    config_class = None
    base_model_prefix = ""
707
    main_input_name = "input_ids"
708
    _auto_class = None
709

710
711
712
713
714
715
    # a list of re pattern of tensor names to ignore from the model when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_missing = None
    # a list of re pattern of tensor names to ignore from the weights when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_unexpected = None
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
716
    _requires_load_weight_prefix = False
thomwolf's avatar
thomwolf committed
717

718
    @property
719
720
    def dummy_inputs(self) -> Dict[str, tf.Tensor]:
        """
Julien Plu's avatar
Julien Plu committed
721
722
723
        Dummy inputs to build the network.

        Returns:
724
            `Dict[str, tf.Tensor]`: The dummy inputs.
725
        """
Julien Plu's avatar
Julien Plu committed
726
727
728
        return {
            "input_ids": tf.constant(DUMMY_INPUTS),
        }
thomwolf's avatar
thomwolf committed
729

730
731
732
733
734
735
736
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a TensorFlow model.
        """
        return "tf"

thomwolf's avatar
thomwolf committed
737
    def __init__(self, config, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
738
        super().__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
739
740
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
741
742
743
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
744
            )
745
        # Save config and origin of the pretrained weights if given in model
thomwolf's avatar
thomwolf committed
746
        self.config = config
747
        self.name_or_path = config.name_or_path
thomwolf's avatar
thomwolf committed
748

749
    def get_config(self):
750
        return self.config.to_dict()
751
752
753

    @classmethod
    def from_config(cls, config, **kwargs):
754
755
756
        if isinstance(config, PretrainedConfig):
            return cls._from_config(config, **kwargs)
        return cls._from_config(cls.config_class.from_dict(config, **kwargs))
757

758
759
760
761
762
763
764
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.
        """
        return cls(config, **kwargs)

Julien Plu's avatar
Julien Plu committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
    @tf.function(
        input_signature=[
            {
                "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
                "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
                "token_type_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"),
            }
        ]
    )
    def serving(self, inputs):
        """
        Method used for serving the model.

        Args:
779
            inputs (`Dict[str, tf.Tensor]`):
780
                The input of the saved model as a dictionary of tensors.
Julien Plu's avatar
Julien Plu committed
781
782
783
784
785
786
787
788
789
790
        """
        output = self.call(inputs)

        return self.serving_output(output)

    def serving_output(output):
        """
        Prepare the output of the saved model. Each model must implement this function.

        Args:
791
            output ([`TFBaseModelOutput`]):
Julien Plu's avatar
Julien Plu committed
792
793
794
795
                The output returned by the model.
        """
        raise NotImplementedError

796
    def get_input_embeddings(self) -> tf.keras.layers.Layer:
797
        """
798
        Returns the model's input embeddings layer.
799
800

        Returns:
801
            `tf.Variable`: The embeddings layer mapping vocabulary to hidden states.
802
        """
803
        main_layer = getattr(self, self.base_model_prefix, self)
Julien Plu's avatar
Julien Plu committed
804

805
806
        if main_layer is not self:
            return main_layer.get_input_embeddings()
807
808
809
        else:
            raise NotImplementedError

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
    def _save_checkpoint(self, checkpoint_dir, epoch):
        if not os.path.isdir(checkpoint_dir):
            os.mkdir(checkpoint_dir)
        # We avoid tf.train.checkpoint or saving weights in TF format, even though that includes optimizer
        # state for us, because it requires special handling for objects like custom losses, which we use
        # internally and which users are likely to use too
        weights_path = os.path.join(checkpoint_dir, "weights.h5")
        self.save_weights(weights_path)
        extra_data = {"epoch": epoch, "optimizer_state": self.optimizer.get_weights()}
        extra_data_path = os.path.join(checkpoint_dir, "extra_data.pickle")
        with open(extra_data_path, "wb") as f:
            pickle.dump(extra_data, f)

    def load_repo_checkpoint(self, repo_path_or_name):
        """
        Loads a saved checkpoint (model weights and optimizer state) from a repo. Returns the current epoch count when
        the checkpoint was made.

        Args:
829
            repo_path_or_name (`str`):
830
831
832
833
                Can either be a repository name for your {object} in the Hub or a path to a local folder (in which case
                the repository will have the name of that local folder).

        Returns:
834
            `dict`: A dictionary of extra metadata from the checkpoint, most commonly an "epoch" count.
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
        """
        if getattr(self, "optimizer", None) is None:
            raise RuntimeError(
                "Checkpoint loading failed as no optimizer is attached to the model. "
                "This is most likely caused by the model not being compiled."
            )
        if not os.path.isdir(repo_path_or_name):
            # If this isn't a local path, check that the remote repo exists and has a checkpoint in it
            repo_files = list_repo_files(repo_path_or_name)
            for file in ("checkpoint/weights.h5", "checkpoint/extra_data.pickle"):
                if file not in repo_files:
                    raise FileNotFoundError(f"Repo {repo_path_or_name} does not contain checkpoint file {file}!")
            if "/" not in repo_path_or_name:
                model_id = repo_path_or_name
                repo_path_or_name = self.get_full_repo_name(repo_path_or_name)
            else:
                model_id = repo_path_or_name.split("/")[-1]
            repo = Repository(model_id, clone_from=f"https://huggingface.co/{repo_path_or_name}")
            local_dir = repo.local_dir
        else:
            local_dir = repo_path_or_name

        # Now make sure the repo actually has a checkpoint in it.
        checkpoint_dir = os.path.join(local_dir, "checkpoint")
        weights_file = os.path.join(checkpoint_dir, "weights.h5")
        if not os.path.isfile(weights_file):
            raise FileNotFoundError(f"Could not find checkpoint file weights.h5 in repo {repo_path_or_name}!")
        extra_data_file = os.path.join(checkpoint_dir, "extra_data.pickle")
        if not os.path.isfile(extra_data_file):
            raise FileNotFoundError(f"Could not find checkpoint file extra_data.pickle in repo {repo_path_or_name}!")

        # Assuming the repo is real and we got a checkpoint, load the weights and the optimizer state into the model.
        # The optimizer state includes the iteration count, so learning rate schedules should resume as normal too.
        self.load_weights(weights_file)
        with open(extra_data_file, "rb") as f:
            extra_data = pickle.load(f)
        self.optimizer.set_weights(extra_data["optimizer_state"])

        # Finally, return the epoch number from the checkpoint. This isn't a property of the model, so we can't
        # set it directly, but the user can pass it to fit().
        return {"epoch": extra_data["epoch"]}

Matt's avatar
Matt committed
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
    def compile(
        self,
        optimizer="rmsprop",
        loss="passthrough",
        metrics=None,
        loss_weights=None,
        weighted_metrics=None,
        run_eagerly=None,
        steps_per_execution=None,
        **kwargs
    ):
        """
        This is a thin wrapper that sets the model's loss output head as the loss if the user does not specify a loss
        function themselves.
        """
        if loss == "passthrough":
            logger.warning(
                "No loss specified in compile() - the model's internal loss computation will be used as the "
                "loss. Don't panic - this is a common way to train TensorFlow models in Transformers! "
896
                "Please ensure your labels are passed as keys in the input dict so that they are "
Matt's avatar
Matt committed
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
                "accessible to the model during the forward pass. To disable this behaviour, please pass a "
                "loss argument, or explicitly pass loss=None if you do not want your model to compute a loss."
            )
            loss = {"loss": dummy_loss}
        super().compile(
            optimizer=optimizer,
            loss=loss,
            metrics=metrics,
            loss_weights=loss_weights,
            weighted_metrics=weighted_metrics,
            run_eagerly=run_eagerly,
            steps_per_execution=steps_per_execution,
            **kwargs,
        )

