modeling_tf_utils.py 72.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF general model utils."""
Julien Plu's avatar
Julien Plu committed
17

18
import functools
Julien Plu's avatar
Julien Plu committed
19
import inspect
thomwolf's avatar
thomwolf committed
20
import os
21
import re
Julien Plu's avatar
Julien Plu committed
22
import warnings
Sylvain Gugger's avatar
Sylvain Gugger committed
23
from typing import Dict, List, Optional, Union
thomwolf's avatar
thomwolf committed
24

Aymeric Augustin's avatar
Aymeric Augustin committed
25
import h5py
Julien Chaumond's avatar
Julien Chaumond committed
26
import numpy as np
thomwolf's avatar
thomwolf committed
27
import tensorflow as tf
Julien Plu's avatar
Julien Plu committed
28
from tensorflow.python.keras import backend as K
thomwolf's avatar
thomwolf committed
29
from tensorflow.python.keras.saving import hdf5_format
thomwolf's avatar
thomwolf committed
30
31

from .configuration_utils import PretrainedConfig
Julien Plu's avatar
Julien Plu committed
32
from .file_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
33
    CONFIG_NAME,
Julien Plu's avatar
Julien Plu committed
34
35
36
37
    DUMMY_INPUTS,
    TF2_WEIGHTS_NAME,
    WEIGHTS_NAME,
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
38
    PushToHubMixin,
Julien Plu's avatar
Julien Plu committed
39
40
    cached_path,
    hf_bucket_url,
41
    is_offline_mode,
Julien Plu's avatar
Julien Plu committed
42
43
    is_remote_url,
)
44
from .generation_tf_utils import TFGenerationMixin
Julien Plu's avatar
Julien Plu committed
45
from .tokenization_utils_base import BatchEncoding
Lysandre Debut's avatar
Lysandre Debut committed
46
from .utils import logging
thomwolf's avatar
thomwolf committed
47

Aymeric Augustin's avatar
Aymeric Augustin committed
48

Lysandre Debut's avatar
Lysandre Debut committed
49
logger = logging.get_logger(__name__)
50
tf_logger = tf.get_logger()
thomwolf's avatar
thomwolf committed
51

Julien Plu's avatar
Julien Plu committed
52
53
54
55
TFModelInputType = Union[
    List[tf.Tensor], List[np.ndarray], Dict[str, tf.Tensor], Dict[str, np.ndarray], np.ndarray, tf.Tensor
]

56

57
class TFModelUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
58
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
59
    A few utilities for :obj:`tf.keras.Model`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
60
61
62
63
    """

    def num_parameters(self, only_trainable: bool = False) -> int:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
64
65
66
67
68
69
70
71
        Get the number of (optionally, trainable) parameters in the model.

        Args:
            only_trainable (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to return only the number of trainable parameters

        Returns:
            :obj:`int`: The number of parameters.
Julien Chaumond's avatar
Julien Chaumond committed
72
73
74
75
76
77
78
        """
        if only_trainable:
            return int(sum(np.prod(w.shape.as_list()) for w in self.trainable_variables))
        else:
            return self.count_params()


79
def keras_serializable(cls):
80
81
82
83
    """
    Decorate a Keras Layer class to support Keras serialization.

    This is done by:
Sylvain Gugger's avatar
Sylvain Gugger committed
84
85
86
87
88

    1. Adding a :obj:`transformers_config` dict to the Keras config dictionary in :obj:`get_config` (called by Keras at
       serialization time.
    2. Wrapping :obj:`__init__` to accept that :obj:`transformers_config` dict (passed by Keras at deserialization
       time) and convert it to a config object for the actual layer initializer.
Sylvain Gugger's avatar
Sylvain Gugger committed
89
90
    3. Registering the class as a custom object in Keras (if the Tensorflow version supports this), so that it does not
       need to be supplied in :obj:`custom_objects` in the call to :obj:`tf.keras.models.load_model`.
Sylvain Gugger's avatar
Sylvain Gugger committed
91
92
93
94
95
96
97
98

    Args:
        cls (a :obj:`tf.keras.layers.Layers subclass`):
            Typically a :obj:`TF.MainLayer` class in this project, in general must accept a :obj:`config` argument to
            its initializer.

    Returns:
        The same class object, with modifications for Keras deserialization.
99
    """
100
    initializer = cls.__init__
101

102
103
104
105
    config_class = getattr(cls, "config_class", None)
    if config_class is None:
        raise AttributeError("Must set `config_class` to use @keras_serializable")

106
    @functools.wraps(initializer)
107
    def wrapped_init(self, *args, **kwargs):
108
109
110
111
        config = args[0] if args and isinstance(args[0], PretrainedConfig) else kwargs.pop("config", None)

        if isinstance(config, dict):
            config = config_class.from_dict(config)
112
            initializer(self, config, *args, **kwargs)
113
114
115
116
117
        elif isinstance(config, PretrainedConfig):
            if len(args) > 0:
                initializer(self, *args, **kwargs)
            else:
                initializer(self, config, *args, **kwargs)
118
        else:
119
120
121
            raise ValueError("Must pass either `config` (PretrainedConfig) or `config` (dict)")

        self._config = config
Julien Plu's avatar
Julien Plu committed
122
        self._kwargs = kwargs
123

124
125
126
127
128
129
130
131
    cls.__init__ = wrapped_init

    if not hasattr(cls, "get_config"):
        raise TypeError("Only use @keras_serializable on tf.keras.layers.Layer subclasses")
    if hasattr(cls.get_config, "_is_default"):

        def get_config(self):
            cfg = super(cls, self).get_config()
132
            cfg["config"] = self._config.to_dict()
Julien Plu's avatar
Julien Plu committed
133
            cfg.update(self._kwargs)
134
135
136
137
            return cfg

        cls.get_config = get_config

138
    cls._keras_serializable = True
139
140
141
    if hasattr(tf.keras.utils, "register_keras_serializable"):
        cls = tf.keras.utils.register_keras_serializable()(cls)
    return cls
142
143


144
class TFCausalLanguageModelingLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
145
146
147
148
149
150
151
152
153
    """
    Loss function suitable for causal language modeling (CLM), that is, the task of guessing the next token.

    .. note::

        Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.

    """

154
155
156
157
    def compute_loss(self, labels, logits):
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
Muennighoff's avatar
Muennighoff committed
158
        # make sure only labels that are not equal to -100 affect the loss
159
        active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
160
161
162
163
164
        reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
        labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)
        return loss_fn(labels, reduced_logits)


Julien Plu's avatar
Julien Plu committed
165
class TFQuestionAnsweringLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
166
    """
167
    Loss function suitable for question answering.
Sylvain Gugger's avatar
Sylvain Gugger committed
168
169
    """

Julien Plu's avatar
Julien Plu committed
170
171
172
173
174
175
176
177
178
179
180
    def compute_loss(self, labels, logits):
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
        start_loss = loss_fn(labels["start_position"], logits[0])
        end_loss = loss_fn(labels["end_position"], logits[1])

        return (start_loss + end_loss) / 2.0


class TFTokenClassificationLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
181
182
183
184
185
186
187
188
189
    """
    Loss function suitable for token classification.

    .. note::

        Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.

    """

Julien Plu's avatar
Julien Plu committed
190
191
192
193
    def compute_loss(self, labels, logits):
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
194
195
        # make sure only labels that are not equal to -100
        # are taken into account as loss
196
        if tf.math.reduce_any(labels == -1):
Julien Plu's avatar
Julien Plu committed
197
198
199
200
            warnings.warn("Using `-1` to mask the loss for the token is deprecated. Please use `-100` instead.")
            active_loss = tf.reshape(labels, (-1,)) != -1
        else:
            active_loss = tf.reshape(labels, (-1,)) != -100
Julien Plu's avatar
Julien Plu committed
201
202
203
204
205
206
207
        reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
        labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)

        return loss_fn(labels, reduced_logits)


class TFSequenceClassificationLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
208
209
210
211
    """
    Loss function suitable for sequence classification.
    """

Julien Plu's avatar
Julien Plu committed
212
    def compute_loss(self, labels, logits):
213
        if len(shape_list(logits)) == 1 or shape_list(logits)[1] == 1:
Julien Plu's avatar
Julien Plu committed
214
215
216
217
218
219
220
221
222
            loss_fn = tf.keras.losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.NONE)
        else:
            loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
                from_logits=True, reduction=tf.keras.losses.Reduction.NONE
            )

        return loss_fn(labels, logits)


Sylvain Gugger's avatar
Sylvain Gugger committed
223
224
225
226
227
228
class TFMultipleChoiceLoss(TFSequenceClassificationLoss):
    """Loss function suitable for multiple choice tasks."""


class TFMaskedLanguageModelingLoss(TFCausalLanguageModelingLoss):
    """
Lysandre's avatar
Lysandre committed
229
    Loss function suitable for masked language modeling (MLM), that is, the task of guessing the masked tokens.
Sylvain Gugger's avatar
Sylvain Gugger committed
230

Lysandre's avatar
Lysandre committed
231
    .. note::
Sylvain Gugger's avatar
Sylvain Gugger committed
232

Lysandre's avatar
Lysandre committed
233
234
         Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
    """
Julien Plu's avatar
Julien Plu committed
235
236


237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
class TFNextSentencePredictionLoss:
    """
    Loss function suitable for next sentence prediction (NSP), that is, the task of guessing the next sentence.

