modeling_tf_utils.py 92.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF general model utils."""
Julien Plu's avatar
Julien Plu committed
17

18
import functools
Julien Plu's avatar
Julien Plu committed
19
import inspect
thomwolf's avatar
thomwolf committed
20
import os
21
import pickle
22
import re
Julien Plu's avatar
Julien Plu committed
23
import warnings
Sylvain Gugger's avatar
Sylvain Gugger committed
24
from typing import Dict, List, Optional, Union
thomwolf's avatar
thomwolf committed
25

Aymeric Augustin's avatar
Aymeric Augustin committed
26
import h5py
Julien Chaumond's avatar
Julien Chaumond committed
27
import numpy as np
thomwolf's avatar
thomwolf committed
28
import tensorflow as tf
Julien Plu's avatar
Julien Plu committed
29
from tensorflow.python.keras import backend as K
Matt's avatar
Matt committed
30
from tensorflow.python.keras.engine import data_adapter
31
from tensorflow.python.keras.engine.keras_tensor import KerasTensor
thomwolf's avatar
thomwolf committed
32
from tensorflow.python.keras.saving import hdf5_format
thomwolf's avatar
thomwolf committed
33

34
from huggingface_hub import Repository, list_repo_files
35
from requests import HTTPError
36

37
from .activations_tf import get_tf_activation
thomwolf's avatar
thomwolf committed
38
from .configuration_utils import PretrainedConfig
39
from .dynamic_module_utils import custom_object_save
Julien Plu's avatar
Julien Plu committed
40
41
42
43
from .file_utils import (
    DUMMY_INPUTS,
    TF2_WEIGHTS_NAME,
    WEIGHTS_NAME,
44
    EntryNotFoundError,
Julien Plu's avatar
Julien Plu committed
45
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
46
    PushToHubMixin,
47
48
    RepositoryNotFoundError,
    RevisionNotFoundError,
Julien Plu's avatar
Julien Plu committed
49
    cached_path,
50
    copy_func,
51
    has_file,
Julien Plu's avatar
Julien Plu committed
52
    hf_bucket_url,
53
    is_offline_mode,
Julien Plu's avatar
Julien Plu committed
54
55
    is_remote_url,
)
56
from .generation_tf_utils import TFGenerationMixin
57
from .modeling_tf_outputs import TFSeq2SeqLMOutput
58
from .tf_utils import shape_list
Julien Plu's avatar
Julien Plu committed
59
from .tokenization_utils_base import BatchEncoding
Lysandre Debut's avatar
Lysandre Debut committed
60
from .utils import logging
thomwolf's avatar
thomwolf committed
61

Aymeric Augustin's avatar
Aymeric Augustin committed
62

Lysandre Debut's avatar
Lysandre Debut committed
63
logger = logging.get_logger(__name__)
64
tf_logger = tf.get_logger()
thomwolf's avatar
thomwolf committed
65

Julien Plu's avatar
Julien Plu committed
66
TFModelInputType = Union[
67
68
69
70
71
72
73
74
75
    List[tf.Tensor],
    List[np.ndarray],
    List[KerasTensor],
    Dict[str, tf.Tensor],
    Dict[str, np.ndarray],
    Dict[str, KerasTensor],
    tf.Tensor,
    np.ndarray,
    KerasTensor,
Julien Plu's avatar
Julien Plu committed
76
77
]

78

Matt's avatar
Matt committed
79
80
81
82
def dummy_loss(y_true, y_pred):
    return tf.reduce_mean(y_pred)


83
class TFModelUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
84
    """
85
    A few utilities for `tf.keras.Model`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
86
87
88
89
    """

    def num_parameters(self, only_trainable: bool = False) -> int:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
90
91
92
        Get the number of (optionally, trainable) parameters in the model.

        Args:
93
            only_trainable (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
94
95
96
                Whether or not to return only the number of trainable parameters

        Returns:
97
            `int`: The number of parameters.
Julien Chaumond's avatar
Julien Chaumond committed
98
99
100
101
102
103
104
        """
        if only_trainable:
            return int(sum(np.prod(w.shape.as_list()) for w in self.trainable_variables))
        else:
            return self.count_params()


105
def keras_serializable(cls):
106
107
108
109
    """
    Decorate a Keras Layer class to support Keras serialization.

    This is done by:
Sylvain Gugger's avatar
Sylvain Gugger committed
110

111
    1. Adding a `transformers_config` dict to the Keras config dictionary in `get_config` (called by Keras at
Sylvain Gugger's avatar
Sylvain Gugger committed
112
       serialization time.
Sylvain Gugger's avatar
Sylvain Gugger committed
113
114
    2. Wrapping `__init__` to accept that `transformers_config` dict (passed by Keras at deserialization time) and
       convert it to a config object for the actual layer initializer.
Sylvain Gugger's avatar
Sylvain Gugger committed
115
    3. Registering the class as a custom object in Keras (if the Tensorflow version supports this), so that it does not
116
       need to be supplied in `custom_objects` in the call to `tf.keras.models.load_model`.
Sylvain Gugger's avatar
Sylvain Gugger committed
117
118

    Args:
119
        cls (a `tf.keras.layers.Layers subclass`):
Sylvain Gugger's avatar
Sylvain Gugger committed
120
121
            Typically a `TF.MainLayer` class in this project, in general must accept a `config` argument to its
            initializer.
Sylvain Gugger's avatar
Sylvain Gugger committed
122
123
124

    Returns:
        The same class object, with modifications for Keras deserialization.
125
    """
126
    initializer = cls.__init__
127

128
129
130
131
    config_class = getattr(cls, "config_class", None)
    if config_class is None:
        raise AttributeError("Must set `config_class` to use @keras_serializable")

132
    @functools.wraps(initializer)
133
    def wrapped_init(self, *args, **kwargs):
134
135
136
137
        config = args[0] if args and isinstance(args[0], PretrainedConfig) else kwargs.pop("config", None)

        if isinstance(config, dict):
            config = config_class.from_dict(config)
138
            initializer(self, config, *args, **kwargs)
139
140
141
142
143
        elif isinstance(config, PretrainedConfig):
            if len(args) > 0:
                initializer(self, *args, **kwargs)
            else:
                initializer(self, config, *args, **kwargs)
144
        else:
145
146
147
            raise ValueError("Must pass either `config` (PretrainedConfig) or `config` (dict)")

        self._config = config
Julien Plu's avatar
Julien Plu committed
148
        self._kwargs = kwargs
149

150
151
152
153
154
155
156
157
    cls.__init__ = wrapped_init

    if not hasattr(cls, "get_config"):
        raise TypeError("Only use @keras_serializable on tf.keras.layers.Layer subclasses")
    if hasattr(cls.get_config, "_is_default"):

        def get_config(self):
            cfg = super(cls, self).get_config()
158
            cfg["config"] = self._config.to_dict()
Julien Plu's avatar
Julien Plu committed
159
            cfg.update(self._kwargs)
160
161
162
163
            return cfg

        cls.get_config = get_config

164
    cls._keras_serializable = True
165
166
167
    if hasattr(tf.keras.utils, "register_keras_serializable"):
        cls = tf.keras.utils.register_keras_serializable()(cls)
    return cls
168
169


170
class TFCausalLanguageModelingLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
171
172
173
    """
    Loss function suitable for causal language modeling (CLM), that is, the task of guessing the next token.

174
    <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
175

176
    Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
Sylvain Gugger's avatar
Sylvain Gugger committed
177

178
    </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
179
180
    """

181
    def hf_compute_loss(self, labels, logits):
182
183
184
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
Muennighoff's avatar
Muennighoff committed
185
        # make sure only labels that are not equal to -100 affect the loss
186
        active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
187
188
189
190
191
        reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
        labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)
        return loss_fn(labels, reduced_logits)


Julien Plu's avatar
Julien Plu committed
192
class TFQuestionAnsweringLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
193
    """
194
    Loss function suitable for question answering.
Sylvain Gugger's avatar
Sylvain Gugger committed
195
196
    """

197
    def hf_compute_loss(self, labels, logits):
Julien Plu's avatar
Julien Plu committed
198
199
200
201
202
203
204
205
206
207
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
        start_loss = loss_fn(labels["start_position"], logits[0])
        end_loss = loss_fn(labels["end_position"], logits[1])

        return (start_loss + end_loss) / 2.0


class TFTokenClassificationLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
208
209
210
    """
    Loss function suitable for token classification.

211
    <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
212

213
    Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
Sylvain Gugger's avatar
Sylvain Gugger committed
214

215
    </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
216
217
    """

218
    def hf_compute_loss(self, labels, logits):
Julien Plu's avatar
Julien Plu committed
219
220
221
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
222
223
        # make sure only labels that are not equal to -100
        # are taken into account as loss
224
        if tf.math.reduce_any(labels == -1):
225
            tf.print("Using `-1` to mask the loss for the token is deprecated. Please use `-100` instead.")
Julien Plu's avatar
Julien Plu committed
226
227
228
            active_loss = tf.reshape(labels, (-1,)) != -1
        else:
            active_loss = tf.reshape(labels, (-1,)) != -100
Julien Plu's avatar
Julien Plu committed
229
230
231
232
233
234
235
        reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
        labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)

        return loss_fn(labels, reduced_logits)


class TFSequenceClassificationLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
236
237
238
239
    """
    Loss function suitable for sequence classification.
    """

240
    def hf_compute_loss(self, labels, logits):
241
        if len(shape_list(logits)) == 1 or shape_list(logits)[1] == 1:
Julien Plu's avatar
Julien Plu committed
242
243
244
245
246
247
248
249
250
            loss_fn = tf.keras.losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.NONE)
        else:
            loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
                from_logits=True, reduction=tf.keras.losses.Reduction.NONE
            )

        return loss_fn(labels, logits)


Matt's avatar
Matt committed
251
class TFMultipleChoiceLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
252
253
    """Loss function suitable for multiple choice tasks."""

254
    def hf_compute_loss(self, labels, logits):
Matt's avatar
Matt committed
255
256
257
258
259
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
        return loss_fn(labels, logits)

Sylvain Gugger's avatar
Sylvain Gugger committed
260
261
262

class TFMaskedLanguageModelingLoss(TFCausalLanguageModelingLoss):
    """
Lysandre's avatar
Lysandre committed
263
    Loss function suitable for masked language modeling (MLM), that is, the task of guessing the masked tokens.
Sylvain Gugger's avatar
Sylvain Gugger committed
264

265
    <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
266

267
268
269
    Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.

    </Tip>
Lysandre's avatar
Lysandre committed
270
    """
Julien Plu's avatar
Julien Plu committed
271
272


273
274
275
276
class TFNextSentencePredictionLoss:
    """
    Loss function suitable for next sentence prediction (NSP), that is, the task of guessing the next sentence.

277
278
279
280
281
    <Tip>

    Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.