912
913
914
915
916
917
918
919
920
921
922
923
924
925
    def compute_loss(self, *args, **kwargs):
        if hasattr(tf.keras.Model, "compute_loss"):
            # This will be true in TF 2.8 or greater
            return super().compute_loss(*args, **kwargs)
        else:
            warnings.warn(
                "The old compute_loss method is deprecated as it conflicts with the Keras compute_loss "
                "method added in TF 2.8. If you want the original HF compute_loss, please call "
                "hf_compute_loss() instead. From TF versions >= 2.8, or Transformers versions >= 5, "
                "calling compute_loss() will get the Keras method instead.",
                FutureWarning,
            )
            return self.hf_compute_loss(*args, **kwargs)

Matt's avatar
Matt committed
926
927
    def train_step(self, data):
        """
Joao Gante's avatar
Joao Gante committed
928
929
930
931
932
933
934
935
936
937
938
        A modification of Keras's default `train_step` that cleans up the printed metrics when we use a dummy loss. If
        a user specifies a loss at model compile time, this function behaves as the original Keras `train_step`. In
        this case, it expects the same `data` as the original function (i.e. `(inputs, labels)`).

        However, when the model is compiled without specifying the loss AND the expected label columns are passed as
        part of the input dictionary, the loss is computed internally (inside the model class) and is used in the
        backwards pass. In this case, `data` is a singleton tuple containing `(inputs,)`.

        This is possible under the aforementioned circumstances because our overriden compile function can set an
        additional loss function that reduces a `loss` output, and the model will output a `loss` component (notice the
        name matching) containing the loss that was used to train the pre-trained model.
Matt's avatar
Matt committed
939
940
941
942
943
944
945
946
947
        """
        # These are the only transformations `Model.fit` applies to user-input
        # data when a `tf.data.Dataset` is provided.
        data = data_adapter.expand_1d(data)
        x, y, sample_weight = data_adapter.unpack_x_y_sample_weight(data)
        # These next two lines differ from the base method - they avoid issues when the labels are in
        # the input dict (and loss is computed internally)
        if y is None and "labels" in x:
            y = x["labels"]  # Stops confusion with metric computations
Matt's avatar
Matt committed
948
949
950
        elif y is None and "input_ids" in x:
            # Just make any kind of dummy array to make loss work
            y = tf.zeros(tf.shape(x["input_ids"])[0], dtype=tf.int64)
Matt's avatar
Matt committed
951
952
953
954
955
956
        # Run forward pass.
        with tf.GradientTape() as tape:
            y_pred = self(x, training=True)
            loss = self.compiled_loss(y, y_pred, sample_weight, regularization_losses=self.losses)
        # Run backwards pass.
        self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
957
958
959
960
961
        # When y_pred is a ModelOutput and y is a tf.Tensor the metrics update
        # should be done only with the relevant ModelOutput param that is
        # considered by the loss.
        if isinstance(y_pred, TFSeq2SeqLMOutput) and isinstance(y, tf.Tensor):
            y_pred = y_pred["logits"]
Matt's avatar
Matt committed
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
        self.compiled_metrics.update_state(y, y_pred, sample_weight)
        # Collect metrics to return
        return_metrics = {}
        for metric in self.metrics:
            result = metric.result()
            if isinstance(result, dict):
                return_metrics.update(result)
            else:
                return_metrics[metric.name] = result
        # These next two lines are also not in the base method - they correct the displayed metrics
        # when we're using a dummy loss, to avoid a bogus "loss_loss" value being shown.
        if "loss" in return_metrics and "loss_loss" in return_metrics:
            del return_metrics["loss_loss"]
        return return_metrics

    def test_step(self, data):
        """
        A modification of Keras's default test_step that cleans up the printed metrics when we use a dummy loss.
        """
        data = data_adapter.expand_1d(data)
        x, y, sample_weight = data_adapter.unpack_x_y_sample_weight(data)
        # These next two lines differ from the base method - they avoid issues when the labels are in
        # the input dict (and loss is computed internally)
        if y is None and "labels" in x:
            y = x["labels"]  # Stops confusion with metric computations
987
988
989
        elif y is None and "input_ids" in x:
            # Just make any kind of dummy array to make loss work
            y = tf.zeros(tf.shape(x["input_ids"])[0], dtype=tf.int64)
Matt's avatar
Matt committed
990
991
        y_pred = self(x, training=False)
        self.compiled_loss(y, y_pred, sample_weight, regularization_losses=self.losses)
992
993
994
        # Updates stateful loss metrics.
        if isinstance(y_pred, TFSeq2SeqLMOutput) and isinstance(y, tf.Tensor):
            y_pred = y_pred["logits"]
Matt's avatar
Matt committed
995
996
        self.compiled_metrics.update_state(y, y_pred, sample_weight)
        # Collect metrics to return
997
        return_metrics = {}
Matt's avatar
Matt committed
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
        for metric in self.metrics:
            result = metric.result()
            if isinstance(result, dict):
                return_metrics.update(result)
            else:
                return_metrics[metric.name] = result
        # These next two lines are also not in the base method - they correct the displayed metrics
        # when we're using a dummy loss, to avoid a bogus "loss_loss" value being shown.
        if "loss" in return_metrics and "loss_loss" in return_metrics:
            del return_metrics["loss_loss"]
        return return_metrics

Matt's avatar
Matt committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
    def create_model_card(
        self,
        output_dir,
        model_name: str,
        language: Optional[str] = None,
        license: Optional[str] = None,
        tags: Optional[str] = None,
        finetuned_from: Optional[str] = None,
        tasks: Optional[str] = None,
        dataset_tags: Optional[Union[str, List[str]]] = None,
        dataset: Optional[Union[str, List[str]]] = None,
        dataset_args: Optional[Union[str, List[str]]] = None,
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
1023
1024
1025
        # Avoids a circular import by doing this when necessary.
        from .modelcard import TrainingSummary

Matt's avatar
Matt committed
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
        training_summary = TrainingSummary.from_keras(
            self,
            keras_history=self.history,
            language=language,
            license=license,
            tags=tags,
            model_name=model_name,
            finetuned_from=finetuned_from,
            tasks=tasks,
            dataset_tags=dataset_tags,
            dataset=dataset,
            dataset_args=dataset_args,
        )
        model_card = training_summary.to_model_card()
        with open(os.path.join(output_dir, "README.md"), "w") as f:
            f.write(model_card)

1043
1044
    def set_input_embeddings(self, value):
        """
1045
        Set model's input embeddings
1046
1047

        Args:
1048
            value (`tf.Variable`):
1049
                The new weights mapping hidden states to vocabulary.
1050
        """
1051
        main_layer = getattr(self, self.base_model_prefix)
1052

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
        if main_layer is None:
            raise NotImplementedError("The model does not implements the base_model_prefix attribute.")