    .. note::
         Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
    """

    def compute_loss(self, labels, logits):
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
        # make sure only labels that are not equal to -100
        # are taken into account as loss
        next_sentence_active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
        next_sentence_reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, 2)), next_sentence_active_loss)
        next_sentence_label = tf.boolean_mask(tf.reshape(labels, (-1,)), next_sentence_active_loss)

        return loss_fn(next_sentence_label, next_sentence_reduced_logits)


258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def booleans_processing(config, **kwargs):
    """
    Process the input booleans of each model in order to be sure they are compliant with the execution mode (eager or
    graph)

    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config of the running model.
        **kwargs:
            The boolean parameters

    Returns:
        A dictionary with the proper values for each boolean
    """
    final_booleans = {}

    if tf.executing_eagerly():
        final_booleans["output_attentions"] = (
            kwargs["output_attentions"] if kwargs["output_attentions"] is not None else config.output_attentions
        )
        final_booleans["output_hidden_states"] = (
            kwargs["output_hidden_states"]
            if kwargs["output_hidden_states"] is not None
            else config.output_hidden_states
        )
Julien Plu's avatar
Julien Plu committed
283
284
285
        final_booleans["return_dict"] = (
            kwargs["return_dict"] if kwargs["return_dict"] is not None else config.return_dict
        )
286
287
288
289
290
291
292
293
294

        if "use_cache" in kwargs:
            final_booleans["use_cache"] = kwargs["use_cache"] if kwargs["use_cache"] is not None else config.use_cache
    else:
        if (
            kwargs["output_attentions"] is not None
            or kwargs["output_hidden_states"] is not None
            or ("use_cache" in kwargs and kwargs["use_cache"] is not None)
        ):
295
            tf_logger.warning(
296
297
298
299
300
301
302
                "The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model."
                "They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`)."
            )

        final_booleans["output_attentions"] = config.output_attentions
        final_booleans["output_hidden_states"] = config.output_hidden_states

Julien Plu's avatar
Julien Plu committed
303
        if kwargs["return_dict"] is not None:
304
305
306
            tf_logger.warning(
                "The parameter `return_dict` cannot be set in graph mode and will always be set to `True`."
            )
Julien Plu's avatar
Julien Plu committed
307
        final_booleans["return_dict"] = True
308
309
310
311
312
313
314
315
316

        if "use_cache" in kwargs:
            final_booleans["use_cache"] = config.use_cache

    return final_booleans


def input_processing(func, config, input_ids, **kwargs):
    """
Julien Plu's avatar
Julien Plu committed
317
318
319
    Process the input of each TensorFlow model including the booleans. In case of a list of symbolic inputs, each input
    has to be named accordingly to the parameters name, i.e. `input_ids = tf.keras.Input(shape=(128,), dtype='int32',
    name="input_ids")` otherwise the order of the tensors will not be guaranteed during the training.
320
321
322
323
324
325
326
327
328
329
330
331

    Args:
        func (:obj:`callable`):
            The callable function of the TensorFlow model.
        config (:class:`~transformers.PretrainedConfig`):
            The config of the running model.
        **kwargs:
            The inputs of the model.

    Returns:
        Two lists, one for the missing layers, and another one for the unexpected layers.
    """
Julien Plu's avatar
Julien Plu committed
332
333
    signature = dict(inspect.signature(func).parameters)
    signature.pop("kwargs", None)
Julien Plu's avatar
Julien Plu committed
334
    signature.pop("self", None)
Julien Plu's avatar
Julien Plu committed
335
336
    parameter_names = list(signature.keys())
    output = {}
337
    allowed_types = (tf.Tensor, bool, int, ModelOutput, tuple, list, dict, np.ndarray)
Julien Plu's avatar
Julien Plu committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

    if "inputs" in kwargs["kwargs_call"]:
        warnings.warn(
            "The `inputs` argument is deprecated and will be removed in a future version, use `input_ids` instead.",
            FutureWarning,
        )

        output["input_ids"] = kwargs["kwargs_call"].pop("inputs")

    if "decoder_cached_states" in kwargs["kwargs_call"]:
        warnings.warn(
            "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
            FutureWarning,
        )
        output["past_key_values"] = kwargs["kwargs_call"].pop("decoder_cached_states")

    if len(kwargs["kwargs_call"]) > 0:
        raise ValueError(
            f"The following keyword arguments are not supported by this model: {list(kwargs['kwargs_call'].keys())}."
        )

Julien Plu's avatar
Julien Plu committed
359
360
    kwargs.pop("kwargs_call")

Julien Plu's avatar
Julien Plu committed
361
362
363
364
    for k, v in kwargs.items():
        if isinstance(v, allowed_types) or v is None:
            output[k] = v
        else:
Julien Plu's avatar
Julien Plu committed
365
            raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.")
Julien Plu's avatar
Julien Plu committed
366
367
368
369
370

    if isinstance(input_ids, (tuple, list)):
        for i, input in enumerate(input_ids):
            # EagerTensors don't allow to use the .name property so we check for a real Tensor
            if type(input) == tf.Tensor:
Julien Plu's avatar
Julien Plu committed
371
372
                # Tensor names have always the pattern `name:id` then we check only the
                # `name` part
Julien Plu's avatar
Julien Plu committed
373
374
375
376
377
                tensor_name = input.name.split(":")[0]

                if tensor_name in parameter_names:
                    output[tensor_name] = input
                else:
Julien Plu's avatar
Julien Plu committed
378
                    output[parameter_names[i]] = input
Julien Plu's avatar
Julien Plu committed
379
380
381
382
            elif isinstance(input, allowed_types) or input is None:
                output[parameter_names[i]] = input
            else:
                raise ValueError(
Julien Plu's avatar
Julien Plu committed
383
                    f"Data of type {type(input)} is not allowed only {allowed_types} is accepted for {parameter_names[i]}."
Julien Plu's avatar
Julien Plu committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
                )
    elif isinstance(input_ids, (dict, BatchEncoding)):
        if "inputs" in input_ids:
            warnings.warn(
                "The `inputs` argument is deprecated and will be removed in a future version, use `input_ids` instead.",
                FutureWarning,
            )

            output["input_ids"] = input_ids.pop("inputs")

        if "decoder_cached_states" in input_ids:
            warnings.warn(
                "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
                FutureWarning,
            )
            output["past_key_values"] = input_ids.pop("decoder_cached_states")

        for k, v in dict(input_ids).items():
402
            if isinstance(v, allowed_types) or v is None:
Julien Plu's avatar
Julien Plu committed
403
                output[k] = v
404
            elif k not in parameter_names and "args" not in parameter_names:
405
                logger.warning(
406
407
408
409
                    f"The parameter {k} does not belongs to the parameter list {parameter_names} and will be ignored."
                )
                continue
            else:
Julien Plu's avatar
Julien Plu committed
410
                raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.")
Julien Plu's avatar
Julien Plu committed
411
412
413
414
415
    else:
        if isinstance(input_ids, tf.Tensor) or input_ids is None:
            output[parameter_names[0]] = input_ids
        else:
            raise ValueError(
Julien Plu's avatar
Julien Plu committed
416
                f"Data of type {type(input_ids)} is not allowed only {allowed_types} is accepted for {parameter_names[0]}."
Julien Plu's avatar
Julien Plu committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
            )

    for name in parameter_names:
        if name not in list(output.keys()) and name != "args":
            output[name] = kwargs.pop(name, signature[name].default)