    </Tip>
282
283
    """

284
    def hf_compute_loss(self, labels, logits):
285
286
287
288
289
290
291
292
293
294
295
296
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
        # make sure only labels that are not equal to -100
        # are taken into account as loss
        next_sentence_active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
        next_sentence_reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, 2)), next_sentence_active_loss)
        next_sentence_label = tf.boolean_mask(tf.reshape(labels, (-1,)), next_sentence_active_loss)

        return loss_fn(next_sentence_label, next_sentence_reduced_logits)


297
298
299
300
301
302
def booleans_processing(config, **kwargs):
    """
    Process the input booleans of each model in order to be sure they are compliant with the execution mode (eager or
    graph)

    Args:
303
        config ([`PretrainedConfig`]):
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
            The config of the running model.
        **kwargs:
            The boolean parameters

    Returns:
        A dictionary with the proper values for each boolean
    """
    final_booleans = {}

    if tf.executing_eagerly():
        final_booleans["output_attentions"] = (
            kwargs["output_attentions"] if kwargs["output_attentions"] is not None else config.output_attentions
        )
        final_booleans["output_hidden_states"] = (
            kwargs["output_hidden_states"]
            if kwargs["output_hidden_states"] is not None
            else config.output_hidden_states
        )
Julien Plu's avatar
Julien Plu committed
322
323
324
        final_booleans["return_dict"] = (
            kwargs["return_dict"] if kwargs["return_dict"] is not None else config.return_dict
        )
325
326

        if "use_cache" in kwargs:
327
328
329
            final_booleans["use_cache"] = (
                kwargs["use_cache"] if kwargs["use_cache"] is not None else getattr(config, "use_cache", None)
            )
330
331
332
333
    else:
        final_booleans["output_attentions"] = config.output_attentions
        final_booleans["output_hidden_states"] = config.output_hidden_states

334
        if kwargs.get("return_dict", None) not in (None, True):
335
336
337
            tf_logger.warning(
                "The parameter `return_dict` cannot be set in graph mode and will always be set to `True`."
            )
Julien Plu's avatar
Julien Plu committed
338
        final_booleans["return_dict"] = True
339
340

        if "use_cache" in kwargs:
341
            final_booleans["use_cache"] = getattr(config, "use_cache", None)
342
343
344
345
346
347

    return final_booleans


def input_processing(func, config, input_ids, **kwargs):
    """
Julien Plu's avatar
Julien Plu committed
348
349
350
    Process the input of each TensorFlow model including the booleans. In case of a list of symbolic inputs, each input
    has to be named accordingly to the parameters name, i.e. `input_ids = tf.keras.Input(shape=(128,), dtype='int32',
    name="input_ids")` otherwise the order of the tensors will not be guaranteed during the training.
351
352

    Args:
353
        func (`callable`):
354
            The callable function of the TensorFlow model.
355
        config ([`PretrainedConfig`]):
356
357
358
359
360
361
362
            The config of the running model.
        **kwargs:
            The inputs of the model.

    Returns:
        Two lists, one for the missing layers, and another one for the unexpected layers.
    """
Julien Plu's avatar
Julien Plu committed
363
364
    signature = dict(inspect.signature(func).parameters)
    signature.pop("kwargs", None)
Julien Plu's avatar
Julien Plu committed
365
    signature.pop("self", None)
Julien Plu's avatar
Julien Plu committed
366
367
    parameter_names = list(signature.keys())
    output = {}
368
    allowed_types = (tf.Tensor, bool, int, ModelOutput, tuple, list, dict, np.ndarray, KerasTensor)
Julien Plu's avatar
Julien Plu committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

    if "inputs" in kwargs["kwargs_call"]:
        warnings.warn(
            "The `inputs` argument is deprecated and will be removed in a future version, use `input_ids` instead.",
            FutureWarning,
        )

        output["input_ids"] = kwargs["kwargs_call"].pop("inputs")

    if "decoder_cached_states" in kwargs["kwargs_call"]:
        warnings.warn(
            "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
            FutureWarning,
        )
        output["past_key_values"] = kwargs["kwargs_call"].pop("decoder_cached_states")

385
386
387
388
389
390
391
392
393
    if "past" in kwargs["kwargs_call"] and "past_key_values" in kwargs:
        warnings.warn(
            "The `past` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
            FutureWarning,
        )
        kwargs["past_key_values"] = kwargs["kwargs_call"].pop("past")
    elif "past_key_values" in kwargs["kwargs_call"] and "past" in kwargs:
        kwargs["past"] = kwargs["kwargs_call"].pop("past_key_values")

Julien Plu's avatar
Julien Plu committed
394
395
396
397
398
    if len(kwargs["kwargs_call"]) > 0:
        raise ValueError(
            f"The following keyword arguments are not supported by this model: {list(kwargs['kwargs_call'].keys())}."
        )

Julien Plu's avatar
Julien Plu committed
399
400
    kwargs.pop("kwargs_call")

Julien Plu's avatar
Julien Plu committed
401
402
403
404
    for k, v in kwargs.items():
        if isinstance(v, allowed_types) or v is None:
            output[k] = v
        else:
Julien Plu's avatar
Julien Plu committed
405
            raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.")
Julien Plu's avatar
Julien Plu committed
406
407
408
409
410

    if isinstance(input_ids, (tuple, list)):
        for i, input in enumerate(input_ids):
            # EagerTensors don't allow to use the .name property so we check for a real Tensor
            if type(input) == tf.Tensor:
Julien Plu's avatar
Julien Plu committed
411
412
                # Tensor names have always the pattern `name:id` then we check only the
                # `name` part
Julien Plu's avatar
Julien Plu committed
413
414
415
416
417
                tensor_name = input.name.split(":")[0]

                if tensor_name in parameter_names:
                    output[tensor_name] = input
                else:
Julien Plu's avatar
Julien Plu committed
418
                    output[parameter_names[i]] = input
Julien Plu's avatar
Julien Plu committed
419
420
421
422
            elif isinstance(input, allowed_types) or input is None:
                output[parameter_names[i]] = input
            else:
                raise ValueError(
Julien Plu's avatar
Julien Plu committed
423
                    f"Data of type {type(input)} is not allowed only {allowed_types} is accepted for {parameter_names[i]}."
Julien Plu's avatar
Julien Plu committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
                )
    elif isinstance(input_ids, (dict, BatchEncoding)):
        if "inputs" in input_ids:
            warnings.warn(
                "The `inputs` argument is deprecated and will be removed in a future version, use `input_ids` instead.",
                FutureWarning,
            )

            output["input_ids"] = input_ids.pop("inputs")

        if "decoder_cached_states" in input_ids:
            warnings.warn(
                "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
                FutureWarning,
            )
            output["past_key_values"] = input_ids.pop("decoder_cached_states")

        for k, v in dict(input_ids).items():
442
            if isinstance(v, allowed_types) or v is None:
Julien Plu's avatar
Julien Plu committed
443
                output[k] = v
444
            elif k not in parameter_names and "args" not in parameter_names:
445
                logger.warning(
446
447
448
449
                    f"The parameter {k} does not belongs to the parameter list {parameter_names} and will be ignored."
                )
                continue
            else:
Julien Plu's avatar
Julien Plu committed
450
                raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.")
Julien Plu's avatar
Julien Plu committed
451
    else:
452
        if isinstance(input_ids, (tf.Tensor, KerasTensor)) or input_ids is None:
Julien Plu's avatar
Julien Plu committed
453
454
455
            output[parameter_names[0]] = input_ids
        else:
            raise ValueError(
Julien Plu's avatar
Julien Plu committed
456
                f"Data of type {type(input_ids)} is not allowed only {allowed_types} is accepted for {parameter_names[0]}."
Julien Plu's avatar
Julien Plu committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
            )

    for name in parameter_names:
        if name not in list(output.keys()) and name != "args":
            output[name] = kwargs.pop(name, signature[name].default)

    # When creating a SavedModel TF calls the method with LayerCall.__call__(args, **kwargs)
    # So to respect the proper output we have to add this exception
    if "args" in output:
        if output["args"] is not None and type(output["args"]) == tf.Tensor:
            tensor_name = output["args"].name.split(":")[0]
            output[tensor_name] = output["args"]
        else:
            # `args` in this case is always the first parameter, then `input_ids`
            output["input_ids"] = output["args"]

        del output["args"]

    if "kwargs" in output:
        del output["kwargs"]

478
479
480
481
482
483
484
485
486
487
488
489
490
    boolean_dict = {
        k: v
        for k, v in output.items()
        if k in ["return_dict", "output_attentions", "output_hidden_states", "use_cache"]
    }

    output.update(
        booleans_processing(
            config=config,
            **boolean_dict,
        )
    )

Julien Plu's avatar
Julien Plu committed
491
492
493
    return output


494
def load_tf_weights(model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None):
Julien Plu's avatar
Julien Plu committed
495
    """
Julien Plu's avatar
Julien Plu committed
496
    Detect missing and unexpected layers and load the TF weights accordingly to their names and shapes.
Julien Plu's avatar
Julien Plu committed
497
498

    Args:
499
        model (`tf.keras.models.Model`):
Julien Plu's avatar
Julien Plu committed
500
            The model to load the weights into.
501
        resolved_archive_file (`str`):
Julien Plu's avatar
Julien Plu committed
502
            The location of the H5 file.
503
        ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
504
            Whether or not to ignore weights with shapes that don't match between the checkpoint of the model.
Julien Plu's avatar
Julien Plu committed
505
506

    Returns:
507
508
        Three lists, one for the missing layers, another one for the unexpected layers, and a last one for the
        mismatched layers.
Julien Plu's avatar
Julien Plu committed
509
510
511
    """
    missing_layers = []
    unexpected_layers = []
512
    mismatched_layers = []
Julien Plu's avatar
Julien Plu committed
513

Julien Plu's avatar
Julien Plu committed
514
    # Read the H5 file
Julien Plu's avatar
Julien Plu committed
515
    with h5py.File(resolved_archive_file, "r") as f:
Julien Plu's avatar
Julien Plu committed
516
517
        # Retrieve the name of each layer from the H5 file
        saved_h5_model_layers_name = set(hdf5_format.load_attributes_from_hdf5_group(f, "layer_names"))
Julien Plu's avatar
Julien Plu committed
518

Julien Plu's avatar
Julien Plu committed
519
520
        # Find the missing layers from the high level list of layers
        missing_layers = list(set([layer.name for layer in model.layers]) - saved_h5_model_layers_name)
Julien Plu's avatar
Julien Plu committed
521

Julien Plu's avatar
Julien Plu committed
522
523
524
525
        # Find the unexpected layers from the high level list of layers
        unexpected_layers = list(saved_h5_model_layers_name - set([layer.name for layer in model.layers]))
        saved_weight_names_set = set()
        symbolic_weights_names = set()
Julien Plu's avatar
Julien Plu committed
526
527
        weight_value_tuples = []