        try:
            main_layer.set_input_embeddings(value)
        except AttributeError:
            logger.info("Building the model")
            self(self.dummy_inputs)
            main_layer.set_input_embeddings(value)

    def get_output_embeddings(self) -> Union[None, tf.keras.layers.Layer]:
1064
        """
1065
        Returns the model's output embeddings
1066
1067

        Returns:
1068
            `tf.Variable`: The new weights mapping vocabulary to hidden states.
1069
        """
1070
1071
1072
        if self.get_lm_head() is not None:
            lm_head = self.get_lm_head()

1073
1074
1075
1076
1077
1078
1079
            try:
                return lm_head.get_output_embeddings()
            except AttributeError:
                logger.info("Building the model")
                self(self.dummy_inputs)

                return lm_head().get_output_embeddings()
1080

1081
1082
        return None  # Overwrite for models with output embeddings

1083
1084
1085
1086
1087
    def set_output_embeddings(self, value):
        """
        Set model's output embeddings

        Args:
1088
            value (`tf.Variable`):
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
                The new weights mapping hidden states to vocabulary.
        """
        if self.get_lm_head() is not None:
            lm_head = self.get_lm_head()
            try:
                lm_head.set_output_embeddings(value)
            except AttributeError:
                logger.info("Building the model")
                self(self.dummy_inputs)
                lm_head.set_output_embeddings(value)

1100
1101
1102
    def get_output_layer_with_bias(self) -> Union[None, tf.keras.layers.Layer]:
        """
        Get the layer that handles a bias attribute in case the model has an LM head with weights tied to the
1103
        embeddings
1104
1105

        Return:
1106
            `tf.keras.layers.Layer`: The layer that handles the bias, None if not an LM model.
1107
        """
1108
1109
1110
1111
        warnings.warn(
            "The method get_output_layer_with_bias is deprecated. Please use `get_lm_head` instead.", FutureWarning
        )
        return self.get_lm_head()
1112
1113
1114

    def get_prefix_bias_name(self) -> Union[None, str]:
        """
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1115
        Get the concatenated _prefix name of the bias from the model name to the parent layer
1116
1117

        Return:
1118
            `str`: The _prefix name of the bias.
1119
        """
1120
1121
1122
1123
1124
1125
1126
1127
        warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
        return None

    def get_bias(self) -> Union[None, Dict[str, tf.Variable]]:
        """
        Dict of bias attached to an LM head. The key represents the name of the bias attribute.

        Return:
1128
            `tf.Variable`: The weights representing the bias, None if not an LM model.
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
        """
        if self.get_lm_head() is not None:
            lm_head = self.get_lm_head()
            try:
                return lm_head.get_bias()
            except AttributeError:
                self(self.dummy_inputs)

                return lm_head.get_bias()
        return None

    def set_bias(self, value):
        """
        Set all the bias in the LM head.

        Args:
1145
            value (`Dict[tf.Variable]`):
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
                All the new bias attached to an LM head.
        """
        if self.get_lm_head() is not None:
            lm_head = self.get_lm_head()
            try:
                lm_head.set_bias(value)
            except AttributeError:
                self(self.dummy_inputs)
                lm_head.set_bias(value)

    def get_lm_head(self) -> tf.keras.layers.Layer:
        """
        The LM Head layer. This method must be overwritten by all the models that have a lm head.

        Return:
1161
            `tf.keras.layers.Layer`: The LM head layer if the model has one, None if not.
1162
        """
1163
1164
        return None

1165
1166
    def resize_token_embeddings(self, new_num_tokens=None) -> tf.Variable:
        """
1167
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1168

1169
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
1170

1171
        Arguments:
1172
            new_num_tokens (`int`, *optional*):
1173
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1174
1175
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `tf.Variable` module of the model without doing anything.
1176
1177

        Return:
1178
            `tf.Variable`: Pointer to the input tokens Embeddings Module of the model.
1179
        """
1180
1181
        if new_num_tokens is None or new_num_tokens == self.config.vocab_size:
            return self._get_word_embedding_weight(self.get_input_embeddings())
1182

1183
        model_embeds = self._resize_token_embeddings(new_num_tokens)
1184
1185
1186

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
1187
1188
1189

        return model_embeds

1190
    def _get_word_embedding_weight(model, embedding_layer):
Joao Gante's avatar
Joao Gante committed
1191
1192
1193
1194
1195
        # If the variable holds the weights themselves, return them
        if isinstance(embedding_layer, tf.Tensor):
            return embedding_layer
        # Otherwise, try to get them from the layer's attributes

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
        embeds = getattr(embedding_layer, "weight", None)
        if embeds is not None:
            return embeds

        embeds = getattr(embedding_layer, "decoder", None)
        if embeds is not None:
            return embeds

        # The reason why the attributes don't exist might be
        # because the model is not built, so retry getting
        # the argument after building the model
        model(model.dummy_inputs)

        embeds = getattr(embedding_layer, "weight", None)
        if embeds is not None:
            return embeds

        embeds = getattr(embedding_layer, "decoder", None)
        if embeds is not None:
            return embeds

        return None
1218

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self._get_word_embedding_weight(self.get_input_embeddings())
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)

        # if word embeddings are not tied, make sure that lm head bias is resized as well
        if self.get_bias() is not None:
            old_lm_head_bias = self.get_bias()
            new_lm_head_bias = self._get_resized_lm_head_bias(old_lm_head_bias, new_num_tokens)

            self.set_bias(new_lm_head_bias)

        # if word embeddings are not tied, make sure that lm head decoder is resized as well
        if self.get_output_embeddings() is not None:
            old_lm_head_decoder = self._get_word_embedding_weight(self.get_output_embeddings())
            new_lm_head_decoder = self._get_resized_lm_head_decoder(old_lm_head_decoder, new_num_tokens)

            self.set_output_embeddings(new_lm_head_decoder)

        self.set_input_embeddings(new_embeddings)

        return self.get_input_embeddings()

    def _get_resized_lm_head_bias(self, old_lm_head_bias, new_num_tokens):
1242
        """
1243
1244
        Build a resized bias from the old ones. Increasing the size will add newly initialized vectors at the end.
        Reducing the size will remove vectors from the end
thomwolf's avatar
thomwolf committed
1245
1246

        Args:
1247
            old_lm_head_bias (`tf.Variable`):
1248
                Old lm head bias to be resized.
1249
            new_num_tokens (`int`, *optional*):
1250
                New number of tokens in the linear matrix.
1251
1252

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1253
                vectors from the end. If not provided or `None`, just returns None
1254
1255

        Return:
1256
            `tf.Variable`: Pointer to the resized bias.
thomwolf's avatar
thomwolf committed
1257
        """
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
        new_lm_head_bias = {}

        for attr, weight in old_lm_head_bias.items():
            first_dim, old_num_tokens = (None, shape_list(weight)[0]) if tf.rank(weight) == 1 else shape_list(weight)
            size_diff = new_num_tokens - old_num_tokens
            final_shape = [new_num_tokens] if first_dim is None else [first_dim, new_num_tokens]