    # When creating a SavedModel TF calls the method with LayerCall.__call__(args, **kwargs)
    # So to respect the proper output we have to add this exception
    if "args" in output:
        if output["args"] is not None and type(output["args"]) == tf.Tensor:
            tensor_name = output["args"].name.split(":")[0]
            output[tensor_name] = output["args"]
        else:
            # `args` in this case is always the first parameter, then `input_ids`
            output["input_ids"] = output["args"]

        del output["args"]

    if "kwargs" in output:
        del output["kwargs"]

438
439
440
441
442
443
444
445
446
447
448
449
450
    boolean_dict = {
        k: v
        for k, v in output.items()
        if k in ["return_dict", "output_attentions", "output_hidden_states", "use_cache"]
    }

    output.update(
        booleans_processing(
            config=config,
            **boolean_dict,
        )
    )

Julien Plu's avatar
Julien Plu committed
451
452
453
    return output


Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
454
def load_tf_weights(model, resolved_archive_file, _prefix=None):
Julien Plu's avatar
Julien Plu committed
455
    """
Julien Plu's avatar
Julien Plu committed
456
    Detect missing and unexpected layers and load the TF weights accordingly to their names and shapes.
Julien Plu's avatar
Julien Plu committed
457
458
459
460
461
462
463
464
465
466
467
468
469

    Args:
        model (:obj:`tf.keras.models.Model`):
            The model to load the weights into.
        resolved_archive_file (:obj:`str`):
            The location of the H5 file.

    Returns:
        Two lists, one for the missing layers, and another one for the unexpected layers.
    """
    missing_layers = []
    unexpected_layers = []

Julien Plu's avatar
Julien Plu committed
470
    # Read the H5 file
Julien Plu's avatar
Julien Plu committed
471
    with h5py.File(resolved_archive_file, "r") as f:
Julien Plu's avatar
Julien Plu committed
472
473
        # Retrieve the name of each layer from the H5 file
        saved_h5_model_layers_name = set(hdf5_format.load_attributes_from_hdf5_group(f, "layer_names"))
Julien Plu's avatar
Julien Plu committed
474

Julien Plu's avatar
Julien Plu committed
475
476
        # Find the missing layers from the high level list of layers
        missing_layers = list(set([layer.name for layer in model.layers]) - saved_h5_model_layers_name)
Julien Plu's avatar
Julien Plu committed
477

Julien Plu's avatar
Julien Plu committed
478
479
480
481
        # Find the unexpected layers from the high level list of layers
        unexpected_layers = list(saved_h5_model_layers_name - set([layer.name for layer in model.layers]))
        saved_weight_names_set = set()
        symbolic_weights_names = set()
Julien Plu's avatar
Julien Plu committed
482
483
        weight_value_tuples = []

Julien Plu's avatar
Julien Plu committed
484
485
        # Compute missing and unexpected sub layers
        # Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...]
Julien Plu's avatar
Julien Plu committed
486
        for layer in model.layers:
Julien Plu's avatar
Julien Plu committed
487
488
489
490
491
            # if layer_name from the H5 file belongs to the layers from the instantiated model
            if layer.name in saved_h5_model_layers_name:
                # Get the H5 layer object from its name
                h5_layer_object = f[layer.name]
                # Get all the weights as a list from the layer object
Julien Plu's avatar
Julien Plu committed
492
                symbolic_weights = layer.trainable_weights + layer.non_trainable_weights
Julien Plu's avatar
Julien Plu committed
493
                saved_weights = {}
Julien Plu's avatar
Julien Plu committed
494

Julien Plu's avatar
Julien Plu committed
495
496
497
498
                # Create a dict from the H5 saved model that looks like {"weight_name": weight_value}
                # And a set with only the names
                for weight_name in hdf5_format.load_attributes_from_hdf5_group(h5_layer_object, "weight_names"):
                    # TF names always start with the model name so we ignore it
Julien Plu's avatar
Julien Plu committed
499
                    name = "/".join(weight_name.split("/")[1:])
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
500
501
502
503

                    if _prefix is not None:
                        name = _prefix + "/" + name

Julien Plu's avatar
Julien Plu committed
504
                    saved_weights[name] = np.asarray(h5_layer_object[weight_name])
Julien Plu's avatar
Julien Plu committed
505

Julien Plu's avatar
Julien Plu committed
506
507
508
509
                    # Add the updated name to the final list for computing missing/unexpected values
                    saved_weight_names_set.add(name)

                # Loop over each weights from the instantiated model and compare with the weights from the H5 file
Julien Plu's avatar
Julien Plu committed
510
                for symbolic_weight in symbolic_weights:
Julien Plu's avatar
Julien Plu committed
511
                    # TF names always start with the model name so we ignore it
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
512
513
514
515
516
517
518
519
                    if _prefix is not None:
                        delimeter = len(_prefix.split("/"))
                        symbolic_weight_name = "/".join(
                            symbolic_weight.name.split("/")[:delimeter]
                            + symbolic_weight.name.split("/")[delimeter + 1 :]
                        )
                    else:
                        symbolic_weight_name = "/".join(symbolic_weight.name.split("/")[1:])
Julien Plu's avatar
Julien Plu committed
520
521
522
523
524

                    # here we check if the current weight is among the weights from the H5 file
                    # If yes, get the weight_value of the corresponding weight from the H5 file
                    # If not, make the value to None
                    saved_weight_value = saved_weights.get(symbolic_weight_name, None)
Julien Plu's avatar
Julien Plu committed
525

Julien Plu's avatar
Julien Plu committed
526
527
                    # Add the updated name to the final list for computing missing/unexpected values
                    symbolic_weights_names.add(symbolic_weight_name)
Julien Plu's avatar
Julien Plu committed
528

Julien Plu's avatar
Julien Plu committed
529
530
531
                    # If the current weight is found
                    if saved_weight_value is not None:
                        # Check if the shape of the current weight and the one from the H5 file are different
Julien Plu's avatar
Julien Plu committed
532
                        if K.int_shape(symbolic_weight) != saved_weight_value.shape:
Julien Plu's avatar
Julien Plu committed
533
534
                            # If yes we reshape the weight from the H5 file accordingly to the current weight
                            # If the two shapes are not compatible we raise an issue
Julien Plu's avatar
Julien Plu committed
535
536
537
538
539
540
541
542
                            try:
                                array = np.reshape(saved_weight_value, K.int_shape(symbolic_weight))
                            except AssertionError as e:
                                e.args += (K.int_shape(symbolic_weight), saved_weight_value.shape)
                                raise e
                        else:
                            array = saved_weight_value

Julien Plu's avatar
Julien Plu committed
543
                        # We create the tuple that will be loaded and add it to the final list
Julien Plu's avatar
Julien Plu committed
544
545
                        weight_value_tuples.append((symbolic_weight, array))

Julien Plu's avatar
Julien Plu committed
546
    # Load all the weights
Julien Plu's avatar
Julien Plu committed
547
548
    K.batch_set_value(weight_value_tuples)

Julien Plu's avatar
Julien Plu committed
549
550
551
552
553
554
    # Compute the missing and unexpected layers
    missing_layers.extend(list(symbolic_weights_names - saved_weight_names_set))
    unexpected_layers.extend(list(saved_weight_names_set - symbolic_weights_names))

    return missing_layers, unexpected_layers

Julien Plu's avatar
Julien Plu committed
555

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
def init_copy_embeddings(old_embeddings, new_num_tokens):
    r"""
    This function aims to reduce the embeddings in case new_num_tokens < old_num_tokens or to pad with -1 in case
    new_num_tokens > old_num_tokens. A mask is also computed in order to know which weight in the embeddings should be
    kept or not. Example:

        - if new_num_tokens=5 and old_num_tokens=4 and old_embeddings=[w1,w2,w3,w4]

            -  mask=[True,True,True,True,False] and current_weights=[w1,w2,w3,w4,-1]
        - if new_num_tokens=4 and old_num_tokens=5 and old_embeddings=[w1,w2,w3,w4,w5]