Julien Plu's avatar
Julien Plu committed
528
529
        # Compute missing and unexpected sub layers
        # Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...]
Julien Plu's avatar
Julien Plu committed
530
        for layer in model.layers:
Julien Plu's avatar
Julien Plu committed
531
532
533
534
535
            # if layer_name from the H5 file belongs to the layers from the instantiated model
            if layer.name in saved_h5_model_layers_name:
                # Get the H5 layer object from its name
                h5_layer_object = f[layer.name]
                # Get all the weights as a list from the layer object
Julien Plu's avatar
Julien Plu committed
536
                symbolic_weights = layer.trainable_weights + layer.non_trainable_weights
Julien Plu's avatar
Julien Plu committed
537
                saved_weights = {}
Julien Plu's avatar
Julien Plu committed
538

Julien Plu's avatar
Julien Plu committed
539
540
541
542
                # Create a dict from the H5 saved model that looks like {"weight_name": weight_value}
                # And a set with only the names
                for weight_name in hdf5_format.load_attributes_from_hdf5_group(h5_layer_object, "weight_names"):
                    # TF names always start with the model name so we ignore it
Julien Plu's avatar
Julien Plu committed
543
                    name = "/".join(weight_name.split("/")[1:])
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
544
545
546
547

                    if _prefix is not None:
                        name = _prefix + "/" + name

Julien Plu's avatar
Julien Plu committed
548
                    saved_weights[name] = np.asarray(h5_layer_object[weight_name])
Julien Plu's avatar
Julien Plu committed
549

Julien Plu's avatar
Julien Plu committed
550
551
552
553
                    # Add the updated name to the final list for computing missing/unexpected values
                    saved_weight_names_set.add(name)

                # Loop over each weights from the instantiated model and compare with the weights from the H5 file
Julien Plu's avatar
Julien Plu committed
554
                for symbolic_weight in symbolic_weights:
Julien Plu's avatar
Julien Plu committed
555
                    # TF names always start with the model name so we ignore it
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
556
557
558
559
560
561
562
563
                    if _prefix is not None:
                        delimeter = len(_prefix.split("/"))
                        symbolic_weight_name = "/".join(
                            symbolic_weight.name.split("/")[:delimeter]
                            + symbolic_weight.name.split("/")[delimeter + 1 :]
                        )
                    else:
                        symbolic_weight_name = "/".join(symbolic_weight.name.split("/")[1:])
Julien Plu's avatar
Julien Plu committed
564
565
566
567
568

                    # here we check if the current weight is among the weights from the H5 file
                    # If yes, get the weight_value of the corresponding weight from the H5 file
                    # If not, make the value to None
                    saved_weight_value = saved_weights.get(symbolic_weight_name, None)
Julien Plu's avatar
Julien Plu committed
569

Julien Plu's avatar
Julien Plu committed
570
571
                    # Add the updated name to the final list for computing missing/unexpected values
                    symbolic_weights_names.add(symbolic_weight_name)
Julien Plu's avatar
Julien Plu committed
572

Julien Plu's avatar
Julien Plu committed
573
574
575
                    # If the current weight is found
                    if saved_weight_value is not None:
                        # Check if the shape of the current weight and the one from the H5 file are different
Julien Plu's avatar
Julien Plu committed
576
                        if K.int_shape(symbolic_weight) != saved_weight_value.shape:
Julien Plu's avatar
Julien Plu committed
577
578
                            # If yes we reshape the weight from the H5 file accordingly to the current weight
                            # If the two shapes are not compatible we raise an issue
Julien Plu's avatar
Julien Plu committed
579
580
                            try:
                                array = np.reshape(saved_weight_value, K.int_shape(symbolic_weight))
581
582
583
584
585
586
587
588
                            except ValueError as e:
                                if ignore_mismatched_sizes:
                                    mismatched_layers.append(
                                        (symbolic_weight_name, saved_weight_value.shape, K.int_shape(symbolic_weight))
                                    )
                                    continue
                                else:
                                    raise e
Julien Plu's avatar
Julien Plu committed
589
590
591
                        else:
                            array = saved_weight_value

Julien Plu's avatar
Julien Plu committed
592
                        # We create the tuple that will be loaded and add it to the final list
Julien Plu's avatar
Julien Plu committed
593
594
                        weight_value_tuples.append((symbolic_weight, array))

Julien Plu's avatar
Julien Plu committed
595
    # Load all the weights
Julien Plu's avatar
Julien Plu committed
596
597
    K.batch_set_value(weight_value_tuples)

Julien Plu's avatar
Julien Plu committed
598
599
600
601
    # Compute the missing and unexpected layers
    missing_layers.extend(list(symbolic_weights_names - saved_weight_names_set))
    unexpected_layers.extend(list(saved_weight_names_set - symbolic_weights_names))

602
    return missing_layers, unexpected_layers, mismatched_layers
Julien Plu's avatar
Julien Plu committed
603

Julien Plu's avatar
Julien Plu committed
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
def init_copy_embeddings(old_embeddings, new_num_tokens):
    r"""
    This function aims to reduce the embeddings in case new_num_tokens < old_num_tokens or to pad with -1 in case
    new_num_tokens > old_num_tokens. A mask is also computed in order to know which weight in the embeddings should be
    kept or not. Example:

        - if new_num_tokens=5 and old_num_tokens=4 and old_embeddings=[w1,w2,w3,w4]

            -  mask=[True,True,True,True,False] and current_weights=[w1,w2,w3,w4,-1]
        - if new_num_tokens=4 and old_num_tokens=5 and old_embeddings=[w1,w2,w3,w4,w5]

            - mask=[True,True,True,True] and current_weights=[w1,w2,w3,w4]
    """
    old_num_tokens, old_embedding_dim = shape_list(old_embeddings)
    size_diff = new_num_tokens - old_num_tokens

    # initialize new embeddings
    # Copy token embeddings from the previous ones
    if tf.math.greater(size_diff, 0):
        # if the new size is greater than the old one, we extend the current embeddings with a padding until getting new size
        # and we create a mask to properly identify the padded values and be replaced by the values of the newly created
        # embeddings
        current_weights = tf.pad(
            old_embeddings.value(), tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=-1
        )
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
        mask = tf.fill(tf.convert_to_tensor([num_tokens_to_copy, 1]), True)
        mask = tf.pad(mask, tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=False)
    else:
        # if the new size if lower than the old one, we take the current embeddings until the new size
        current_weights = tf.slice(
            old_embeddings.value(),
            tf.convert_to_tensor([0, 0]),
            tf.convert_to_tensor([new_num_tokens, old_embedding_dim]),
        )
        mask = tf.fill(tf.convert_to_tensor([new_num_tokens, 1]), True)

    return mask, current_weights


Sylvain Gugger's avatar
Sylvain Gugger committed
645
class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, PushToHubMixin):
646
647
    r"""
    Base class for all TF models.
thomwolf's avatar
thomwolf committed
648

Sylvain Gugger's avatar
Sylvain Gugger committed
649
650
    [`TFPreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
thomwolf's avatar
thomwolf committed
651

652
653
        - resize the input embeddings,
        - prune heads in the self-attention heads.
thomwolf's avatar
thomwolf committed
654

655
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
656

Sylvain Gugger's avatar
Sylvain Gugger committed
657
658
659
660
661
662
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
thomwolf's avatar
thomwolf committed
663
664
665
    """
    config_class = None
    base_model_prefix = ""
666
    main_input_name = "input_ids"
667
    _auto_class = None
668

669
670
671
672
673
674
    # a list of re pattern of tensor names to ignore from the model when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_missing = None
    # a list of re pattern of tensor names to ignore from the weights when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_unexpected = None
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
675
    _requires_load_weight_prefix = False
thomwolf's avatar
thomwolf committed
676

677
    @property
678
679
    def dummy_inputs(self) -> Dict[str, tf.Tensor]:
        """
Julien Plu's avatar
Julien Plu committed
680
681
682
        Dummy inputs to build the network.

        Returns:
683
            `Dict[str, tf.Tensor]`: The dummy inputs.
684
        """
Julien Plu's avatar
Julien Plu committed
685
686
687
        return {
            "input_ids": tf.constant(DUMMY_INPUTS),
        }
thomwolf's avatar
thomwolf committed
688

689
690
691
692
693
694
695
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a TensorFlow model.
        """
        return "tf"

thomwolf's avatar
thomwolf committed
696
    def __init__(self, config, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
697
        super().__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
698
699
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
700
701
702
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
703
            )
704
        # Save config and origin of the pretrained weights if given in model
thomwolf's avatar
thomwolf committed
705
        self.config = config
706
        self.name_or_path = config.name_or_path
thomwolf's avatar
thomwolf committed
707

708
    def get_config(self):
709
        return self.config.to_dict()
710
711
712

    @classmethod
    def from_config(cls, config, **kwargs):
713
714
715
        if isinstance(config, PretrainedConfig):
            return cls._from_config(config, **kwargs)
        return cls._from_config(cls.config_class.from_dict(config, **kwargs))
716

717
718
719
720
721
722
723
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.
        """
        return cls(config, **kwargs)

Julien Plu's avatar
Julien Plu committed
724
725
726
727
728
729
730
731
732
733
734
735
736
737
    @tf.function(
        input_signature=[
            {
                "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
                "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
                "token_type_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"),
            }
        ]
    )
    def serving(self, inputs):
        """
        Method used for serving the model.

        Args:
738
            inputs (`Dict[str, tf.Tensor]`):
739
                The input of the saved model as a dictionary of tensors.
Julien Plu's avatar
Julien Plu committed
740
741
742
743
744
745
746
747
748
749
        """
        output = self.call(inputs)

        return self.serving_output(output)

    def serving_output(output):
        """
        Prepare the output of the saved model. Each model must implement this function.

        Args:
750
            output ([`TFBaseModelOutput`]):
Julien Plu's avatar
Julien Plu committed
751
752
753
754
                The output returned by the model.
        """
        raise NotImplementedError

755
    def get_input_embeddings(self) -> tf.keras.layers.Layer:
756
        """
757
        Returns the model's input embeddings layer.
758
759

        Returns:
760
            `tf.Variable`: The embeddings layer mapping vocabulary to hidden states.
761
        """
762
        main_layer = getattr(self, self.base_model_prefix, self)
Julien Plu's avatar
Julien Plu committed
763

764
765
        if main_layer is not self:
            return main_layer.get_input_embeddings()
766
767
768
        else:
            raise NotImplementedError

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
    def _save_checkpoint(self, checkpoint_dir, epoch):
        if not os.path.isdir(checkpoint_dir):
            os.mkdir(checkpoint_dir)
        # We avoid tf.train.checkpoint or saving weights in TF format, even though that includes optimizer
        # state for us, because it requires special handling for objects like custom losses, which we use
        # internally and which users are likely to use too
        weights_path = os.path.join(checkpoint_dir, "weights.h5")
        self.save_weights(weights_path)
        extra_data = {"epoch": epoch, "optimizer_state": self.optimizer.get_weights()}
        extra_data_path = os.path.join(checkpoint_dir, "extra_data.pickle")
        with open(extra_data_path, "wb") as f:
            pickle.dump(extra_data, f)

    def load_repo_checkpoint(self, repo_path_or_name):
        """
        Loads a saved checkpoint (model weights and optimizer state) from a repo. Returns the current epoch count when
        the checkpoint was made.