            # initialize new bias
            if tf.math.greater(size_diff, 0):
                padding_shape = [[0, size_diff]] if first_dim is None else [[0, 0], [0, size_diff]]
                current_bias = tf.pad(weight.value(), tf.convert_to_tensor(padding_shape), constant_values=-1)
                num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
                mask_shape = [num_tokens_to_copy] if first_dim is None else [1, num_tokens_to_copy]
                bias_mask = tf.fill(tf.convert_to_tensor(mask_shape), True)
                bias_mask = tf.pad(bias_mask, tf.convert_to_tensor(padding_shape), constant_values=False)
            else:
                slice_from = [0] if first_dim is None else [0, 0]
                current_bias = tf.slice(
                    weight.value(), tf.convert_to_tensor(slice_from), tf.convert_to_tensor(final_shape)
                )
                bias_mask = tf.fill(tf.convert_to_tensor(final_shape), True)
1279

1280
1281
1282
1283
1284
1285
1286
            new_bias = self.add_weight(
                shape=final_shape,
                initializer="zeros",
                trainable=True,
                name=weight.name.split(":")[0],
            )
            init_bias = tf.where(bias_mask, current_bias, new_bias.value())
1287

1288
1289
            new_bias.assign(init_bias)
            new_lm_head_bias[attr] = new_bias
1290

1291
        return new_lm_head_bias
thomwolf's avatar
thomwolf committed
1292

1293
1294
1295
1296
    def _get_resized_lm_head_decoder(self, old_lm_head_decoder, new_num_tokens):
        """
        Build a resized decoder from the old ones. Increasing the size will add newly initialized vectors at the end.
        Reducing the size will remove vectors from the end
thomwolf's avatar
thomwolf committed
1297

1298
        Args:
1299
            old_lm_head_decoder (`tf.Variable`):
1300
                Old lm head decoder to be resized.
1301
            new_num_tokens (`int`, *optional*):
1302
                New number of tokens in the linear matrix.
1303

1304
                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1305
                vectors from the end. If not provided or `None`, just returns None
1306

1307
        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1308
1309
            `tf.Variable`: Pointer to the resized decoder or None if the output embeddings are different from the input
            ones.
1310
1311
1312
1313
1314
        """
        new_lm_head_decoder = old_lm_head_decoder
        is_input_output_equals = tf.reduce_any(
            self._get_word_embedding_weight(self.get_input_embeddings()) == old_lm_head_decoder
        )
1315

1316
1317
1318
1319
1320
        if old_lm_head_decoder is not None and not is_input_output_equals:
            old_embedding_dim = shape_list(old_lm_head_decoder)[1]
            decoder_mask, current_decoder = init_copy_embeddings(old_lm_head_decoder, new_num_tokens)
            new_lm_head_decoder = self.add_weight(
                shape=(new_num_tokens, old_embedding_dim),
1321
1322
                initializer="zeros",
                trainable=True,
1323
                name=old_lm_head_decoder.name.split(":")[0],
1324
            )
1325
1326
1327
            init_decoder = tf.where(decoder_mask, current_decoder, new_lm_head_decoder.value())

            new_lm_head_decoder.assign(init_decoder)
1328

1329
        return new_lm_head_decoder
1330

1331
1332
1333
1334
    def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None) -> tf.Variable:
        """
        Build a resized Embedding weights from a provided token Embedding weights. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
1335

1336
        Args:
1337
            old_embeddings (`tf.Variable`):
1338
                Old embeddings to be resized.
1339
            new_num_tokens (`int`, *optional*):
1340
                New number of tokens in the embedding matrix.
1341

1342
                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1343
1344
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
                ``tf.Variable``` module of the model without doing anything.
1345

1346
        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1347
1348
            `tf.Variable`: Pointer to the resized Embedding Module or the old Embedding Module if `new_num_tokens` is
            `None`
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
        """
        old_embedding_dim = shape_list(old_embeddings)[1]
        init_range = getattr(self.config, "initializer_range", 0.02)
        embeddings_mask, current_embeddings = init_copy_embeddings(old_embeddings, new_num_tokens)
        new_embeddings = self.add_weight(
            name=old_embeddings.name.split(":")[0],
            shape=[new_num_tokens, old_embedding_dim],
            initializer=get_initializer(init_range),
            dtype=tf.float32,
        )
        init_embeddings = tf.where(embeddings_mask, current_embeddings, new_embeddings.value())
1360

1361
        new_embeddings.assign(init_embeddings)
1362

1363
        return new_embeddings
thomwolf's avatar
thomwolf committed
1364
1365

    def prune_heads(self, heads_to_prune):
1366
1367
        """
        Prunes heads of the base model.
thomwolf's avatar
thomwolf committed
1368

1369
        Arguments:
1370
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1371
1372
1373
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
1374
1375
1376
        """
        raise NotImplementedError

Sylvain Gugger's avatar
Sylvain Gugger committed
1377
    def save_pretrained(self, save_directory, saved_model=False, version=1, push_to_hub=False, **kwargs):
1378
1379
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
1380
        [`~TFPreTrainedModel.from_pretrained`] class method.
1381
1382

        Arguments:
1383
            save_directory (`str`):
1384
                Directory to which to save. Will be created if it doesn't exist.
1385
            saved_model (`bool`, *optional*, defaults to `False`):
Julien Plu's avatar
Julien Plu committed
1386
                If the model has to be saved in saved model format as well or not.
1387
            version (`int`, *optional*, defaults to 1):
Julien Plu's avatar
Julien Plu committed
1388
1389
1390
                The version of the saved model. A saved model needs to be versioned in order to be properly loaded by
                TensorFlow Serving as detailed in the official documentation
                https://www.tensorflow.org/tfx/serving/serving_basic
1391
            push_to_hub (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1392
                Whether or not to push your model to the Hugging Face model hub after saving it.
1393

1394
                <Tip warning={true}>
1395

Sylvain Gugger's avatar
Sylvain Gugger committed
1396
1397
1398
                Using `push_to_hub=True` will synchronize the repository you are pushing to with `save_directory`,
                which requires `save_directory` to be a local clone of the repo you are pushing to if it's an existing
                folder. Pass along `temp_dir=True` to use a temporary directory instead.
1399
1400

                </Tip>
1401

Sylvain Gugger's avatar
Sylvain Gugger committed
1402
            kwargs:
Sylvain Gugger's avatar
Sylvain Gugger committed
1403
                Additional key word arguments passed along to the [`~file_utils.PushToHubMixin.push_to_hub`] method.
thomwolf's avatar
thomwolf committed
1404
        """
1405
        if os.path.isfile(save_directory):
1406
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
1407
            return
1408
1409
1410
1411
1412

        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            repo = self._create_or_get_repo(save_directory, **kwargs)

1413
        os.makedirs(save_directory, exist_ok=True)
thomwolf's avatar
thomwolf committed
1414

Julien Plu's avatar
Julien Plu committed
1415
1416
1417
1418
1419
        if saved_model:
            saved_model_dir = os.path.join(save_directory, "saved_model", str(version))
            self.save(saved_model_dir, include_optimizer=False, signatures=self.serving)
            logger.info(f"Saved model created in {saved_model_dir}")

thomwolf's avatar
thomwolf committed
1420
        # Save configuration file
1421
        self.config.architectures = [self.__class__.__name__[2:]]
1422
1423
1424
1425
1426
1427

        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

thomwolf's avatar
thomwolf committed
1428
1429
1430
1431
1432
        self.config.save_pretrained(save_directory)

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, TF2_WEIGHTS_NAME)
        self.save_weights(output_model_file)
1433
        logger.info(f"Model weights saved in {output_model_file}")
thomwolf's avatar
thomwolf committed
1434