            - mask=[True,True,True,True] and current_weights=[w1,w2,w3,w4]
    """
    old_num_tokens, old_embedding_dim = shape_list(old_embeddings)
    size_diff = new_num_tokens - old_num_tokens

    # initialize new embeddings
    # Copy token embeddings from the previous ones
    if tf.math.greater(size_diff, 0):
        # if the new size is greater than the old one, we extend the current embeddings with a padding until getting new size
        # and we create a mask to properly identify the padded values and be replaced by the values of the newly created
        # embeddings
        current_weights = tf.pad(
            old_embeddings.value(), tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=-1
        )
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
        mask = tf.fill(tf.convert_to_tensor([num_tokens_to_copy, 1]), True)
        mask = tf.pad(mask, tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=False)
    else:
        # if the new size if lower than the old one, we take the current embeddings until the new size
        current_weights = tf.slice(
            old_embeddings.value(),
            tf.convert_to_tensor([0, 0]),
            tf.convert_to_tensor([new_num_tokens, old_embedding_dim]),
        )
        mask = tf.fill(tf.convert_to_tensor([new_num_tokens, 1]), True)

    return mask, current_weights


Sylvain Gugger's avatar
Sylvain Gugger committed
596
class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, PushToHubMixin):
597
598
    r"""
    Base class for all TF models.
thomwolf's avatar
thomwolf committed
599

600
601
    :class:`~transformers.TFPreTrainedModel` takes care of storing the configuration of the models and handles methods
    for loading, downloading and saving models as well as a few methods common to all models to:
thomwolf's avatar
thomwolf committed
602

603
604
        * resize the input embeddings,
        * prune heads in the self-attention heads.
thomwolf's avatar
thomwolf committed
605

606
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
607

608
609
610
611
        - **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of
          :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
        - **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in
          derived classes of the same architecture adding modules on top of the base model.
thomwolf's avatar
thomwolf committed
612
613
614
    """
    config_class = None
    base_model_prefix = ""
615
616
617
618
619
620
    # a list of re pattern of tensor names to ignore from the model when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_missing = None
    # a list of re pattern of tensor names to ignore from the weights when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_unexpected = None
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
621
    _requires_load_weight_prefix = False
thomwolf's avatar
thomwolf committed
622

623
    @property
624
625
    def dummy_inputs(self) -> Dict[str, tf.Tensor]:
        """
Julien Plu's avatar
Julien Plu committed
626
627
628
629
        Dummy inputs to build the network.

        Returns:
            :obj:`Dict[str, tf.Tensor]`: The dummy inputs.
630
        """
Julien Plu's avatar
Julien Plu committed
631
632
633
        return {
            "input_ids": tf.constant(DUMMY_INPUTS),
        }
thomwolf's avatar
thomwolf committed
634
635

    def __init__(self, config, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
636
        super().__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
637
638
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
639
640
641
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
642
            )
643
        # Save config and origin of the pretrained weights if given in model
thomwolf's avatar
thomwolf committed
644
        self.config = config
645
        self.name_or_path = config.name_or_path
thomwolf's avatar
thomwolf committed
646

Julien Plu's avatar
Julien Plu committed
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    @tf.function(
        input_signature=[
            {
                "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
                "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
                "token_type_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"),
            }
        ]
    )
    def serving(self, inputs):
        """
        Method used for serving the model.

        Args:
            inputs (:obj:`Dict[str, tf.Tensor]`):
662
                The input of the saved model as a dictionary of tensors.
Julien Plu's avatar
Julien Plu committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
        """
        output = self.call(inputs)

        return self.serving_output(output)

    def serving_output(output):
        """
        Prepare the output of the saved model. Each model must implement this function.

        Args:
            output (:obj:`~transformers.TFBaseModelOutput`):
                The output returned by the model.
        """
        raise NotImplementedError

678
    def get_input_embeddings(self) -> tf.keras.layers.Layer:
679
        """
680
        Returns the model's input embeddings layer.
681
682

        Returns:
683
            :obj:`tf.Variable`: The embeddings layer mapping vocabulary to hidden states.
684
        """
685
        main_layer = getattr(self, self.base_model_prefix, self)
Julien Plu's avatar
Julien Plu committed
686

687
688
        if main_layer is not self:
            return main_layer.get_input_embeddings()
689
690
691
        else:
            raise NotImplementedError

692
693
    def set_input_embeddings(self, value):
        """
694
        Set model's input embeddings
695
696

        Args:
697
698
            value (:obj:`tf.Variable`):
                The new weights mapping hidden states to vocabulary.
699
        """
700
        main_layer = getattr(self, self.base_model_prefix)
701

702
703
704
705
706
707
708
709
710
711
712
        if main_layer is None:
            raise NotImplementedError("The model does not implements the base_model_prefix attribute.")

        try:
            main_layer.set_input_embeddings(value)
        except AttributeError:
            logger.info("Building the model")
            self(self.dummy_inputs)
            main_layer.set_input_embeddings(value)

    def get_output_embeddings(self) -> Union[None, tf.keras.layers.Layer]:
713
        """
714
        Returns the model's output embeddings
715
716

        Returns:
717
            :obj:`tf.Variable`: The new weights mapping vocabulary to hidden states.
718
        """
719
720
721
722
723
        if self.get_lm_head() is not None:
            lm_head = self.get_lm_head()

            return lm_head.get_output_embeddings()

724
725
        return None  # Overwrite for models with output embeddings

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
    def set_output_embeddings(self, value):
        """
        Set model's output embeddings

        Args:
            value (:obj:`tf.Variable`):
                The new weights mapping hidden states to vocabulary.
        """
        if self.get_lm_head() is not None:
            lm_head = self.get_lm_head()
            try:
                lm_head.set_output_embeddings(value)
            except AttributeError:
                logger.info("Building the model")
                self(self.dummy_inputs)
                lm_head.set_output_embeddings(value)

743
744
745
    def get_output_layer_with_bias(self) -> Union[None, tf.keras.layers.Layer]:
        """
        Get the layer that handles a bias attribute in case the model has an LM head with weights tied to the
746
        embeddings
747
748
749
750

        Return:
            :obj:`tf.keras.layers.Layer`: The layer that handles the bias, None if not an LM model.
        """
751
752
753
754
        warnings.warn(
            "The method get_output_layer_with_bias is deprecated. Please use `get_lm_head` instead.", FutureWarning
        )
        return self.get_lm_head()
755
756
757

    def get_prefix_bias_name(self) -> Union[None, str]:
        """
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
758
        Get the concatenated _prefix name of the bias from the model name to the parent layer
759
760

        Return:
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
761
            :obj:`str`: The _prefix name of the bias.
762
        """
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
        warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
        return None

    def get_bias(self) -> Union[None, Dict[str, tf.Variable]]:
        """
        Dict of bias attached to an LM head. The key represents the name of the bias attribute.

        Return:
            :obj:`tf.Variable`: The weights representing the bias, None if not an LM model.
        """
        if self.get_lm_head() is not None:
            lm_head = self.get_lm_head()
            try:
                return lm_head.get_bias()
            except AttributeError:
                self(self.dummy_inputs)

                return lm_head.get_bias()
        return None

    def set_bias(self, value):
        """
        Set all the bias in the LM head.

        Args:
            value (:obj:`Dict[tf.Variable]`):
                All the new bias attached to an LM head.
        """
        if self.get_lm_head() is not None:
            lm_head = self.get_lm_head()
            try:
                lm_head.set_bias(value)
            except AttributeError:
                self(self.dummy_inputs)
                lm_head.set_bias(value)

    def get_lm_head(self) -> tf.keras.layers.Layer:
        """
        The LM Head layer. This method must be overwritten by all the models that have a lm head.

        Return:
            :obj:`tf.keras.layers.Layer`: The LM head layer if the model has one, None if not.
        """
806
807
        return None

808
809
810
    def resize_token_embeddings(self, new_num_tokens=None) -> tf.Variable:
        """
        Resizes input token embeddings matrix of the model if :obj:`new_num_tokens != config.vocab_size`.
811

812
        Takes care of tying weights embeddings afterwards if the model class has a :obj:`tie_weights()` method.
813

814
815
816
817
        Arguments:
            new_num_tokens (:obj:`int`, `optional`):
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`,
818
                just returns a pointer to the input tokens :obj:`tf.Variable` module of the model without doing
819
820
821
822
                anything.