        Args:
788
            repo_path_or_name (`str`):
789
790
791
792
                Can either be a repository name for your {object} in the Hub or a path to a local folder (in which case
                the repository will have the name of that local folder).

        Returns:
793
            `dict`: A dictionary of extra metadata from the checkpoint, most commonly an "epoch" count.
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
        """
        if getattr(self, "optimizer", None) is None:
            raise RuntimeError(
                "Checkpoint loading failed as no optimizer is attached to the model. "
                "This is most likely caused by the model not being compiled."
            )
        if not os.path.isdir(repo_path_or_name):
            # If this isn't a local path, check that the remote repo exists and has a checkpoint in it
            repo_files = list_repo_files(repo_path_or_name)
            for file in ("checkpoint/weights.h5", "checkpoint/extra_data.pickle"):
                if file not in repo_files:
                    raise FileNotFoundError(f"Repo {repo_path_or_name} does not contain checkpoint file {file}!")
            if "/" not in repo_path_or_name:
                model_id = repo_path_or_name
                repo_path_or_name = self.get_full_repo_name(repo_path_or_name)
            else:
                model_id = repo_path_or_name.split("/")[-1]
            repo = Repository(model_id, clone_from=f"https://huggingface.co/{repo_path_or_name}")
            local_dir = repo.local_dir
        else:
            local_dir = repo_path_or_name

        # Now make sure the repo actually has a checkpoint in it.
        checkpoint_dir = os.path.join(local_dir, "checkpoint")
        weights_file = os.path.join(checkpoint_dir, "weights.h5")
        if not os.path.isfile(weights_file):
            raise FileNotFoundError(f"Could not find checkpoint file weights.h5 in repo {repo_path_or_name}!")
        extra_data_file = os.path.join(checkpoint_dir, "extra_data.pickle")
        if not os.path.isfile(extra_data_file):
            raise FileNotFoundError(f"Could not find checkpoint file extra_data.pickle in repo {repo_path_or_name}!")

        # Assuming the repo is real and we got a checkpoint, load the weights and the optimizer state into the model.
        # The optimizer state includes the iteration count, so learning rate schedules should resume as normal too.
        self.load_weights(weights_file)
        with open(extra_data_file, "rb") as f:
            extra_data = pickle.load(f)
        self.optimizer.set_weights(extra_data["optimizer_state"])

        # Finally, return the epoch number from the checkpoint. This isn't a property of the model, so we can't
        # set it directly, but the user can pass it to fit().
        return {"epoch": extra_data["epoch"]}

Matt's avatar
Matt committed
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
    def compile(
        self,
        optimizer="rmsprop",
        loss="passthrough",
        metrics=None,
        loss_weights=None,
        weighted_metrics=None,
        run_eagerly=None,
        steps_per_execution=None,
        **kwargs
    ):
        """
        This is a thin wrapper that sets the model's loss output head as the loss if the user does not specify a loss
        function themselves.
        """
        if loss == "passthrough":
            logger.warning(
                "No loss specified in compile() - the model's internal loss computation will be used as the "
                "loss. Don't panic - this is a common way to train TensorFlow models in Transformers! "
855
                "Please ensure your labels are passed as keys in the input dict so that they are "
Matt's avatar
Matt committed
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
                "accessible to the model during the forward pass. To disable this behaviour, please pass a "
                "loss argument, or explicitly pass loss=None if you do not want your model to compute a loss."
            )
            loss = {"loss": dummy_loss}
        super().compile(
            optimizer=optimizer,
            loss=loss,
            metrics=metrics,
            loss_weights=loss_weights,
            weighted_metrics=weighted_metrics,
            run_eagerly=run_eagerly,
            steps_per_execution=steps_per_execution,
            **kwargs,
        )

871
872
873
874
875
876
877
878
879
880
881
882
883
884
    def compute_loss(self, *args, **kwargs):
        if hasattr(tf.keras.Model, "compute_loss"):
            # This will be true in TF 2.8 or greater
            return super().compute_loss(*args, **kwargs)
        else:
            warnings.warn(
                "The old compute_loss method is deprecated as it conflicts with the Keras compute_loss "
                "method added in TF 2.8. If you want the original HF compute_loss, please call "
                "hf_compute_loss() instead. From TF versions >= 2.8, or Transformers versions >= 5, "
                "calling compute_loss() will get the Keras method instead.",
                FutureWarning,
            )
            return self.hf_compute_loss(*args, **kwargs)

Matt's avatar
Matt committed
885
886
    def train_step(self, data):
        """
Joao Gante's avatar
Joao Gante committed
887
888
889
890
891
892
893
894
895
896
897
        A modification of Keras's default `train_step` that cleans up the printed metrics when we use a dummy loss. If
        a user specifies a loss at model compile time, this function behaves as the original Keras `train_step`. In
        this case, it expects the same `data` as the original function (i.e. `(inputs, labels)`).

        However, when the model is compiled without specifying the loss AND the expected label columns are passed as
        part of the input dictionary, the loss is computed internally (inside the model class) and is used in the
        backwards pass. In this case, `data` is a singleton tuple containing `(inputs,)`.

        This is possible under the aforementioned circumstances because our overriden compile function can set an
        additional loss function that reduces a `loss` output, and the model will output a `loss` component (notice the
        name matching) containing the loss that was used to train the pre-trained model.
Matt's avatar
Matt committed
898
899
900
901
902
903
904
905
906
        """
        # These are the only transformations `Model.fit` applies to user-input
        # data when a `tf.data.Dataset` is provided.
        data = data_adapter.expand_1d(data)
        x, y, sample_weight = data_adapter.unpack_x_y_sample_weight(data)
        # These next two lines differ from the base method - they avoid issues when the labels are in
        # the input dict (and loss is computed internally)
        if y is None and "labels" in x:
            y = x["labels"]  # Stops confusion with metric computations
Matt's avatar
Matt committed
907
908
909
        elif y is None and "input_ids" in x:
            # Just make any kind of dummy array to make loss work
            y = tf.zeros(tf.shape(x["input_ids"])[0], dtype=tf.int64)
Matt's avatar
Matt committed
910
911
912
913
914
915
        # Run forward pass.
        with tf.GradientTape() as tape:
            y_pred = self(x, training=True)
            loss = self.compiled_loss(y, y_pred, sample_weight, regularization_losses=self.losses)
        # Run backwards pass.
        self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
916
917
918
919
920
        # When y_pred is a ModelOutput and y is a tf.Tensor the metrics update
        # should be done only with the relevant ModelOutput param that is
        # considered by the loss.
        if isinstance(y_pred, TFSeq2SeqLMOutput) and isinstance(y, tf.Tensor):
            y_pred = y_pred["logits"]
Matt's avatar
Matt committed
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
        self.compiled_metrics.update_state(y, y_pred, sample_weight)
        # Collect metrics to return
        return_metrics = {}
        for metric in self.metrics:
            result = metric.result()
            if isinstance(result, dict):
                return_metrics.update(result)
            else:
                return_metrics[metric.name] = result
        # These next two lines are also not in the base method - they correct the displayed metrics
        # when we're using a dummy loss, to avoid a bogus "loss_loss" value being shown.
        if "loss" in return_metrics and "loss_loss" in return_metrics:
            del return_metrics["loss_loss"]
        return return_metrics

    def test_step(self, data):
        """
        A modification of Keras's default test_step that cleans up the printed metrics when we use a dummy loss.
        """
        data = data_adapter.expand_1d(data)
        x, y, sample_weight = data_adapter.unpack_x_y_sample_weight(data)
        # These next two lines differ from the base method - they avoid issues when the labels are in
        # the input dict (and loss is computed internally)
        if y is None and "labels" in x:
            y = x["labels"]  # Stops confusion with metric computations
946
947
948
        elif y is None and "input_ids" in x:
            # Just make any kind of dummy array to make loss work
            y = tf.zeros(tf.shape(x["input_ids"])[0], dtype=tf.int64)
Matt's avatar
Matt committed
949
950
        y_pred = self(x, training=False)
        self.compiled_loss(y, y_pred, sample_weight, regularization_losses=self.losses)
951
952
953
        # Updates stateful loss metrics.
        if isinstance(y_pred, TFSeq2SeqLMOutput) and isinstance(y, tf.Tensor):
            y_pred = y_pred["logits"]
Matt's avatar
Matt committed
954
955
        self.compiled_metrics.update_state(y, y_pred, sample_weight)
        # Collect metrics to return
956
        return_metrics = {}
Matt's avatar
Matt committed
957
958
959
960
961
962
963
964
965
966
967
968
        for metric in self.metrics:
            result = metric.result()
            if isinstance(result, dict):
                return_metrics.update(result)
            else:
                return_metrics[metric.name] = result
        # These next two lines are also not in the base method - they correct the displayed metrics
        # when we're using a dummy loss, to avoid a bogus "loss_loss" value being shown.
        if "loss" in return_metrics and "loss_loss" in return_metrics:
            del return_metrics["loss_loss"]
        return return_metrics

Matt's avatar
Matt committed
969
970
971
972
973
974
975
976
977
978
979
980
981
    def create_model_card(
        self,
        output_dir,
        model_name: str,
        language: Optional[str] = None,
        license: Optional[str] = None,
        tags: Optional[str] = None,
        finetuned_from: Optional[str] = None,
        tasks: Optional[str] = None,
        dataset_tags: Optional[Union[str, List[str]]] = None,
        dataset: Optional[Union[str, List[str]]] = None,
        dataset_args: Optional[Union[str, List[str]]] = None,
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
982
983
984
        # Avoids a circular import by doing this when necessary.
        from .modelcard import TrainingSummary

Matt's avatar
Matt committed
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
        training_summary = TrainingSummary.from_keras(
            self,
            keras_history=self.history,
            language=language,
            license=license,
            tags=tags,
            model_name=model_name,
            finetuned_from=finetuned_from,
            tasks=tasks,
            dataset_tags=dataset_tags,
            dataset=dataset,
            dataset_args=dataset_args,
        )
        model_card = training_summary.to_model_card()
        with open(os.path.join(output_dir, "README.md"), "w") as f:
            f.write(model_card)

1002
1003
    def set_input_embeddings(self, value):
        """
1004
        Set model's input embeddings
1005
1006

        Args:
1007
            value (`tf.Variable`):
1008
                The new weights mapping hidden states to vocabulary.
1009
        """
1010
        main_layer = getattr(self, self.base_model_prefix)
1011

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
        if main_layer is None:
            raise NotImplementedError("The model does not implements the base_model_prefix attribute.")