Sylvain Gugger's avatar
Sylvain Gugger committed
1435
        if push_to_hub:
1436
            url = self._push_to_hub(repo, commit_message=commit_message)
Sylvain Gugger's avatar
Sylvain Gugger committed
1437
1438
            logger.info(f"Model pushed to the hub in this commit: {url}")

thomwolf's avatar
thomwolf committed
1439
1440
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
1441
1442
        r"""
        Instantiate a pretrained TF 2.0 model from a pre-trained model configuration.
thomwolf's avatar
thomwolf committed
1443

1444
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
1445
1446
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
thomwolf's avatar
thomwolf committed
1447

1448
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
1449
        weights are discarded.
thomwolf's avatar
thomwolf committed
1450
1451

        Parameters:
1452
            pretrained_model_name_or_path (`str`, *optional*):
1453
1454
                Can be either:

1455
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
1456
1457
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
1458
1459
                    - A path to a *directory* containing model weights saved using
                      [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1460
1461
1462
1463
                    - A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this
                      case, `from_pt` should be set to `True` and a configuration object should be provided as `config`
                      argument. This loading path is slower than converting the PyTorch model in a TensorFlow model
                      using the provided conversion scripts and loading the TensorFlow model afterwards.
1464
1465
1466
1467
1468
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str]`, *optional*):
1469
1470
                Can be either:

1471
1472
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string valid as input to [`~PretrainedConfig.from_pretrained`].
1473

1474
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
1475
1476
                be automatically loaded when:

1477
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
1478
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
1479
1480
                    - The model was saved using [`~TFPreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
1481
1482
1483
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            from_pt: (`bool`, *optional*, defaults to `False`):
1484
                Load the model weights from a PyTorch state_dict save file (see docstring of
1485
1486
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
1487
1488
1489
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
1490
            cache_dir (`str`, *optional*):
1491
1492
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
1493
            force_download (`bool`, *optional*, defaults to `False`):
1494
1495
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
1496
            resume_download (`bool`, *optional*, defaults to `False`):
1497
1498
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
Sylvain Gugger's avatar
Sylvain Gugger committed
1499
1500
1501
1502
1503
            proxies:
                (`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g.,
                `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
                output_loading_info(`bool`, *optional*, defaults to `False`): Whether ot not to also return a
                dictionary containing missing keys, unexpected keys and error messages.
1504
            local_files_only(`bool`, *optional*, defaults to `False`):
1505
                Whether or not to only look at local files (e.g., not try doanloading the model).
1506
            use_auth_token (`str` or *bool*, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1507
1508
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`).
1509
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
1510
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
1511
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
1512
                identifier allowed by git.
1513
            mirror (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1514
1515
1516
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
1517
            kwargs (remaining dictionary of keyword arguments, *optional*):
1518
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
1519
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
1520
1521
                automatically loaded:

1522
1523
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
1524
                      already been done)
1525
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
1526
1527
1528
1529
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

        <Tip>

        Passing `use_auth_token=True` is required when you want to use a private model.

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, TFBertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
1541

1542
        >>> # Download model and configuration from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
1543
        >>> model = TFBertModel.from_pretrained("bert-base-uncased")
1544
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
1545
        >>> model = TFBertModel.from_pretrained("./test/saved_model/")
1546
        >>> # Update configuration during loading.
Sylvain Gugger's avatar
Sylvain Gugger committed
1547
        >>> model = TFBertModel.from_pretrained("bert-base-uncased", output_attentions=True)
1548
1549
        >>> assert model.config.output_attentions == True
        >>> # Loading from a Pytorch model file instead of a TensorFlow checkpoint (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
1550
1551
        >>> config = BertConfig.from_json_file("./pt_model/my_pt_model_config.json")
        >>> model = TFBertModel.from_pretrained("./pt_model/my_pytorch_model.bin", from_pt=True, config=config)
1552
        ```"""
1553
1554
1555
        config = kwargs.pop("config", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_pt = kwargs.pop("from_pt", False)
1556
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
1557
1558
1559
1560
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
1561
        local_files_only = kwargs.pop("local_files_only", False)
1562
        use_auth_token = kwargs.pop("use_auth_token", None)
Julien Chaumond's avatar
Julien Chaumond committed
1563
        revision = kwargs.pop("revision", None)
1564
        mirror = kwargs.pop("mirror", None)
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1565
        load_weight_prefix = kwargs.pop("load_weight_prefix", None)
1566
1567
1568
1569
1570
1571
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)

        user_agent = {"file_type": "model", "framework": "tensorflow", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
1572

1573
1574
1575
1576
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

1577
1578
1579
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
thomwolf's avatar
thomwolf committed
1580
            config, model_kwargs = cls.config_class.from_pretrained(
1581
1582
1583
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
thomwolf's avatar
thomwolf committed
1584
                force_download=force_download,
1585
                resume_download=resume_download,
1586
1587
                proxies=proxies,
                local_files_only=local_files_only,
1588
                use_auth_token=use_auth_token,
Julien Chaumond's avatar
Julien Chaumond committed
1589
                revision=revision,
1590
1591
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
1592
                **kwargs,
thomwolf's avatar
thomwolf committed
1593
1594
1595
1596
1597
            )
        else:
            model_kwargs = kwargs

        # Load model
thomwolf's avatar
thomwolf committed
1598
        if pretrained_model_name_or_path is not None:
1599
            if os.path.isdir(pretrained_model_name_or_path):
1600
1601
1602
1603
                if from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint in priority if from_pt
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
thomwolf's avatar
thomwolf committed
1604
1605
                    # Load from a TF 2.0 checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
1606
1607
1608
1609
1610
1611
1612
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME):
                    raise EnvironmentError(
                        f"Error no file named {TF2_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} "
                        "but there is a file for PyTorch weights. Use `from_pt=True` to load this model from those "
                        "weights."
                    )
thomwolf's avatar
thomwolf committed
1613
                else:
1614
                    raise EnvironmentError(
1615
1616
                        f"Error no file named {TF2_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory "
                        f"{pretrained_model_name_or_path}."
1617
                    )
Julien Chaumond's avatar
Julien Chaumond committed
1618
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
1619
                archive_file = pretrained_model_name_or_path
1620
1621
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
                archive_file = pretrained_model_name_or_path + ".index"
thomwolf's avatar
thomwolf committed
1622
            else:
1623
                filename = WEIGHTS_NAME if from_pt else TF2_WEIGHTS_NAME
thomwolf's avatar
thomwolf committed
1624
                archive_file = hf_bucket_url(
Julien Chaumond's avatar
Julien Chaumond committed
1625
                    pretrained_model_name_or_path,
1626
                    filename=filename,
Julien Chaumond's avatar
Julien Chaumond committed
1627
                    revision=revision,
1628
                    mirror=mirror,
thomwolf's avatar
thomwolf committed
1629
                )
thomwolf's avatar
thomwolf committed
1630
1631

            try:
1632
                # Load from URL or cache if already cached
1633
1634
1635
1636
1637
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
1638
1639
                    resume_download=resume_download,
                    local_files_only=local_files_only,
1640
                    use_auth_token=use_auth_token,
1641
                    user_agent=user_agent,
1642
                )
1643