        Return:
            :obj:`tf.Variable`: Pointer to the input tokens Embeddings Module of the model.
823
        """
824
825
        if new_num_tokens is None or new_num_tokens == self.config.vocab_size:
            return self._get_word_embedding_weight(self.get_input_embeddings())
826

827
        model_embeds = self._resize_token_embeddings(new_num_tokens)
828
829
830

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
831
832
833

        return model_embeds

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
    def _get_word_embedding_weight(model, embedding_layer):
        embeds = getattr(embedding_layer, "weight", None)
        if embeds is not None:
            return embeds

        embeds = getattr(embedding_layer, "decoder", None)
        if embeds is not None:
            return embeds

        # The reason why the attributes don't exist might be
        # because the model is not built, so retry getting
        # the argument after building the model
        model(model.dummy_inputs)

        embeds = getattr(embedding_layer, "weight", None)
        if embeds is not None:
            return embeds

        embeds = getattr(embedding_layer, "decoder", None)
        if embeds is not None:
            return embeds

        return None
857

858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self._get_word_embedding_weight(self.get_input_embeddings())
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)

        # if word embeddings are not tied, make sure that lm head bias is resized as well
        if self.get_bias() is not None:
            old_lm_head_bias = self.get_bias()
            new_lm_head_bias = self._get_resized_lm_head_bias(old_lm_head_bias, new_num_tokens)

            self.set_bias(new_lm_head_bias)

        # if word embeddings are not tied, make sure that lm head decoder is resized as well
        if self.get_output_embeddings() is not None:
            old_lm_head_decoder = self._get_word_embedding_weight(self.get_output_embeddings())
            new_lm_head_decoder = self._get_resized_lm_head_decoder(old_lm_head_decoder, new_num_tokens)

            self.set_output_embeddings(new_lm_head_decoder)

        self.set_input_embeddings(new_embeddings)

        return self.get_input_embeddings()

    def _get_resized_lm_head_bias(self, old_lm_head_bias, new_num_tokens):
881
        """
882
883
        Build a resized bias from the old ones. Increasing the size will add newly initialized vectors at the end.
        Reducing the size will remove vectors from the end
thomwolf's avatar
thomwolf committed
884
885

        Args:
886
887
            old_lm_head_bias (:obj:`tf.Variable`):
                Old lm head bias to be resized.
888
            new_num_tokens (:obj:`int`, `optional`):
889
                New number of tokens in the linear matrix.
890
891

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
892
                vectors from the end. If not provided or :obj:`None`, just returns None
893
894

        Return:
895
            :obj:`tf.Variable`: Pointer to the resized bias.
thomwolf's avatar
thomwolf committed
896
        """
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
        new_lm_head_bias = {}

        for attr, weight in old_lm_head_bias.items():
            first_dim, old_num_tokens = (None, shape_list(weight)[0]) if tf.rank(weight) == 1 else shape_list(weight)
            size_diff = new_num_tokens - old_num_tokens
            final_shape = [new_num_tokens] if first_dim is None else [first_dim, new_num_tokens]

            # initialize new bias
            if tf.math.greater(size_diff, 0):
                padding_shape = [[0, size_diff]] if first_dim is None else [[0, 0], [0, size_diff]]
                current_bias = tf.pad(weight.value(), tf.convert_to_tensor(padding_shape), constant_values=-1)
                num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
                mask_shape = [num_tokens_to_copy] if first_dim is None else [1, num_tokens_to_copy]
                bias_mask = tf.fill(tf.convert_to_tensor(mask_shape), True)
                bias_mask = tf.pad(bias_mask, tf.convert_to_tensor(padding_shape), constant_values=False)
            else:
                slice_from = [0] if first_dim is None else [0, 0]
                current_bias = tf.slice(
                    weight.value(), tf.convert_to_tensor(slice_from), tf.convert_to_tensor(final_shape)
                )
                bias_mask = tf.fill(tf.convert_to_tensor(final_shape), True)
918

919
920
921
922
923
924
925
            new_bias = self.add_weight(
                shape=final_shape,
                initializer="zeros",
                trainable=True,
                name=weight.name.split(":")[0],
            )
            init_bias = tf.where(bias_mask, current_bias, new_bias.value())
926

927
928
            new_bias.assign(init_bias)
            new_lm_head_bias[attr] = new_bias
929

930
        return new_lm_head_bias
thomwolf's avatar
thomwolf committed
931

932
933
934
935
    def _get_resized_lm_head_decoder(self, old_lm_head_decoder, new_num_tokens):
        """
        Build a resized decoder from the old ones. Increasing the size will add newly initialized vectors at the end.
        Reducing the size will remove vectors from the end
thomwolf's avatar
thomwolf committed
936

937
938
939
940
941
        Args:
            old_lm_head_decoder (:obj:`tf.Variable`):
                Old lm head decoder to be resized.
            new_num_tokens (:obj:`int`, `optional`):
                New number of tokens in the linear matrix.
942

943
944
                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
                vectors from the end. If not provided or :obj:`None`, just returns None
945

946
        Return:
947
            :obj:`tf.Variable`: Pointer to the resized decoder or None if the output embeddings are different from the
948
949
950
951
952
953
            input ones.
        """
        new_lm_head_decoder = old_lm_head_decoder
        is_input_output_equals = tf.reduce_any(
            self._get_word_embedding_weight(self.get_input_embeddings()) == old_lm_head_decoder
        )
954

955
956
957
958
959
        if old_lm_head_decoder is not None and not is_input_output_equals:
            old_embedding_dim = shape_list(old_lm_head_decoder)[1]
            decoder_mask, current_decoder = init_copy_embeddings(old_lm_head_decoder, new_num_tokens)
            new_lm_head_decoder = self.add_weight(
                shape=(new_num_tokens, old_embedding_dim),
960
961
                initializer="zeros",
                trainable=True,
962
                name=old_lm_head_decoder.name.split(":")[0],
963
            )
964
965
966
            init_decoder = tf.where(decoder_mask, current_decoder, new_lm_head_decoder.value())

            new_lm_head_decoder.assign(init_decoder)
967

968
        return new_lm_head_decoder
969

970
971
972
973
    def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None) -> tf.Variable:
        """
        Build a resized Embedding weights from a provided token Embedding weights. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
974

975
976
977
978
979
        Args:
            old_embeddings (:obj:`tf.Variable`):
                Old embeddings to be resized.
            new_num_tokens (:obj:`int`, `optional`):
                New number of tokens in the embedding matrix.
980

981
982
983
                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
                vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens
                :obj:`tf.Variable`` module of the model without doing anything.
984

985
986
987
988
989
990
991
992
993
994
995
996
997
998
        Return:
            :obj:`tf.Variable`: Pointer to the resized Embedding Module or the old Embedding Module if
            :obj:`new_num_tokens` is :obj:`None`
        """
        old_embedding_dim = shape_list(old_embeddings)[1]
        init_range = getattr(self.config, "initializer_range", 0.02)
        embeddings_mask, current_embeddings = init_copy_embeddings(old_embeddings, new_num_tokens)
        new_embeddings = self.add_weight(
            name=old_embeddings.name.split(":")[0],
            shape=[new_num_tokens, old_embedding_dim],
            initializer=get_initializer(init_range),
            dtype=tf.float32,
        )
        init_embeddings = tf.where(embeddings_mask, current_embeddings, new_embeddings.value())
999

1000
        new_embeddings.assign(init_embeddings)
1001

1002
        return new_embeddings
thomwolf's avatar
thomwolf committed
1003
1004

    def prune_heads(self, heads_to_prune):
1005
1006
        """
        Prunes heads of the base model.
thomwolf's avatar
thomwolf committed
1007

1008
1009
        Arguments:
            heads_to_prune (:obj:`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1010
1011
1012
                Dictionary with keys being selected layer indices (:obj:`int`) and associated values being the list of
                heads to prune in said layer (list of :obj:`int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads
                0 and 2 on layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
1013
1014
1015
        """
        raise NotImplementedError

Sylvain Gugger's avatar
Sylvain Gugger committed
1016
    def save_pretrained(self, save_directory, saved_model=False, version=1, push_to_hub=False, **kwargs):
1017
1018
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
Sylvain Gugger's avatar
Sylvain Gugger committed
1019
        :func:`~transformers.TFPreTrainedModel.from_pretrained` class method.
1020
1021
1022
1023