        try:
            main_layer.set_input_embeddings(value)
        except AttributeError:
            logger.info("Building the model")
            self(self.dummy_inputs)
            main_layer.set_input_embeddings(value)

    def get_output_embeddings(self) -> Union[None, tf.keras.layers.Layer]:
1023
        """
1024
        Returns the model's output embeddings
1025
1026

        Returns:
1027
            `tf.Variable`: The new weights mapping vocabulary to hidden states.
1028
        """
1029
1030
1031
        if self.get_lm_head() is not None:
            lm_head = self.get_lm_head()

1032
1033
1034
1035
1036
1037
1038
            try:
                return lm_head.get_output_embeddings()
            except AttributeError:
                logger.info("Building the model")
                self(self.dummy_inputs)

                return lm_head().get_output_embeddings()
1039

1040
1041
        return None  # Overwrite for models with output embeddings

1042
1043
1044
1045
1046
    def set_output_embeddings(self, value):
        """
        Set model's output embeddings

        Args:
1047
            value (`tf.Variable`):
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
                The new weights mapping hidden states to vocabulary.
        """
        if self.get_lm_head() is not None:
            lm_head = self.get_lm_head()
            try:
                lm_head.set_output_embeddings(value)
            except AttributeError:
                logger.info("Building the model")
                self(self.dummy_inputs)
                lm_head.set_output_embeddings(value)

1059
1060
1061
    def get_output_layer_with_bias(self) -> Union[None, tf.keras.layers.Layer]:
        """
        Get the layer that handles a bias attribute in case the model has an LM head with weights tied to the
1062
        embeddings
1063
1064

        Return:
1065
            `tf.keras.layers.Layer`: The layer that handles the bias, None if not an LM model.
1066
        """
1067
1068
1069
1070
        warnings.warn(
            "The method get_output_layer_with_bias is deprecated. Please use `get_lm_head` instead.", FutureWarning
        )
        return self.get_lm_head()
1071
1072
1073

    def get_prefix_bias_name(self) -> Union[None, str]:
        """
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1074
        Get the concatenated _prefix name of the bias from the model name to the parent layer
1075
1076

        Return:
1077
            `str`: The _prefix name of the bias.
1078
        """
1079
1080
1081
1082
1083
1084
1085
1086
        warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
        return None

    def get_bias(self) -> Union[None, Dict[str, tf.Variable]]:
        """
        Dict of bias attached to an LM head. The key represents the name of the bias attribute.

        Return:
1087
            `tf.Variable`: The weights representing the bias, None if not an LM model.
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
        """
        if self.get_lm_head() is not None:
            lm_head = self.get_lm_head()
            try:
                return lm_head.get_bias()
            except AttributeError:
                self(self.dummy_inputs)

                return lm_head.get_bias()
        return None

    def set_bias(self, value):
        """
        Set all the bias in the LM head.

        Args:
1104
            value (`Dict[tf.Variable]`):
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
                All the new bias attached to an LM head.
        """
        if self.get_lm_head() is not None:
            lm_head = self.get_lm_head()
            try:
                lm_head.set_bias(value)
            except AttributeError:
                self(self.dummy_inputs)
                lm_head.set_bias(value)

    def get_lm_head(self) -> tf.keras.layers.Layer:
        """
        The LM Head layer. This method must be overwritten by all the models that have a lm head.

        Return:
1120
            `tf.keras.layers.Layer`: The LM head layer if the model has one, None if not.
1121
        """
1122
1123
        return None

1124
1125
    def resize_token_embeddings(self, new_num_tokens=None) -> tf.Variable:
        """
1126
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1127

1128
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
1129

1130
        Arguments:
1131
            new_num_tokens (`int`, *optional*):
1132
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1133
1134
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `tf.Variable` module of the model without doing anything.
1135
1136

        Return:
1137
            `tf.Variable`: Pointer to the input tokens Embeddings Module of the model.
1138
        """
1139
1140
        if new_num_tokens is None or new_num_tokens == self.config.vocab_size:
            return self._get_word_embedding_weight(self.get_input_embeddings())
1141

1142
        model_embeds = self._resize_token_embeddings(new_num_tokens)
1143
1144
1145

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
1146
1147
1148

        return model_embeds

1149
    def _get_word_embedding_weight(model, embedding_layer):
Joao Gante's avatar
Joao Gante committed
1150
1151
1152
1153
1154
        # If the variable holds the weights themselves, return them
        if isinstance(embedding_layer, tf.Tensor):
            return embedding_layer
        # Otherwise, try to get them from the layer's attributes

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
        embeds = getattr(embedding_layer, "weight", None)
        if embeds is not None:
            return embeds

        embeds = getattr(embedding_layer, "decoder", None)
        if embeds is not None:
            return embeds

        # The reason why the attributes don't exist might be
        # because the model is not built, so retry getting
        # the argument after building the model
        model(model.dummy_inputs)

        embeds = getattr(embedding_layer, "weight", None)
        if embeds is not None:
            return embeds

        embeds = getattr(embedding_layer, "decoder", None)
        if embeds is not None:
            return embeds

        return None
1177

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self._get_word_embedding_weight(self.get_input_embeddings())
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)

        # if word embeddings are not tied, make sure that lm head bias is resized as well
        if self.get_bias() is not None:
            old_lm_head_bias = self.get_bias()
            new_lm_head_bias = self._get_resized_lm_head_bias(old_lm_head_bias, new_num_tokens)

            self.set_bias(new_lm_head_bias)

        # if word embeddings are not tied, make sure that lm head decoder is resized as well
        if self.get_output_embeddings() is not None:
            old_lm_head_decoder = self._get_word_embedding_weight(self.get_output_embeddings())
            new_lm_head_decoder = self._get_resized_lm_head_decoder(old_lm_head_decoder, new_num_tokens)

            self.set_output_embeddings(new_lm_head_decoder)

        self.set_input_embeddings(new_embeddings)

        return self.get_input_embeddings()

    def _get_resized_lm_head_bias(self, old_lm_head_bias, new_num_tokens):
1201
        """
1202
1203
        Build a resized bias from the old ones. Increasing the size will add newly initialized vectors at the end.
        Reducing the size will remove vectors from the end
thomwolf's avatar
thomwolf committed
1204
1205

        Args:
1206
            old_lm_head_bias (`tf.Variable`):
1207
                Old lm head bias to be resized.
1208
            new_num_tokens (`int`, *optional*):
1209
                New number of tokens in the linear matrix.
1210
1211

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1212
                vectors from the end. If not provided or `None`, just returns None
1213
1214

        Return:
1215
            `tf.Variable`: Pointer to the resized bias.
thomwolf's avatar
thomwolf committed
1216
        """
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
        new_lm_head_bias = {}

        for attr, weight in old_lm_head_bias.items():
            first_dim, old_num_tokens = (None, shape_list(weight)[0]) if tf.rank(weight) == 1 else shape_list(weight)
            size_diff = new_num_tokens - old_num_tokens
            final_shape = [new_num_tokens] if first_dim is None else [first_dim, new_num_tokens]

            # initialize new bias
            if tf.math.greater(size_diff, 0):
                padding_shape = [[0, size_diff]] if first_dim is None else [[0, 0], [0, size_diff]]
                current_bias = tf.pad(weight.value(), tf.convert_to_tensor(padding_shape), constant_values=-1)
                num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
                mask_shape = [num_tokens_to_copy] if first_dim is None else [1, num_tokens_to_copy]
                bias_mask = tf.fill(tf.convert_to_tensor(mask_shape), True)
                bias_mask = tf.pad(bias_mask, tf.convert_to_tensor(padding_shape), constant_values=False)
            else:
                slice_from = [0] if first_dim is None else [0, 0]
                current_bias = tf.slice(
                    weight.value(), tf.convert_to_tensor(slice_from), tf.convert_to_tensor(final_shape)
                )
                bias_mask = tf.fill(tf.convert_to_tensor(final_shape), True)
1238

1239
1240
1241
1242
1243
1244
1245
            new_bias = self.add_weight(
                shape=final_shape,
                initializer="zeros",
                trainable=True,
                name=weight.name.split(":")[0],
            )
            init_bias = tf.where(bias_mask, current_bias, new_bias.value())
1246

1247
1248
            new_bias.assign(init_bias)
            new_lm_head_bias[attr] = new_bias
1249

1250
        return new_lm_head_bias
thomwolf's avatar
thomwolf committed
1251

1252
1253
1254
1255
    def _get_resized_lm_head_decoder(self, old_lm_head_decoder, new_num_tokens):
        """
        Build a resized decoder from the old ones. Increasing the size will add newly initialized vectors at the end.
        Reducing the size will remove vectors from the end
thomwolf's avatar
thomwolf committed
1256

1257
        Args:
1258
            old_lm_head_decoder (`tf.Variable`):
1259
                Old lm head decoder to be resized.
1260
            new_num_tokens (`int`, *optional*):
1261
                New number of tokens in the linear matrix.
1262

1263
                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1264
                vectors from the end. If not provided or `None`, just returns None
1265

1266
        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1267
1268
            `tf.Variable`: Pointer to the resized decoder or None if the output embeddings are different from the input
            ones.
1269
1270
1271
1272
1273
        """
        new_lm_head_decoder = old_lm_head_decoder
        is_input_output_equals = tf.reduce_any(
            self._get_word_embedding_weight(self.get_input_embeddings()) == old_lm_head_decoder
        )
1274

1275
1276
1277
1278
1279
        if old_lm_head_decoder is not None and not is_input_output_equals:
            old_embedding_dim = shape_list(old_lm_head_decoder)[1]
            decoder_mask, current_decoder = init_copy_embeddings(old_lm_head_decoder, new_num_tokens)
            new_lm_head_decoder = self.add_weight(
                shape=(new_num_tokens, old_embedding_dim),
1280
1281
                initializer="zeros",
                trainable=True,
1282
                name=old_lm_head_decoder.name.split(":")[0],
1283
            )
1284
1285
1286
            init_decoder = tf.where(decoder_mask, current_decoder, new_lm_head_decoder.value())

            new_lm_head_decoder.assign(init_decoder)
1287

1288
        return new_lm_head_decoder
1289

1290
1291
1292
1293
    def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None) -> tf.Variable:
        """
        Build a resized Embedding weights from a provided token Embedding weights. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
1294

1295
        Args:
1296
            old_embeddings (`tf.Variable`):
1297
                Old embeddings to be resized.
1298
            new_num_tokens (`int`, *optional*):
1299
                New number of tokens in the embedding matrix.
1300

1301
                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1302
1303
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
                ``tf.Variable``` module of the model without doing anything.
1304