1644
            except RepositoryNotFoundError:
1645
1646
1647
1648
1649
1650
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
                    "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
                    "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
                    "login` and pass `use_auth_token=True`."
                )
1651
            except RevisionNotFoundError:
1652
1653
1654
1655
1656
                raise EnvironmentError(
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
                    "this model name. Check the model page at "
                    f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
                )
1657
            except EntryNotFoundError:
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
                if filename == TF2_WEIGHTS_NAME:
                    has_file_kwargs = {
                        "revision": revision,
                        "mirror": mirror,
                        "proxies": proxies,
                        "use_auth_token": use_auth_token,
                    }
                    if has_file(pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs):
                        raise EnvironmentError(
                            f"{pretrained_model_name_or_path} does not appear to have a file named {TF2_WEIGHTS_NAME} "
                            "but there is a file for PyTorch weights. Use `from_pt=True` to load this model from "
                            "those weights."
                        )
                    else:
                        raise EnvironmentError(
                            f"{pretrained_model_name_or_path} does not appear to have a file named {TF2_WEIGHTS_NAME} "
                            f"or {WEIGHTS_NAME}."
                        )
                else:
                    raise EnvironmentError(
                        f"{pretrained_model_name_or_path} does not appear to have a file named {filename}."
                    )
1680
            except HTTPError:
1681
1682
1683
1684
1685
1686
1687
                raise EnvironmentError(
                    "We couldn't connect to 'https://huggingface.co/' to load this model and it looks like "
                    f"{pretrained_model_name_or_path} is not the path to a directory conaining a a file named "
                    f"{TF2_WEIGHTS_NAME} or {WEIGHTS_NAME}.\n"
                    "Checkout your internet connection or see how to run the library in offline mode at "
                    "'https://huggingface.co/docs/transformers/installation#offline-mode'."
                )
1688
            except EnvironmentError:
1689
1690
1691
1692
1693
                raise EnvironmentError(
                    f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a file named {TF2_WEIGHTS_NAME} or {WEIGHTS_NAME}."
1694
                )
1695

thomwolf's avatar
thomwolf committed
1696
            if resolved_archive_file == archive_file:
1697
                logger.info(f"loading weights file {archive_file}")
thomwolf's avatar
thomwolf committed
1698
            else:
1699
                logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}")
thomwolf's avatar
thomwolf committed
1700
        else:
thomwolf's avatar
thomwolf committed
1701
            resolved_archive_file = None
thomwolf's avatar
thomwolf committed
1702

1703
1704
        config.name_or_path = pretrained_model_name_or_path

Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1705
1706
1707
1708
1709
        # composed models, *e.g.* TFRag, require special treatment when it comes to loading
        # pre-trained weights.
        if cls._requires_load_weight_prefix and model_kwargs.get("name") is not None:
            model_kwargs["load_weight_prefix"] = load_weight_prefix + "/" + model_kwargs.get("name")

thomwolf's avatar
thomwolf committed
1710
1711
1712
1713
        # Instantiate model.
        model = cls(config, *model_args, **model_kwargs)

        if from_pt:
Julien Plu's avatar
Julien Plu committed
1714
1715
            from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model

thomwolf's avatar
thomwolf committed
1716
            # Load from a PyTorch checkpoint
thomwolf's avatar
thomwolf committed
1717
            return load_pytorch_checkpoint_in_tf2_model(model, resolved_archive_file, allow_missing_keys=True)
thomwolf's avatar
thomwolf committed
1718

Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1719
1720
1721
1722
1723
1724
        # we might need to extend the variable scope for composite models
        if load_weight_prefix is not None:
            with tf.compat.v1.variable_scope(load_weight_prefix):
                model(model.dummy_inputs)  # build the network with dummy inputs
        else:
            model(model.dummy_inputs)  # build the network with dummy inputs
thomwolf's avatar
thomwolf committed
1725

1726
        assert os.path.isfile(resolved_archive_file), f"Error retrieving file {resolved_archive_file}"
thomwolf's avatar
thomwolf committed
1727
1728
        # 'by_name' allow us to do transfer learning by skipping/adding layers
        # see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1339-L1357
1729
        try:
1730
1731
1732
1733
1734
1735
            missing_keys, unexpected_keys, mismatched_keys = load_tf_weights(
                model,
                resolved_archive_file,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                _prefix=load_weight_prefix,
            )
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
        except OSError as e:
            try:
                with open(resolved_archive_file) as f:
                    if f.read().startswith("version"):
                        raise OSError(
                            "You seem to have cloned a repository without having git-lfs installed. Please install "
                            "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                            "you cloned."
                        )
                    else:
                        raise ValueError from e
            except (UnicodeDecodeError, ValueError):
                raise OSError(
                    "Unable to load weights from h5 file. "
                    "If you tried to load a TF 2.0 model from a PyTorch checkpoint, please set from_pt=True. "
                )
thomwolf's avatar
thomwolf committed
1752

Julien Plu's avatar
Julien Plu committed
1753
        model(model.dummy_inputs)  # Make sure restore ops are run
thomwolf's avatar
thomwolf committed
1754

1755
1756
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
1757
1758
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

1759
1760
        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
Julien Plu's avatar
Julien Plu committed
1761
1762
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

1763
1764
        if len(unexpected_keys) > 0:
            logger.warning(
Julien Plu's avatar
Julien Plu committed
1765
                f"Some layers from the model checkpoint at {pretrained_model_name_or_path} were not used when "
1766
1767
                f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
                f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
1768
                f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
1769
1770
1771
1772
                f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
                f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
            )
        else:
Julien Plu's avatar
Julien Plu committed
1773
1774
            logger.warning(f"All model checkpoint layers were used when initializing {model.__class__.__name__}.\n")

thomwolf's avatar
thomwolf committed
1775
        if len(missing_keys) > 0:
1776
            logger.warning(
Julien Plu's avatar
Julien Plu committed
1777
                f"Some layers of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
1778
1779
                f"and are newly initialized: {missing_keys}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
1780
            )
1781
        elif len(mismatched_keys) == 0:
1782
            logger.warning(
Julien Plu's avatar
Julien Plu committed
1783
                f"All the layers of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
1784
                f"If your task is similar to the task the model of the checkpoint was trained on, "
1785
                f"you can already use {model.__class__.__name__} for predictions without further training."
1786
            )
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                f"and are newly initialized because the shapes did not match:\n{mismatched_warning}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
Julien Plu's avatar
Julien Plu committed
1799

thomwolf's avatar
thomwolf committed
1800
        if output_loading_info:
1801
1802
1803
1804
1805
            loading_info = {
                "missing_keys": missing_keys,
                "unexpected_keys": unexpected_keys,
                "mismatched_keys": mismatched_keys,
            }
Julien Plu's avatar
Julien Plu committed
1806

thomwolf's avatar
thomwolf committed
1807
1808
            return model, loading_info

thomwolf's avatar
thomwolf committed
1809
        return model
thomwolf's avatar
WIP  
thomwolf committed
1810

1811

1812
1813
1814
1815
1816
1817
1818
# To update the docstring, we need to copy the method, otherwise we change the original docstring.
TFPreTrainedModel.push_to_hub = copy_func(TFPreTrainedModel.push_to_hub)
TFPreTrainedModel.push_to_hub.__doc__ = TFPreTrainedModel.push_to_hub.__doc__.format(
    object="model", object_class="TFAutoModel", object_files="model checkpoint"
)


thomwolf's avatar
WIP  
thomwolf committed
1819
class TFConv1D(tf.keras.layers.Layer):
Sylvain Gugger's avatar
Sylvain Gugger committed
1820
1821
1822
1823
1824
1825
    """
    1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).