        Arguments:
            save_directory (:obj:`str`):
                Directory to which to save. Will be created if it doesn't exist.
Julien Plu's avatar
Julien Plu committed
1024
1025
1026
1027
1028
1029
            saved_model (:obj:`bool`, `optional`, defaults to :obj:`False`):
                If the model has to be saved in saved model format as well or not.
            version (:obj:`int`, `optional`, defaults to 1):
                The version of the saved model. A saved model needs to be versioned in order to be properly loaded by
                TensorFlow Serving as detailed in the official documentation
                https://www.tensorflow.org/tfx/serving/serving_basic
Sylvain Gugger's avatar
Sylvain Gugger committed
1030
1031
1032
1033
1034
            push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to push your model to the Hugging Face model hub after saving it.
            kwargs:
                Additional key word arguments passed along to the
                :meth:`~transformers.file_utils.PushToHubMixin.push_to_hub` method.
thomwolf's avatar
thomwolf committed
1035
        """
1036
        if os.path.isfile(save_directory):
1037
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
1038
1039
            return
        os.makedirs(save_directory, exist_ok=True)
thomwolf's avatar
thomwolf committed
1040

Julien Plu's avatar
Julien Plu committed
1041
1042
1043
1044
1045
        if saved_model:
            saved_model_dir = os.path.join(save_directory, "saved_model", str(version))
            self.save(saved_model_dir, include_optimizer=False, signatures=self.serving)
            logger.info(f"Saved model created in {saved_model_dir}")

thomwolf's avatar
thomwolf committed
1046
        # Save configuration file
1047
        self.config.architectures = [self.__class__.__name__[2:]]
thomwolf's avatar
thomwolf committed
1048
1049
1050
1051
1052
        self.config.save_pretrained(save_directory)

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, TF2_WEIGHTS_NAME)
        self.save_weights(output_model_file)
1053
        logger.info(f"Model weights saved in {output_model_file}")
thomwolf's avatar
thomwolf committed
1054

Sylvain Gugger's avatar
Sylvain Gugger committed
1055
1056
1057
1058
1059
        if push_to_hub:
            saved_files = [os.path.join(save_directory, CONFIG_NAME), output_model_file]
            url = self._push_to_hub(save_files=saved_files, **kwargs)
            logger.info(f"Model pushed to the hub in this commit: {url}")

thomwolf's avatar
thomwolf committed
1060
1061
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
1062
1063
        r"""
        Instantiate a pretrained TF 2.0 model from a pre-trained model configuration.
thomwolf's avatar
thomwolf committed
1064

1065
1066
1067
        The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
thomwolf's avatar
thomwolf committed
1068

1069
1070
        The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those
        weights are discarded.
thomwolf's avatar
thomwolf committed
1071
1072

        Parameters:
1073
1074
1075
            pretrained_model_name_or_path (:obj:`str`, `optional`):
                Can be either:

1076
1077
1078
                    - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
                      a user or organization name, like ``dbmdz/bert-base-german-cased``.
1079
                    - A path to a `directory` containing model weights saved using
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1080
                      :func:`~transformers.TFPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
Sylvain Gugger's avatar
Sylvain Gugger committed
1081
                    - A path or url to a `PyTorch state_dict save file` (e.g, ``./pt_model/pytorch_model.bin``). In
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
                      this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
                      as ``config`` argument. This loading path is slower than converting the PyTorch model in a
                      TensorFlow model using the provided conversion scripts and loading the TensorFlow model
                      afterwards.
                    - :obj:`None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments ``config`` and ``state_dict``).
            model_args (sequence of positional arguments, `optional`):
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
            config (:obj:`Union[PretrainedConfig, str]`, `optional`):
                Can be either:

                    - an instance of a class derived from :class:`~transformers.PretrainedConfig`,
                    - a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`.

                Configuration for the model to use instead of an automatically loaded configuation. Configuration can
                be automatically loaded when:

1099
1100
                    - The model is a model provided by the library (loaded with the `model id` string of a pretrained
                      model).
1101
                    - The model was saved using :func:`~transformers.TFPreTrainedModel.save_pretrained` and is reloaded
1102
1103
                      by supplying the save directory.
                    - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
                      configuration JSON file named `config.json` is found in the directory.
            from_pt: (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Load the model weights from a PyTorch state_dict save file (see docstring of
                ``pretrained_model_name_or_path`` argument).
            cache_dir (:obj:`str`, `optional`):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies: (:obj:`Dict[str, str], `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1118
1119
                A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
1120
            output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1121
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
1122
1123
            local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to only look at local files (e.g., not try doanloading the model).
1124
1125
1126
            use_auth_token (:obj:`str` or `bool`, `optional`):
                The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
                generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`).
Julien Chaumond's avatar
Julien Chaumond committed
1127
1128
1129
1130
            revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
                identifier allowed by git.
1131
            mirror(:obj:`str`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1132
1133
1134
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
1135
1136
            kwargs (remaining dictionary of keyword arguments, `optional`):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
1137
                :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
                automatically loaded:

                    - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
                      underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
                      initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
                      ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
                      with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
                      attribute will be passed to the underlying model's ``__init__`` function.
thomwolf's avatar
thomwolf committed
1148

1149
1150
1151
1152
        .. note::

            Passing :obj:`use_auth_token=True` is required when you want to use a private model.

thomwolf's avatar
thomwolf committed
1153
1154
        Examples::

1155
            >>> from transformers import BertConfig, TFBertModel
1156
            >>> # Download model and configuration from huggingface.co and cache.
1157
1158
1159
1160
1161
1162
1163
1164
1165
            >>> model = TFBertModel.from_pretrained('bert-base-uncased')
            >>> # Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable).
            >>> model = TFBertModel.from_pretrained('./test/saved_model/')
            >>> # Update configuration during loading.
            >>> model = TFBertModel.from_pretrained('bert-base-uncased', output_attentions=True)
            >>> assert model.config.output_attentions == True
            >>> # Loading from a Pytorch model file instead of a TensorFlow checkpoint (slower, for example purposes, not runnable).
            >>> config = BertConfig.from_json_file('./pt_model/my_pt_model_config.json')
            >>> model = TFBertModel.from_pretrained('./pt_model/my_pytorch_model.bin', from_pt=True, config=config)
thomwolf's avatar
thomwolf committed
1166
1167

        """
1168
1169
1170
1171
1172
1173
1174
        config = kwargs.pop("config", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_pt = kwargs.pop("from_pt", False)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
1175
        local_files_only = kwargs.pop("local_files_only", False)
1176
        use_auth_token = kwargs.pop("use_auth_token", None)
Julien Chaumond's avatar
Julien Chaumond committed
1177
        revision = kwargs.pop("revision", None)
1178
        mirror = kwargs.pop("mirror", None)
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1179
        load_weight_prefix = kwargs.pop("load_weight_prefix", None)
1180
1181
1182
1183
1184
1185
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)

        user_agent = {"file_type": "model", "framework": "tensorflow", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
1186

1187
1188
1189
1190
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

1191
1192
1193
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
thomwolf's avatar
thomwolf committed
1194
            config, model_kwargs = cls.config_class.from_pretrained(
1195
1196
1197
1198
                config_path,
                *model_args,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
thomwolf's avatar
thomwolf committed
1199
                force_download=force_download,
1200
                resume_download=resume_download,
1201
1202
                proxies=proxies,
                local_files_only=local_files_only,
1203
                use_auth_token=use_auth_token,
Julien Chaumond's avatar
Julien Chaumond committed
1204
                revision=revision,
1205
1206
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
1207
                **kwargs,
thomwolf's avatar
thomwolf committed
1208
1209
1210
1211
1212
            )
        else:
            model_kwargs = kwargs