1305
        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1306
1307
            `tf.Variable`: Pointer to the resized Embedding Module or the old Embedding Module if `new_num_tokens` is
            `None`
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
        """
        old_embedding_dim = shape_list(old_embeddings)[1]
        init_range = getattr(self.config, "initializer_range", 0.02)
        embeddings_mask, current_embeddings = init_copy_embeddings(old_embeddings, new_num_tokens)
        new_embeddings = self.add_weight(
            name=old_embeddings.name.split(":")[0],
            shape=[new_num_tokens, old_embedding_dim],
            initializer=get_initializer(init_range),
            dtype=tf.float32,
        )
        init_embeddings = tf.where(embeddings_mask, current_embeddings, new_embeddings.value())
1319

1320
        new_embeddings.assign(init_embeddings)
1321

1322
        return new_embeddings
thomwolf's avatar
thomwolf committed
1323
1324

    def prune_heads(self, heads_to_prune):
1325
1326
        """
        Prunes heads of the base model.
thomwolf's avatar
thomwolf committed
1327

1328
        Arguments:
1329
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1330
1331
1332
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
1333
1334
1335
        """
        raise NotImplementedError

Sylvain Gugger's avatar
Sylvain Gugger committed
1336
    def save_pretrained(self, save_directory, saved_model=False, version=1, push_to_hub=False, **kwargs):
1337
1338
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
1339
        [`~TFPreTrainedModel.from_pretrained`] class method.
1340
1341

        Arguments:
1342
            save_directory (`str`):
1343
                Directory to which to save. Will be created if it doesn't exist.
1344
            saved_model (`bool`, *optional*, defaults to `False`):
Julien Plu's avatar
Julien Plu committed
1345
                If the model has to be saved in saved model format as well or not.
1346
            version (`int`, *optional*, defaults to 1):
Julien Plu's avatar
Julien Plu committed
1347
1348
1349
                The version of the saved model. A saved model needs to be versioned in order to be properly loaded by
                TensorFlow Serving as detailed in the official documentation
                https://www.tensorflow.org/tfx/serving/serving_basic
1350
            push_to_hub (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1351
                Whether or not to push your model to the Hugging Face model hub after saving it.
1352

1353
                <Tip warning={true}>
1354

Sylvain Gugger's avatar
Sylvain Gugger committed
1355
1356
1357
                Using `push_to_hub=True` will synchronize the repository you are pushing to with `save_directory`,
                which requires `save_directory` to be a local clone of the repo you are pushing to if it's an existing
                folder. Pass along `temp_dir=True` to use a temporary directory instead.
1358
1359

                </Tip>
1360

Sylvain Gugger's avatar
Sylvain Gugger committed
1361
            kwargs:
Sylvain Gugger's avatar
Sylvain Gugger committed
1362
                Additional key word arguments passed along to the [`~file_utils.PushToHubMixin.push_to_hub`] method.
thomwolf's avatar
thomwolf committed
1363
        """
1364
        if os.path.isfile(save_directory):
1365
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
1366
            return
1367
1368
1369
1370
1371

        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            repo = self._create_or_get_repo(save_directory, **kwargs)

1372
        os.makedirs(save_directory, exist_ok=True)
thomwolf's avatar
thomwolf committed
1373

Julien Plu's avatar
Julien Plu committed
1374
1375
1376
1377
1378
        if saved_model:
            saved_model_dir = os.path.join(save_directory, "saved_model", str(version))
            self.save(saved_model_dir, include_optimizer=False, signatures=self.serving)
            logger.info(f"Saved model created in {saved_model_dir}")

thomwolf's avatar
thomwolf committed
1379
        # Save configuration file
1380
        self.config.architectures = [self.__class__.__name__[2:]]
1381
1382
1383
1384
1385
1386

        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

thomwolf's avatar
thomwolf committed
1387
1388
1389
1390
1391
        self.config.save_pretrained(save_directory)

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, TF2_WEIGHTS_NAME)
        self.save_weights(output_model_file)
1392
        logger.info(f"Model weights saved in {output_model_file}")
thomwolf's avatar
thomwolf committed
1393

Sylvain Gugger's avatar
Sylvain Gugger committed
1394
        if push_to_hub:
1395
            url = self._push_to_hub(repo, commit_message=commit_message)
Sylvain Gugger's avatar
Sylvain Gugger committed
1396
1397
            logger.info(f"Model pushed to the hub in this commit: {url}")

thomwolf's avatar
thomwolf committed
1398
1399
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
1400
1401
        r"""
        Instantiate a pretrained TF 2.0 model from a pre-trained model configuration.
thomwolf's avatar
thomwolf committed
1402

1403
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
1404
1405
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
thomwolf's avatar
thomwolf committed
1406

1407
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
1408
        weights are discarded.
thomwolf's avatar
thomwolf committed
1409
1410

        Parameters:
1411
            pretrained_model_name_or_path (`str`, *optional*):
1412
1413
                Can be either:

1414
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
1415
1416
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
1417
1418
                    - A path to a *directory* containing model weights saved using
                      [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1419
1420
1421
1422
                    - A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this
                      case, `from_pt` should be set to `True` and a configuration object should be provided as `config`
                      argument. This loading path is slower than converting the PyTorch model in a TensorFlow model
                      using the provided conversion scripts and loading the TensorFlow model afterwards.
1423
1424
1425
1426
1427
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str]`, *optional*):
1428
1429
                Can be either:

1430
1431
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string valid as input to [`~PretrainedConfig.from_pretrained`].
1432

1433
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
1434
1435
                be automatically loaded when:

1436
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
1437
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
1438
1439
                    - The model was saved using [`~TFPreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
1440
1441
1442
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            from_pt: (`bool`, *optional*, defaults to `False`):
1443
                Load the model weights from a PyTorch state_dict save file (see docstring of
1444
1445
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
1446
1447
1448
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
1449
            cache_dir (`str`, *optional*):
1450
1451
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
1452
            force_download (`bool`, *optional*, defaults to `False`):
1453
1454
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
1455
            resume_download (`bool`, *optional*, defaults to `False`):
1456
1457
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
Sylvain Gugger's avatar
Sylvain Gugger committed
1458
1459
1460
1461
1462
            proxies:
                (`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g.,
                `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
                output_loading_info(`bool`, *optional*, defaults to `False`): Whether ot not to also return a
                dictionary containing missing keys, unexpected keys and error messages.
1463
            local_files_only(`bool`, *optional*, defaults to `False`):
1464
                Whether or not to only look at local files (e.g., not try doanloading the model).
1465
            use_auth_token (`str` or *bool*, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1466
1467
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`).
1468
            revision(`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
1469
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
1470
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
1471
                identifier allowed by git.
1472
            mirror(`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1473
1474
1475
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
1476
            kwargs (remaining dictionary of keyword arguments, *optional*):
1477
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
1478
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
1479
1480
                automatically loaded:

1481
1482
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
1483
                      already been done)
1484
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
1485
1486
1487
1488
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499

        <Tip>

        Passing `use_auth_token=True` is required when you want to use a private model.

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, TFBertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
1500

1501
        >>> # Download model and configuration from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
1502
        >>> model = TFBertModel.from_pretrained("bert-base-uncased")
1503
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
1504
        >>> model = TFBertModel.from_pretrained("./test/saved_model/")
1505
        >>> # Update configuration during loading.
Sylvain Gugger's avatar
Sylvain Gugger committed
1506
        >>> model = TFBertModel.from_pretrained("bert-base-uncased", output_attentions=True)
1507
1508
        >>> assert model.config.output_attentions == True
        >>> # Loading from a Pytorch model file instead of a TensorFlow checkpoint (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
1509
1510
        >>> config = BertConfig.from_json_file("./pt_model/my_pt_model_config.json")
        >>> model = TFBertModel.from_pretrained("./pt_model/my_pytorch_model.bin", from_pt=True, config=config)
1511
        ```"""
1512
1513
1514
        config = kwargs.pop("config", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_pt = kwargs.pop("from_pt", False)
1515
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
1516
1517
1518
1519
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
1520
        local_files_only = kwargs.pop("local_files_only", False)
1521
        use_auth_token = kwargs.pop("use_auth_token", None)
Julien Chaumond's avatar
Julien Chaumond committed
1522
        revision = kwargs.pop("revision", None)
1523
        mirror = kwargs.pop("mirror", None)
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1524
        load_weight_prefix = kwargs.pop("load_weight_prefix", None)
1525
1526
1527
1528
1529
1530
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)

        user_agent = {"file_type": "model", "framework": "tensorflow", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
1531

1532
1533
1534
1535
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

1536
1537
1538
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
thomwolf's avatar
thomwolf committed
1539
            config, model_kwargs = cls.config_class.from_pretrained(
1540
1541
1542
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
thomwolf's avatar
thomwolf committed
1543
                force_download=force_download,
1544
                resume_download=resume_download,
1545
1546
                proxies=proxies,
                local_files_only=local_files_only,
1547
                use_auth_token=use_auth_token,
Julien Chaumond's avatar
Julien Chaumond committed
1548
                revision=revision,
1549
1550
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
1551
                **kwargs,
thomwolf's avatar
thomwolf committed
1552
1553
1554
1555
1556
            )
        else:
            model_kwargs = kwargs

        # Load model
thomwolf's avatar
thomwolf committed
1557
        if pretrained_model_name_or_path is not None:
1558
            if os.path.isdir(pretrained_model_name_or_path):
1559
1560
1561
1562
                if from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint in priority if from_pt
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
thomwolf's avatar
thomwolf committed
1563
1564
                    # Load from a TF 2.0 checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
1565
1566
1567
1568
1569
1570
1571
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME):
                    raise EnvironmentError(
                        f"Error no file named {TF2_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} "
                        "but there is a file for PyTorch weights. Use `from_pt=True` to load this model from those "
                        "weights."
                    )
thomwolf's avatar
thomwolf committed
1572
                else:
1573
                    raise EnvironmentError(
1574
1575
                        f"Error no file named {TF2_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory "
                        f"{pretrained_model_name_or_path}."
1576
                    )
Julien Chaumond's avatar
Julien Chaumond committed
1577
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
1578
                archive_file = pretrained_model_name_or_path
1579
1580
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
                archive_file = pretrained_model_name_or_path + ".index"
thomwolf's avatar
thomwolf committed
1581
            else:
1582
                filename = WEIGHTS_NAME if from_pt else TF2_WEIGHTS_NAME
thomwolf's avatar
thomwolf committed
1583
                archive_file = hf_bucket_url(
Julien Chaumond's avatar
Julien Chaumond committed
1584
                    pretrained_model_name_or_path,
1585
                    filename=filename,
Julien Chaumond's avatar
Julien Chaumond committed
1586
                    revision=revision,
1587
                    mirror=mirror,
thomwolf's avatar
thomwolf committed
1588
                )
thomwolf's avatar
thomwolf committed
1589
1590

            try:
1591
                # Load from URL or cache if already cached
1592
1593
1594
1595
1596
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
1597
1598
                    resume_download=resume_download,
                    local_files_only=local_files_only,
1599
                    use_auth_token=use_auth_token,
1600
                    user_agent=user_agent,
1601
                )
1602