    Basically works like a linear layer but the weights are transposed.

    Args:
1826
        nf (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1827
            The number of output features.
1828
        nx (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1829
            The number of input features.
1830
        initializer_range (`float`, *optional*, defaults to 0.02):
Sylvain Gugger's avatar
Sylvain Gugger committed
1831
1832
            The standard deviation to use to initialize the weights.
        kwargs:
1833
            Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1834
1835
    """

thomwolf's avatar
thomwolf committed
1836
    def __init__(self, nf, nx, initializer_range=0.02, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1837
        super().__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
1838
        self.nf = nf
thomwolf's avatar
thomwolf committed
1839
        self.nx = nx
thomwolf's avatar
thomwolf committed
1840
        self.initializer_range = initializer_range
thomwolf's avatar
thomwolf committed
1841
1842
1843

    def build(self, input_shape):
        self.weight = self.add_weight(
1844
1845
1846
            "weight", shape=[self.nx, self.nf], initializer=get_initializer(self.initializer_range)
        )
        self.bias = self.add_weight("bias", shape=[1, self.nf], initializer=tf.zeros_initializer())
thomwolf's avatar
thomwolf committed
1847

thomwolf's avatar
WIP  
thomwolf committed
1848
    def call(self, x):
thomwolf's avatar
thomwolf committed
1849
        bz, sl = shape_list(x)[:2]
thomwolf's avatar
thomwolf committed
1850

thomwolf's avatar
thomwolf committed
1851
        x = tf.reshape(x, [-1, self.nx])
thomwolf's avatar
thomwolf committed
1852
        x = tf.matmul(x, self.weight) + self.bias
thomwolf's avatar
thomwolf committed
1853
1854

        x = tf.reshape(x, [bz, sl, self.nf])
thomwolf's avatar
thomwolf committed
1855

thomwolf's avatar
WIP  
thomwolf committed
1856
        return x
thomwolf's avatar
thomwolf committed
1857
1858


thomwolf's avatar
thomwolf committed
1859
class TFSharedEmbeddings(tf.keras.layers.Layer):
Stas Bekman's avatar
Stas Bekman committed
1860
    r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
1861
    Construct shared token embeddings.
1862

Sylvain Gugger's avatar
Sylvain Gugger committed
1863
1864
    The weights of the embedding layer is usually shared with the weights of the linear decoder when doing language
    modeling.
Sylvain Gugger's avatar
Sylvain Gugger committed
1865
1866

    Args:
1867
        vocab_size (`int`):
1868
            The size of the vocabulary, e.g., the number of unique tokens.
1869
        hidden_size (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1870
            The size of the embedding vectors.
1871
        initializer_range (`float`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1872
            The standard deviation to use when initializing the weights. If no value is provided, it will default to
1873
            \\(1/\sqrt{hidden\_size}\\).
Sylvain Gugger's avatar
Sylvain Gugger committed
1874
        kwargs:
1875
            Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1876
1877
1878
    """

    def __init__(self, vocab_size: int, hidden_size: int, initializer_range: Optional[float] = None, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1879
        super().__init__(**kwargs)
thomwolf's avatar
thomwolf committed
1880
1881
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
1882
        self.initializer_range = hidden_size**-0.5 if initializer_range is None else initializer_range
thomwolf's avatar
thomwolf committed
1883
1884

    def build(self, input_shape):
Sylvain Gugger's avatar
Sylvain Gugger committed
1885
1886
1887
        """
        Build shared token embedding layer Shared weights logic adapted from
        https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
thomwolf's avatar
thomwolf committed
1888
1889
        """
        self.weight = self.add_weight(
1890
1891
            "weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range)
        )
Julien Chaumond's avatar
Julien Chaumond committed
1892
        super().build(input_shape)
thomwolf's avatar
thomwolf committed
1893

Julien Plu's avatar
Julien Plu committed
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
    def get_config(self):
        config = {
            "vocab_size": self.vocab_size,
            "hidden_size": self.hidden_size,
            "initializer_range": self.initializer_range,
        }
        base_config = super().get_config()

        return dict(list(base_config.items()) + list(config.items()))

Sylvain Gugger's avatar
Sylvain Gugger committed
1904
1905
1906
1907
    def call(self, inputs: tf.Tensor, mode: str = "embedding") -> tf.Tensor:
        """
        Get token embeddings of inputs or decode final hidden state.

thomwolf's avatar
thomwolf committed
1908
        Args:
1909
1910
            inputs (`tf.Tensor`):
                In embedding mode, should be an int64 tensor with shape `[batch_size, length]`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1911

1912
1913
                In linear mode, should be a float tensor with shape `[batch_size, length, hidden_size]`.
            mode (`str`, defaults to `"embedding"`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1914
1915
               A valid value is either `"embedding"` or `"linear"`, the first one indicates that the layer should be
               used as an embedding layer, the second one that the layer should be used as a linear decoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
1916

thomwolf's avatar
thomwolf committed
1917
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1918
1919
            `tf.Tensor`: In embedding mode, the output is a float32 embedding tensor, with shape `[batch_size, length,
            embedding_size]`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1920

1921
            In linear mode, the output is a float32 with shape `[batch_size, length, vocab_size]`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1922

thomwolf's avatar
thomwolf committed
1923
        Raises:
1924
            ValueError: if `mode` is not valid.
1925

Sylvain Gugger's avatar
Sylvain Gugger committed
1926
1927
        Shared weights logic is adapted from
        [here](https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24).
thomwolf's avatar
thomwolf committed
1928
1929
1930
1931
1932
1933
        """
        if mode == "embedding":
            return self._embedding(inputs)
        elif mode == "linear":
            return self._linear(inputs)
        else:
1934
            raise ValueError(f"mode {mode} is not valid.")
thomwolf's avatar
thomwolf committed
1935
1936
1937
1938
1939
1940
1941

    def _embedding(self, input_ids):
        """Applies embedding based on inputs tensor."""
        return tf.gather(self.weight, input_ids)

    def _linear(self, inputs):
        """
Julien Plu's avatar
Julien Plu committed
1942
        Computes logits by running inputs through a linear layer.
thomwolf's avatar
thomwolf committed
1943

Julien Plu's avatar
Julien Plu committed
1944
1945
1946
1947
1948
1949
1950
        Args:
            inputs: A float32 tensor with shape [..., hidden_size]

        Returns:
            float32 tensor with shape [..., vocab_size].
        """
        first_dims = shape_list(inputs)[:-1]
thomwolf's avatar
thomwolf committed
1951
1952
1953
1954
1955
1956
        x = tf.reshape(inputs, [-1, self.hidden_size])
        logits = tf.matmul(x, self.weight, transpose_b=True)

        return tf.reshape(logits, first_dims + [self.vocab_size])


thomwolf's avatar
thomwolf committed
1957
class TFSequenceSummary(tf.keras.layers.Layer):
Julien Plu's avatar
Julien Plu committed
1958
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1959
1960
1961
    Compute a single vector summary of a sequence hidden states.