        # Load model
thomwolf's avatar
thomwolf committed
1213
        if pretrained_model_name_or_path is not None:
1214
            if os.path.isdir(pretrained_model_name_or_path):
1215
1216
1217
1218
                if from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint in priority if from_pt
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
thomwolf's avatar
thomwolf committed
1219
1220
1221
                    # Load from a TF 2.0 checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
                else:
1222
                    raise EnvironmentError(
1223
1224
                        f"Error no file named {[WEIGHTS_NAME, TF2_WEIGHTS_NAME]} found in directory "
                        f"{pretrained_model_name_or_path} or `from_pt` set to False"
1225
                    )
Julien Chaumond's avatar
Julien Chaumond committed
1226
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
1227
                archive_file = pretrained_model_name_or_path
1228
1229
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
                archive_file = pretrained_model_name_or_path + ".index"
thomwolf's avatar
thomwolf committed
1230
            else:
thomwolf's avatar
thomwolf committed
1231
                archive_file = hf_bucket_url(
Julien Chaumond's avatar
Julien Chaumond committed
1232
1233
                    pretrained_model_name_or_path,
                    filename=(WEIGHTS_NAME if from_pt else TF2_WEIGHTS_NAME),
Julien Chaumond's avatar
Julien Chaumond committed
1234
                    revision=revision,
1235
                    mirror=mirror,
thomwolf's avatar
thomwolf committed
1236
                )
thomwolf's avatar
thomwolf committed
1237
1238

            try:
1239
                # Load from URL or cache if already cached
1240
1241
1242
1243
1244
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
1245
1246
                    resume_download=resume_download,
                    local_files_only=local_files_only,
1247
                    use_auth_token=use_auth_token,
1248
                    user_agent=user_agent,
1249
                )
Julien Chaumond's avatar
Julien Chaumond committed
1250
1251
            except EnvironmentError as err:
                logger.error(err)
1252
1253
1254
1255
1256
1257
                msg = (
                    f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
                    f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
                    f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {TF2_WEIGHTS_NAME}, {WEIGHTS_NAME}.\n\n"
                )
                raise EnvironmentError(msg)
thomwolf's avatar
thomwolf committed
1258
            if resolved_archive_file == archive_file:
1259
                logger.info(f"loading weights file {archive_file}")
thomwolf's avatar
thomwolf committed
1260
            else:
1261
                logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}")
thomwolf's avatar
thomwolf committed
1262
        else:
thomwolf's avatar
thomwolf committed
1263
            resolved_archive_file = None
thomwolf's avatar
thomwolf committed
1264

1265
1266
        config.name_or_path = pretrained_model_name_or_path

Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1267
1268
1269
1270
1271
        # composed models, *e.g.* TFRag, require special treatment when it comes to loading
        # pre-trained weights.
        if cls._requires_load_weight_prefix and model_kwargs.get("name") is not None:
            model_kwargs["load_weight_prefix"] = load_weight_prefix + "/" + model_kwargs.get("name")

thomwolf's avatar
thomwolf committed
1272
1273
1274
1275
        # Instantiate model.
        model = cls(config, *model_args, **model_kwargs)

        if from_pt:
Julien Plu's avatar
Julien Plu committed
1276
1277
            from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model

thomwolf's avatar
thomwolf committed
1278
            # Load from a PyTorch checkpoint
thomwolf's avatar
thomwolf committed
1279
            return load_pytorch_checkpoint_in_tf2_model(model, resolved_archive_file, allow_missing_keys=True)
thomwolf's avatar
thomwolf committed
1280

Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1281
1282
1283
1284
1285
1286
        # we might need to extend the variable scope for composite models
        if load_weight_prefix is not None:
            with tf.compat.v1.variable_scope(load_weight_prefix):
                model(model.dummy_inputs)  # build the network with dummy inputs
        else:
            model(model.dummy_inputs)  # build the network with dummy inputs
thomwolf's avatar
thomwolf committed
1287

1288
        assert os.path.isfile(resolved_archive_file), f"Error retrieving file {resolved_archive_file}"
thomwolf's avatar
thomwolf committed
1289
1290
        # 'by_name' allow us to do transfer learning by skipping/adding layers
        # see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1339-L1357
1291
        try:
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1292
            missing_keys, unexpected_keys = load_tf_weights(model, resolved_archive_file, load_weight_prefix)
1293
        except OSError:
1294
1295
1296
1297
            raise OSError(
                "Unable to load weights from h5 file. "
                "If you tried to load a TF 2.0 model from a PyTorch checkpoint, please set from_pt=True. "
            )
thomwolf's avatar
thomwolf committed
1298

Julien Plu's avatar
Julien Plu committed
1299
        model(model.dummy_inputs)  # Make sure restore ops are run
thomwolf's avatar
thomwolf committed
1300

1301
1302
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
1303
1304
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

1305
1306
        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
Julien Plu's avatar
Julien Plu committed
1307
1308
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

1309
1310
        if len(unexpected_keys) > 0:
            logger.warning(
Julien Plu's avatar
Julien Plu committed
1311
                f"Some layers from the model checkpoint at {pretrained_model_name_or_path} were not used when "
1312
1313
                f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
                f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
1314
                f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
1315
1316
1317
1318
                f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
                f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
            )
        else:
Julien Plu's avatar
Julien Plu committed
1319
1320
            logger.warning(f"All model checkpoint layers were used when initializing {model.__class__.__name__}.\n")

thomwolf's avatar
thomwolf committed
1321
        if len(missing_keys) > 0:
1322
            logger.warning(
Julien Plu's avatar
Julien Plu committed
1323
                f"Some layers of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
1324
1325
                f"and are newly initialized: {missing_keys}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
1326
            )
1327
1328
        else:
            logger.warning(
Julien Plu's avatar
Julien Plu committed
1329
                f"All the layers of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
1330
                f"If your task is similar to the task the model of the checkpoint was trained on, "
1331
                f"you can already use {model.__class__.__name__} for predictions without further training."
1332
            )
Julien Plu's avatar
Julien Plu committed
1333

thomwolf's avatar
thomwolf committed
1334
        if output_loading_info:
Julien Plu's avatar
Julien Plu committed
1335
1336
            loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys}

thomwolf's avatar
thomwolf committed
1337
1338
            return model, loading_info

thomwolf's avatar
thomwolf committed
1339
        return model
thomwolf's avatar
WIP  
thomwolf committed
1340

1341

thomwolf's avatar
WIP  
thomwolf committed
1342
class TFConv1D(tf.keras.layers.Layer):
Sylvain Gugger's avatar
Sylvain Gugger committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
    """
    1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).

    Basically works like a linear layer but the weights are transposed.

    Args:
        nf (:obj:`int`):
            The number of output features.
        nx (:obj:`int`):
            The number of input features.
        initializer_range (:obj:`float`, `optional`, defaults to 0.02):
            The standard deviation to use to initialize the weights.
        kwargs:
            Additional keyword arguments passed along to the :obj:`__init__` of :obj:`tf.keras.layers.Layer`.
    """

thomwolf's avatar
thomwolf committed
1359
    def __init__(self, nf, nx, initializer_range=0.02, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1360
        super().__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
1361
        self.nf = nf
thomwolf's avatar
thomwolf committed
1362
        self.nx = nx
thomwolf's avatar
thomwolf committed
1363
        self.initializer_range = initializer_range
thomwolf's avatar
thomwolf committed
1364
1365
1366

    def build(self, input_shape):
        self.weight = self.add_weight(
1367
1368
1369
            "weight", shape=[self.nx, self.nf], initializer=get_initializer(self.initializer_range)
        )
        self.bias = self.add_weight("bias", shape=[1, self.nf], initializer=tf.zeros_initializer())
thomwolf's avatar
thomwolf committed
1370

thomwolf's avatar
WIP  
thomwolf committed
1371
    def call(self, x):
thomwolf's avatar
thomwolf committed
1372
        bz, sl = shape_list(x)[:2]
thomwolf's avatar
thomwolf committed
1373

thomwolf's avatar
thomwolf committed
1374
        x = tf.reshape(x, [-1, self.nx])
thomwolf's avatar
thomwolf committed
1375
        x = tf.matmul(x, self.weight) + self.bias
thomwolf's avatar
thomwolf committed
1376
1377

        x = tf.reshape(x, [bz, sl, self.nf])
thomwolf's avatar
thomwolf committed
1378

thomwolf's avatar
WIP  
thomwolf committed
1379
        return x
thomwolf's avatar
thomwolf committed
1380
1381


thomwolf's avatar
thomwolf committed
1382
class TFSharedEmbeddings(tf.keras.layers.Layer):
Stas Bekman's avatar
Stas Bekman committed
1383
    r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
1384
    Construct shared token embeddings.
1385