1603
            except RepositoryNotFoundError:
1604
1605
1606
1607
1608
1609
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
                    "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
                    "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
                    "login` and pass `use_auth_token=True`."
                )
1610
            except RevisionNotFoundError:
1611
1612
1613
1614
1615
                raise EnvironmentError(
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
                    "this model name. Check the model page at "
                    f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
                )
1616
            except EntryNotFoundError:
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
                if filename == TF2_WEIGHTS_NAME:
                    has_file_kwargs = {
                        "revision": revision,
                        "mirror": mirror,
                        "proxies": proxies,
                        "use_auth_token": use_auth_token,
                    }
                    if has_file(pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs):
                        raise EnvironmentError(
                            f"{pretrained_model_name_or_path} does not appear to have a file named {TF2_WEIGHTS_NAME} "
                            "but there is a file for PyTorch weights. Use `from_pt=True` to load this model from "
                            "those weights."
                        )
                    else:
                        raise EnvironmentError(
                            f"{pretrained_model_name_or_path} does not appear to have a file named {TF2_WEIGHTS_NAME} "
                            f"or {WEIGHTS_NAME}."
                        )
                else:
                    raise EnvironmentError(
                        f"{pretrained_model_name_or_path} does not appear to have a file named {filename}."
                    )
1639
            except HTTPError:
1640
1641
1642
1643
1644
1645
1646
                raise EnvironmentError(
                    "We couldn't connect to 'https://huggingface.co/' to load this model and it looks like "
                    f"{pretrained_model_name_or_path} is not the path to a directory conaining a a file named "
                    f"{TF2_WEIGHTS_NAME} or {WEIGHTS_NAME}.\n"
                    "Checkout your internet connection or see how to run the library in offline mode at "
                    "'https://huggingface.co/docs/transformers/installation#offline-mode'."
                )
1647
            except EnvironmentError:
1648
1649
1650
1651
1652
                raise EnvironmentError(
                    f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a file named {TF2_WEIGHTS_NAME} or {WEIGHTS_NAME}."
1653
                )
1654

thomwolf's avatar
thomwolf committed
1655
            if resolved_archive_file == archive_file:
1656
                logger.info(f"loading weights file {archive_file}")
thomwolf's avatar
thomwolf committed
1657
            else:
1658
                logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}")
thomwolf's avatar
thomwolf committed
1659
        else:
thomwolf's avatar
thomwolf committed
1660
            resolved_archive_file = None
thomwolf's avatar
thomwolf committed
1661

1662
1663
        config.name_or_path = pretrained_model_name_or_path

Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1664
1665
1666
1667
1668
        # composed models, *e.g.* TFRag, require special treatment when it comes to loading
        # pre-trained weights.
        if cls._requires_load_weight_prefix and model_kwargs.get("name") is not None:
            model_kwargs["load_weight_prefix"] = load_weight_prefix + "/" + model_kwargs.get("name")

thomwolf's avatar
thomwolf committed
1669
1670
1671
1672
        # Instantiate model.
        model = cls(config, *model_args, **model_kwargs)

        if from_pt:
Julien Plu's avatar
Julien Plu committed
1673
1674
            from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model

thomwolf's avatar
thomwolf committed
1675
            # Load from a PyTorch checkpoint
thomwolf's avatar
thomwolf committed
1676
            return load_pytorch_checkpoint_in_tf2_model(model, resolved_archive_file, allow_missing_keys=True)
thomwolf's avatar
thomwolf committed
1677

Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1678
1679
1680
1681
1682
1683
        # we might need to extend the variable scope for composite models
        if load_weight_prefix is not None:
            with tf.compat.v1.variable_scope(load_weight_prefix):
                model(model.dummy_inputs)  # build the network with dummy inputs
        else:
            model(model.dummy_inputs)  # build the network with dummy inputs
thomwolf's avatar
thomwolf committed
1684

1685
        assert os.path.isfile(resolved_archive_file), f"Error retrieving file {resolved_archive_file}"
thomwolf's avatar
thomwolf committed
1686
1687
        # 'by_name' allow us to do transfer learning by skipping/adding layers
        # see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1339-L1357
1688
        try:
1689
1690
1691
1692
1693
1694
            missing_keys, unexpected_keys, mismatched_keys = load_tf_weights(
                model,
                resolved_archive_file,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                _prefix=load_weight_prefix,
            )
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
        except OSError as e:
            try:
                with open(resolved_archive_file) as f:
                    if f.read().startswith("version"):
                        raise OSError(
                            "You seem to have cloned a repository without having git-lfs installed. Please install "
                            "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                            "you cloned."
                        )
                    else:
                        raise ValueError from e
            except (UnicodeDecodeError, ValueError):
                raise OSError(
                    "Unable to load weights from h5 file. "
                    "If you tried to load a TF 2.0 model from a PyTorch checkpoint, please set from_pt=True. "
                )
thomwolf's avatar
thomwolf committed
1711

Julien Plu's avatar
Julien Plu committed
1712
        model(model.dummy_inputs)  # Make sure restore ops are run
thomwolf's avatar
thomwolf committed
1713

1714
1715
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
1716
1717
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

1718
1719
        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
Julien Plu's avatar
Julien Plu committed
1720
1721
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

1722
1723
        if len(unexpected_keys) > 0:
            logger.warning(
Julien Plu's avatar
Julien Plu committed
1724
                f"Some layers from the model checkpoint at {pretrained_model_name_or_path} were not used when "
1725
1726
                f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
                f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
1727
                f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
1728
1729
1730
1731
                f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
                f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
            )
        else:
Julien Plu's avatar
Julien Plu committed
1732
1733
            logger.warning(f"All model checkpoint layers were used when initializing {model.__class__.__name__}.\n")

thomwolf's avatar
thomwolf committed
1734
        if len(missing_keys) > 0:
1735
            logger.warning(
Julien Plu's avatar
Julien Plu committed
1736
                f"Some layers of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
1737
1738
                f"and are newly initialized: {missing_keys}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
1739
            )
1740
        elif len(mismatched_keys) == 0:
1741
            logger.warning(
Julien Plu's avatar
Julien Plu committed
1742
                f"All the layers of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
1743
                f"If your task is similar to the task the model of the checkpoint was trained on, "
1744
                f"you can already use {model.__class__.__name__} for predictions without further training."
1745
            )
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                f"and are newly initialized because the shapes did not match:\n{mismatched_warning}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
Julien Plu's avatar
Julien Plu committed
1758

thomwolf's avatar
thomwolf committed
1759
        if output_loading_info:
1760
1761
1762
1763
1764
            loading_info = {
                "missing_keys": missing_keys,
                "unexpected_keys": unexpected_keys,
                "mismatched_keys": mismatched_keys,
            }
Julien Plu's avatar
Julien Plu committed
1765

thomwolf's avatar
thomwolf committed
1766
1767
            return model, loading_info

thomwolf's avatar
thomwolf committed
1768
        return model
thomwolf's avatar
WIP  
thomwolf committed
1769

1770

1771
1772
1773
1774
1775
1776
1777
# To update the docstring, we need to copy the method, otherwise we change the original docstring.
TFPreTrainedModel.push_to_hub = copy_func(TFPreTrainedModel.push_to_hub)
TFPreTrainedModel.push_to_hub.__doc__ = TFPreTrainedModel.push_to_hub.__doc__.format(
    object="model", object_class="TFAutoModel", object_files="model checkpoint"
)


thomwolf's avatar
WIP  
thomwolf committed
1778
class TFConv1D(tf.keras.layers.Layer):
Sylvain Gugger's avatar
Sylvain Gugger committed
1779
1780
1781
1782
1783
1784
    """
    1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).

    Basically works like a linear layer but the weights are transposed.

    Args:
1785
        nf (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1786
            The number of output features.
1787
        nx (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1788
            The number of input features.
1789
        initializer_range (`float`, *optional*, defaults to 0.02):
Sylvain Gugger's avatar
Sylvain Gugger committed
1790
1791
            The standard deviation to use to initialize the weights.
        kwargs:
1792
            Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1793
1794
    """

thomwolf's avatar
thomwolf committed
1795
    def __init__(self, nf, nx, initializer_range=0.02, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1796
        super().__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
1797
        self.nf = nf
thomwolf's avatar
thomwolf committed
1798
        self.nx = nx
thomwolf's avatar
thomwolf committed
1799
        self.initializer_range = initializer_range
thomwolf's avatar
thomwolf committed
1800
1801
1802

    def build(self, input_shape):
        self.weight = self.add_weight(
1803
1804
1805
            "weight", shape=[self.nx, self.nf], initializer=get_initializer(self.initializer_range)
        )
        self.bias = self.add_weight("bias", shape=[1, self.nf], initializer=tf.zeros_initializer())
thomwolf's avatar
thomwolf committed
1806

thomwolf's avatar
WIP  
thomwolf committed
1807
    def call(self, x):
thomwolf's avatar
thomwolf committed
1808
        bz, sl = shape_list(x)[:2]
thomwolf's avatar
thomwolf committed
1809

thomwolf's avatar
thomwolf committed
1810
        x = tf.reshape(x, [-1, self.nx])
thomwolf's avatar
thomwolf committed
1811
        x = tf.matmul(x, self.weight) + self.bias
thomwolf's avatar
thomwolf committed
1812
1813

        x = tf.reshape(x, [bz, sl, self.nf])
thomwolf's avatar
thomwolf committed
1814

thomwolf's avatar
WIP  
thomwolf committed
1815
        return x
thomwolf's avatar
thomwolf committed
1816
1817


thomwolf's avatar
thomwolf committed
1818
class TFSharedEmbeddings(tf.keras.layers.Layer):
Stas Bekman's avatar
Stas Bekman committed
1819
    r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
1820
    Construct shared token embeddings.
1821

Sylvain Gugger's avatar
Sylvain Gugger committed
1822
1823
    The weights of the embedding layer is usually shared with the weights of the linear decoder when doing language
    modeling.
Sylvain Gugger's avatar
Sylvain Gugger committed
1824
1825

    Args:
1826
        vocab_size (`int`):
1827
            The size of the vocabulary, e.g., the number of unique tokens.
1828
        hidden_size (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1829
            The size of the embedding vectors.
1830
        initializer_range (`float`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1831
            The standard deviation to use when initializing the weights. If no value is provided, it will default to
1832
            \\(1/\sqrt{hidden\_size}\\).
Sylvain Gugger's avatar
Sylvain Gugger committed
1833
        kwargs:
1834
            Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1835
1836
1837
    """

    def __init__(self, vocab_size: int, hidden_size: int, initializer_range: Optional[float] = None, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1838
        super().__init__(**kwargs)
thomwolf's avatar
thomwolf committed
1839
1840
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
1841
        self.initializer_range = hidden_size**-0.5 if initializer_range is None else initializer_range
thomwolf's avatar
thomwolf committed
1842
1843

    def build(self, input_shape):
Sylvain Gugger's avatar
Sylvain Gugger committed
1844
1845
1846
        """
        Build shared token embedding layer Shared weights logic adapted from
        https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
thomwolf's avatar
thomwolf committed
1847
1848
        """
        self.weight = self.add_weight(
1849
1850
            "weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range)
        )
Julien Chaumond's avatar
Julien Chaumond committed
1851
        super().build(input_shape)
thomwolf's avatar
thomwolf committed
1852