    Args:
1962
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
1963
1964
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
1965

1966
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
1967

1968
1969
1970
1971
1972
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
1973

1974
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
1975
1976
1977
1978
1979
1980
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
Sylvain Gugger's avatar
Sylvain Gugger committed
1981

1982
        initializer_range (`float`, defaults to 0.02): The standard deviation to use to initialize the weights.
Sylvain Gugger's avatar
Sylvain Gugger committed
1983
        kwargs:
1984
            Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`.
thomwolf's avatar
thomwolf committed
1985
    """
1986

Sylvain Gugger's avatar
Sylvain Gugger committed
1987
    def __init__(self, config: PretrainedConfig, initializer_range: float = 0.02, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1988
        super().__init__(**kwargs)
thomwolf's avatar
thomwolf committed
1989

1990
1991
        self.summary_type = config.summary_type if hasattr(config, "summary_use_proj") else "last"
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
1992
1993
1994
1995
1996
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

1997
        self.has_summary = hasattr(config, "summary_use_proj") and config.summary_use_proj
1998
        if self.has_summary:
1999
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
thomwolf's avatar
thomwolf committed
2000
2001
2002
                num_classes = config.num_labels
            else:
                num_classes = config.hidden_size
2003
2004
2005
            self.summary = tf.keras.layers.Dense(
                num_classes, kernel_initializer=get_initializer(initializer_range), name="summary"
            )
thomwolf's avatar
thomwolf committed
2006

2007
2008
2009
2010
2011
        self.has_activation = False
        activation_string = getattr(config, "summary_activation", None)
        if activation_string is not None:
            self.has_activation = True
            self.activation = get_tf_activation(activation_string)
thomwolf's avatar
thomwolf committed
2012

2013
        self.has_first_dropout = hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0
2014
        if self.has_first_dropout:
thomwolf's avatar
thomwolf committed
2015
2016
            self.first_dropout = tf.keras.layers.Dropout(config.summary_first_dropout)

2017
        self.has_last_dropout = hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0
2018
        if self.has_last_dropout:
thomwolf's avatar
thomwolf committed
2019
2020
            self.last_dropout = tf.keras.layers.Dropout(config.summary_last_dropout)

Julien Plu's avatar
Julien Plu committed
2021
    def call(self, inputs, cls_index=None, training=False):
thomwolf's avatar
thomwolf committed
2022
2023
2024
2025
2026
2027
2028
        if not isinstance(inputs, (dict, tuple, list)):
            hidden_states = inputs
        elif isinstance(inputs, (tuple, list)):
            hidden_states = inputs[0]
            cls_index = inputs[1] if len(inputs) > 1 else None
            assert len(inputs) <= 2, "Too many inputs."
        else:
2029
            hidden_states = inputs.get("hidden_states")
2030
            cls_index = inputs.get("cls_index", None)
thomwolf's avatar
thomwolf committed
2031

2032
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
2033
            output = hidden_states[:, -1]
2034
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
2035
            output = hidden_states[:, 0]
2036
        elif self.summary_type == "mean":
Lysandre's avatar
Lysandre committed
2037
            output = tf.reduce_mean(hidden_states, axis=1)
2038
        elif self.summary_type == "cls_index":
2039
            hidden_shape = shape_list(hidden_states)  # e.g. [batch, num choices, seq length, hidden dims]
thomwolf's avatar
thomwolf committed
2040
            if cls_index is None:
2041
2042
2043
                cls_index = tf.fill(
                    hidden_shape[:-2], hidden_shape[-2] - 1
                )  # A tensor full of shape [batch] or [batch, num choices] full of sequence length
2044
2045
            cls_shape = shape_list(cls_index)
            if len(cls_shape) <= len(hidden_shape) - 2:
2046
                cls_index = tf.expand_dims(cls_index, axis=-1)
2047
            # else:
2048
2049
            # cls_index = cls_index[..., tf.newaxis]
            # cls_index = cls_index.expand((-1,) * (cls_index.dim()-1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
2050
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
2051
            output = tf.gather(hidden_states, cls_index, batch_dims=len(hidden_shape) - 2)
2052
2053
2054
2055
            output = tf.squeeze(
                output, axis=len(hidden_shape) - 2
            )  # shape of output: (batch, num choices, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
2056
2057
            raise NotImplementedError

2058
2059
        if self.has_first_dropout:
            output = self.first_dropout(output, training=training)
thomwolf's avatar
thomwolf committed
2060

2061
        if self.has_summary:
2062
            output = self.summary(output)
thomwolf's avatar
thomwolf committed
2063

2064
        if self.has_activation:
thomwolf's avatar
thomwolf committed
2065
2066
            output = self.activation(output)

2067
2068
        if self.has_last_dropout:
            output = self.last_dropout(output, training=training)
thomwolf's avatar
thomwolf committed
2069
2070
2071

        return output

2072
2073
2074
2075
2076
2077
    @classmethod
    def register_for_auto_class(cls, auto_class="TFAutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

2078
2079
2080
2081
2082
2083
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"TFAutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

2098

Sylvain Gugger's avatar
Sylvain Gugger committed
2099
2100
def get_initializer(initializer_range: float = 0.02) -> tf.initializers.TruncatedNormal:
    """
2101
    Creates a `tf.initializers.TruncatedNormal` with the given range.
Sylvain Gugger's avatar
Sylvain Gugger committed
2102

Julien Chaumond's avatar
Julien Chaumond committed
2103
    Args:
2104
        initializer_range (*float*, defaults to 0.02): Standard deviation of the initializer range.
Sylvain Gugger's avatar
Sylvain Gugger committed
2105

Julien Chaumond's avatar
Julien Chaumond committed
2106
    Returns:
2107
        `tf.initializers.TruncatedNormal`: The truncated normal initializer.
Julien Chaumond's avatar
Julien Chaumond committed
2108
2109
    """
    return tf.keras.initializers.TruncatedNormal(stddev=initializer_range)
2110
2111


Sam Shleifer's avatar
Sam Shleifer committed
2112
2113
class TFWrappedEmbeddings:
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
2114
2115
2116
    this class wraps a the TFSharedEmbeddingTokens layer into a python 'no-keras-layer' class to avoid problem with
    weight restoring. Also it makes sure that the layer is called from the correct scope to avoid problem with
    saving/storing the correct weights
Sam Shleifer's avatar
Sam Shleifer committed
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
    """

    def __init__(self, layer, abs_scope_name=None):
        self._layer = layer
        self._abs_scope_name = abs_scope_name

    def call(self, inputs, mode="embedding"):
        if self._abs_scope_name is None:
            return self._layer.call(inputs, mode)

        # if an abs scope name is given to the embedding variable, call variable from absolute scope
        with tf.compat.v1.variable_scope(self._abs_scope_name, auxiliary_name_scope=False) as abs_scope_name:
            with tf.name_scope(abs_scope_name.original_name_scope):
                return self._layer.call(inputs, mode)

    def __call__(self, inputs, mode="embedding"):
        if self._abs_scope_name is None:
            return self._layer(inputs, mode)

        # if an abs scope name is given to the embedding variable, call variable from absolute scope
        with tf.compat.v1.variable_scope(self._abs_scope_name, auxiliary_name_scope=False) as abs_scope_name:
            with tf.name_scope(abs_scope_name.original_name_scope):
                return self._layer(inputs, mode)