Julien Plu's avatar
Julien Plu committed
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
    def get_config(self):
        config = {
            "vocab_size": self.vocab_size,
            "hidden_size": self.hidden_size,
            "initializer_range": self.initializer_range,
        }
        base_config = super().get_config()

        return dict(list(base_config.items()) + list(config.items()))

Sylvain Gugger's avatar
Sylvain Gugger committed
1863
1864
1865
1866
    def call(self, inputs: tf.Tensor, mode: str = "embedding") -> tf.Tensor:
        """
        Get token embeddings of inputs or decode final hidden state.

thomwolf's avatar
thomwolf committed
1867
        Args:
1868
1869
            inputs (`tf.Tensor`):
                In embedding mode, should be an int64 tensor with shape `[batch_size, length]`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1870

1871
1872
                In linear mode, should be a float tensor with shape `[batch_size, length, hidden_size]`.
            mode (`str`, defaults to `"embedding"`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1873
1874
               A valid value is either `"embedding"` or `"linear"`, the first one indicates that the layer should be
               used as an embedding layer, the second one that the layer should be used as a linear decoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
1875

thomwolf's avatar
thomwolf committed
1876
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1877
1878
            `tf.Tensor`: In embedding mode, the output is a float32 embedding tensor, with shape `[batch_size, length,
            embedding_size]`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1879

1880
            In linear mode, the output is a float32 with shape `[batch_size, length, vocab_size]`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1881

thomwolf's avatar
thomwolf committed
1882
        Raises:
1883
            ValueError: if `mode` is not valid.
1884

Sylvain Gugger's avatar
Sylvain Gugger committed
1885
1886
        Shared weights logic is adapted from
        [here](https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24).
thomwolf's avatar
thomwolf committed
1887
1888
1889
1890
1891
1892
        """
        if mode == "embedding":
            return self._embedding(inputs)
        elif mode == "linear":
            return self._linear(inputs)
        else:
1893
            raise ValueError(f"mode {mode} is not valid.")
thomwolf's avatar
thomwolf committed
1894
1895
1896
1897
1898
1899
1900

    def _embedding(self, input_ids):
        """Applies embedding based on inputs tensor."""
        return tf.gather(self.weight, input_ids)

    def _linear(self, inputs):
        """
Julien Plu's avatar
Julien Plu committed
1901
        Computes logits by running inputs through a linear layer.
thomwolf's avatar
thomwolf committed
1902

Julien Plu's avatar
Julien Plu committed
1903
1904
1905
1906
1907
1908
1909
        Args:
            inputs: A float32 tensor with shape [..., hidden_size]

        Returns:
            float32 tensor with shape [..., vocab_size].
        """
        first_dims = shape_list(inputs)[:-1]
thomwolf's avatar
thomwolf committed
1910
1911
1912
1913
1914
1915
        x = tf.reshape(inputs, [-1, self.hidden_size])
        logits = tf.matmul(x, self.weight, transpose_b=True)

        return tf.reshape(logits, first_dims + [self.vocab_size])


thomwolf's avatar
thomwolf committed
1916
class TFSequenceSummary(tf.keras.layers.Layer):
Julien Plu's avatar
Julien Plu committed
1917
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1918
1919
1920
    Compute a single vector summary of a sequence hidden states.

    Args:
1921
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
1922
1923
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
1924

1925
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
1926

1927
1928
1929
1930
1931
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
1932

1933
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
1934
1935
1936
1937
1938
1939
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
Sylvain Gugger's avatar
Sylvain Gugger committed
1940

1941
        initializer_range (`float`, defaults to 0.02): The standard deviation to use to initialize the weights.
Sylvain Gugger's avatar
Sylvain Gugger committed
1942
        kwargs:
1943
            Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`.
thomwolf's avatar
thomwolf committed
1944
    """
1945

Sylvain Gugger's avatar
Sylvain Gugger committed
1946
    def __init__(self, config: PretrainedConfig, initializer_range: float = 0.02, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1947
        super().__init__(**kwargs)
thomwolf's avatar
thomwolf committed
1948

1949
1950
        self.summary_type = config.summary_type if hasattr(config, "summary_use_proj") else "last"
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
1951
1952
1953
1954
1955
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

1956
        self.has_summary = hasattr(config, "summary_use_proj") and config.summary_use_proj
1957
        if self.has_summary:
1958
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
thomwolf's avatar
thomwolf committed
1959
1960
1961
                num_classes = config.num_labels
            else:
                num_classes = config.hidden_size
1962
1963
1964
            self.summary = tf.keras.layers.Dense(
                num_classes, kernel_initializer=get_initializer(initializer_range), name="summary"
            )
thomwolf's avatar
thomwolf committed
1965

1966
1967
1968
1969
1970
        self.has_activation = False
        activation_string = getattr(config, "summary_activation", None)
        if activation_string is not None:
            self.has_activation = True
            self.activation = get_tf_activation(activation_string)
thomwolf's avatar
thomwolf committed
1971

1972
        self.has_first_dropout = hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0
1973
        if self.has_first_dropout:
thomwolf's avatar
thomwolf committed
1974
1975
            self.first_dropout = tf.keras.layers.Dropout(config.summary_first_dropout)

1976
        self.has_last_dropout = hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0
1977
        if self.has_last_dropout:
thomwolf's avatar
thomwolf committed
1978
1979
            self.last_dropout = tf.keras.layers.Dropout(config.summary_last_dropout)

Julien Plu's avatar
Julien Plu committed
1980
    def call(self, inputs, cls_index=None, training=False):
thomwolf's avatar
thomwolf committed
1981
1982
1983
1984
1985
1986
1987
        if not isinstance(inputs, (dict, tuple, list)):
            hidden_states = inputs
        elif isinstance(inputs, (tuple, list)):
            hidden_states = inputs[0]
            cls_index = inputs[1] if len(inputs) > 1 else None
            assert len(inputs) <= 2, "Too many inputs."
        else:
1988
            hidden_states = inputs.get("hidden_states")
1989
            cls_index = inputs.get("cls_index", None)
thomwolf's avatar
thomwolf committed
1990

1991
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
1992
            output = hidden_states[:, -1]
1993
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
1994
            output = hidden_states[:, 0]
1995
        elif self.summary_type == "mean":
Lysandre's avatar
Lysandre committed
1996
            output = tf.reduce_mean(hidden_states, axis=1)
1997
        elif self.summary_type == "cls_index":
1998
            hidden_shape = shape_list(hidden_states)  # e.g. [batch, num choices, seq length, hidden dims]
thomwolf's avatar
thomwolf committed
1999
            if cls_index is None:
2000
2001
2002
                cls_index = tf.fill(
                    hidden_shape[:-2], hidden_shape[-2] - 1
                )  # A tensor full of shape [batch] or [batch, num choices] full of sequence length
2003
2004
            cls_shape = shape_list(cls_index)
            if len(cls_shape) <= len(hidden_shape) - 2:
2005
                cls_index = tf.expand_dims(cls_index, axis=-1)
2006
            # else:
2007
2008
            # cls_index = cls_index[..., tf.newaxis]
            # cls_index = cls_index.expand((-1,) * (cls_index.dim()-1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
2009
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
2010
            output = tf.gather(hidden_states, cls_index, batch_dims=len(hidden_shape) - 2)
2011
2012
2013
2014
            output = tf.squeeze(
                output, axis=len(hidden_shape) - 2
            )  # shape of output: (batch, num choices, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
2015
2016
            raise NotImplementedError

2017
2018
        if self.has_first_dropout:
            output = self.first_dropout(output, training=training)
thomwolf's avatar
thomwolf committed
2019

2020
        if self.has_summary:
2021
            output = self.summary(output)
thomwolf's avatar
thomwolf committed
2022

2023
        if self.has_activation:
thomwolf's avatar
thomwolf committed
2024
2025
            output = self.activation(output)

2026
2027
        if self.has_last_dropout:
            output = self.last_dropout(output, training=training)
thomwolf's avatar
thomwolf committed
2028
2029
2030

        return output

2031
2032
2033
2034
2035
2036
    @classmethod
    def register_for_auto_class(cls, auto_class="TFAutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

2037
2038
2039
2040
2041
2042
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"TFAutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

2057

Sylvain Gugger's avatar
Sylvain Gugger committed
2058
2059
def get_initializer(initializer_range: float = 0.02) -> tf.initializers.TruncatedNormal:
    """
2060
    Creates a `tf.initializers.TruncatedNormal` with the given range.
Sylvain Gugger's avatar
Sylvain Gugger committed
2061

Julien Chaumond's avatar
Julien Chaumond committed
2062
    Args:
2063
        initializer_range (*float*, defaults to 0.02): Standard deviation of the initializer range.
Sylvain Gugger's avatar
Sylvain Gugger committed
2064

Julien Chaumond's avatar
Julien Chaumond committed
2065
    Returns:
2066
        `tf.initializers.TruncatedNormal`: The truncated normal initializer.
Julien Chaumond's avatar
Julien Chaumond committed
2067
2068
    """
    return tf.keras.initializers.TruncatedNormal(stddev=initializer_range)
2069
2070


Sam Shleifer's avatar
Sam Shleifer committed
2071
2072
class TFWrappedEmbeddings:
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
2073
2074
2075
    this class wraps a the TFSharedEmbeddingTokens layer into a python 'no-keras-layer' class to avoid problem with
    weight restoring. Also it makes sure that the layer is called from the correct scope to avoid problem with
    saving/storing the correct weights
Sam Shleifer's avatar
Sam Shleifer committed
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
    """

    def __init__(self, layer, abs_scope_name=None):
        self._layer = layer
        self._abs_scope_name = abs_scope_name

    def call(self, inputs, mode="embedding"):
        if self._abs_scope_name is None:
            return self._layer.call(inputs, mode)

        # if an abs scope name is given to the embedding variable, call variable from absolute scope
        with tf.compat.v1.variable_scope(self._abs_scope_name, auxiliary_name_scope=False) as abs_scope_name:
            with tf.name_scope(abs_scope_name.original_name_scope):
                return self._layer.call(inputs, mode)

    def __call__(self, inputs, mode="embedding"):
        if self._abs_scope_name is None:
            return self._layer(inputs, mode)

        # if an abs scope name is given to the embedding variable, call variable from absolute scope
        with tf.compat.v1.variable_scope(self._abs_scope_name, auxiliary_name_scope=False) as abs_scope_name:
            with tf.name_scope(abs_scope_name.original_name_scope):
                return self._layer(inputs, mode)