Sylvain Gugger's avatar
Sylvain Gugger committed
1386
1387
    The weights of the embedding layer is usually shared with the weights of the linear decoder when doing language
    modeling.
Sylvain Gugger's avatar
Sylvain Gugger committed
1388
1389
1390

    Args:
        vocab_size (:obj:`int`):
1391
            The size of the vocabulary, e.g., the number of unique tokens.
Sylvain Gugger's avatar
Sylvain Gugger committed
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
        hidden_size (:obj:`int`):
            The size of the embedding vectors.
        initializer_range (:obj:`float`, `optional`):
            The standard deviation to use when initializing the weights. If no value is provided, it will default to
            :math:`1/\sqrt{hidden\_size}`.
        kwargs:
            Additional keyword arguments passed along to the :obj:`__init__` of :obj:`tf.keras.layers.Layer`.
    """

    def __init__(self, vocab_size: int, hidden_size: int, initializer_range: Optional[float] = None, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1402
        super().__init__(**kwargs)
thomwolf's avatar
thomwolf committed
1403
1404
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
1405
        self.initializer_range = hidden_size ** -0.5 if initializer_range is None else initializer_range
thomwolf's avatar
thomwolf committed
1406
1407

    def build(self, input_shape):
Sylvain Gugger's avatar
Sylvain Gugger committed
1408
1409
1410
        """
        Build shared token embedding layer Shared weights logic adapted from
        https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
thomwolf's avatar
thomwolf committed
1411
1412
        """
        self.weight = self.add_weight(
1413
1414
            "weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range)
        )
Julien Chaumond's avatar
Julien Chaumond committed
1415
        super().build(input_shape)
thomwolf's avatar
thomwolf committed
1416

Julien Plu's avatar
Julien Plu committed
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
    def get_config(self):
        config = {
            "vocab_size": self.vocab_size,
            "hidden_size": self.hidden_size,
            "initializer_range": self.initializer_range,
        }
        base_config = super().get_config()

        return dict(list(base_config.items()) + list(config.items()))

Sylvain Gugger's avatar
Sylvain Gugger committed
1427
1428
1429
1430
    def call(self, inputs: tf.Tensor, mode: str = "embedding") -> tf.Tensor:
        """
        Get token embeddings of inputs or decode final hidden state.

thomwolf's avatar
thomwolf committed
1431
        Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
1432
1433
1434
1435
1436
1437
1438
1439
            inputs (:obj:`tf.Tensor`):
                In embedding mode, should be an int64 tensor with shape :obj:`[batch_size, length]`.

                In linear mode, should be a float tensor with shape :obj:`[batch_size, length, hidden_size]`.
            mode (:obj:`str`, defaults to :obj:`"embedding"`):
               A valid value is either :obj:`"embedding"` or :obj:`"linear"`, the first one indicates that the layer
               should be used as an embedding layer, the second one that the layer should be used as a linear decoder.

thomwolf's avatar
thomwolf committed
1440
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1441
            :obj:`tf.Tensor`: In embedding mode, the output is a float32 embedding tensor, with shape
Sylvain Gugger's avatar
Sylvain Gugger committed
1442
1443
            :obj:`[batch_size, length, embedding_size]`.

1444
            In linear mode, the output is a float32 with shape :obj:`[batch_size, length, vocab_size]`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1445

thomwolf's avatar
thomwolf committed
1446
        Raises:
Sylvain Gugger's avatar
Sylvain Gugger committed
1447
            ValueError: if :obj:`mode` is not valid.
1448

Sylvain Gugger's avatar
Sylvain Gugger committed
1449
1450
        Shared weights logic is adapted from `here
        <https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24>`__.
thomwolf's avatar
thomwolf committed
1451
1452
1453
1454
1455
1456
        """
        if mode == "embedding":
            return self._embedding(inputs)
        elif mode == "linear":
            return self._linear(inputs)
        else:
1457
            raise ValueError(f"mode {mode} is not valid.")
thomwolf's avatar
thomwolf committed
1458
1459
1460
1461
1462
1463
1464

    def _embedding(self, input_ids):
        """Applies embedding based on inputs tensor."""
        return tf.gather(self.weight, input_ids)

    def _linear(self, inputs):
        """
Julien Plu's avatar
Julien Plu committed
1465
        Computes logits by running inputs through a linear layer.
thomwolf's avatar
thomwolf committed
1466

Julien Plu's avatar
Julien Plu committed
1467
1468
1469
1470
1471
1472
1473
        Args:
            inputs: A float32 tensor with shape [..., hidden_size]

        Returns:
            float32 tensor with shape [..., vocab_size].
        """
        first_dims = shape_list(inputs)[:-1]
thomwolf's avatar
thomwolf committed
1474
1475
1476
1477
1478
1479
        x = tf.reshape(inputs, [-1, self.hidden_size])
        logits = tf.matmul(x, self.weight, transpose_b=True)

        return tf.reshape(logits, first_dims + [self.vocab_size])


thomwolf's avatar
thomwolf committed
1480
class TFSequenceSummary(tf.keras.layers.Layer):
Julien Plu's avatar
Julien Plu committed
1481
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1482
1483
1484
1485
    Compute a single vector summary of a sequence hidden states.

    Args:
        config (:class:`~transformers.PretrainedConfig`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1486
1487
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499

            - **summary_type** (:obj:`str`) -- The method to use to make this summary. Accepted values are:

                - :obj:`"last"` -- Take the last token hidden state (like XLNet)
                - :obj:`"first"` -- Take the first token hidden state (like Bert)
                - :obj:`"mean"` -- Take the mean of all tokens hidden states
                - :obj:`"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - :obj:`"attn"` -- Not implemented now, use multi-head attention

            - **summary_use_proj** (:obj:`bool`) -- Add a projection after the vector extraction.
            - **summary_proj_to_labels** (:obj:`bool`) -- If :obj:`True`, the projection outputs to
              :obj:`config.num_labels` classes (otherwise to :obj:`config.hidden_size`).
Sylvain Gugger's avatar
Sylvain Gugger committed
1500
            - **summary_activation** (:obj:`Optional[str]`) -- Set to :obj:`"tanh"` to add a tanh activation to the
Sylvain Gugger's avatar
Sylvain Gugger committed
1501
1502
1503
1504
1505
1506
1507
1508
1509
              output, another string or :obj:`None` will add no activation.
            - **summary_first_dropout** (:obj:`float`) -- Optional dropout probability before the projection and
              activation.
            - **summary_last_dropout** (:obj:`float`)-- Optional dropout probability after the projection and
              activation.

        initializer_range (:obj:`float`, defaults to 0.02): The standard deviation to use to initialize the weights.
        kwargs:
            Additional keyword arguments passed along to the :obj:`__init__` of :obj:`tf.keras.layers.Layer`.
thomwolf's avatar
thomwolf committed
1510
    """
1511

Sylvain Gugger's avatar
Sylvain Gugger committed
1512
    def __init__(self, config: PretrainedConfig, initializer_range: float = 0.02, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1513
        super().__init__(**kwargs)
thomwolf's avatar
thomwolf committed
1514

1515
1516
        self.summary_type = config.summary_type if hasattr(config, "summary_use_proj") else "last"
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
1517
1518
1519
1520
1521
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

1522
        self.has_summary = hasattr(config, "summary_use_proj") and config.summary_use_proj
1523
        if self.has_summary:
1524
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
thomwolf's avatar
thomwolf committed
1525
1526
1527
                num_classes = config.num_labels
            else:
                num_classes = config.hidden_size
1528
1529
1530
            self.summary = tf.keras.layers.Dense(
                num_classes, kernel_initializer=get_initializer(initializer_range), name="summary"
            )
thomwolf's avatar
thomwolf committed
1531

1532
        self.has_activation = hasattr(config, "summary_activation") and config.summary_activation == "tanh"
1533
        if self.has_activation:
1534
            self.activation = tf.keras.activations.tanh
thomwolf's avatar
thomwolf committed
1535

1536
        self.has_first_dropout = hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0
1537
        if self.has_first_dropout:
thomwolf's avatar
thomwolf committed
1538
1539
            self.first_dropout = tf.keras.layers.Dropout(config.summary_first_dropout)

1540
        self.has_last_dropout = hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0
1541
        if self.has_last_dropout:
thomwolf's avatar
thomwolf committed
1542
1543
            self.last_dropout = tf.keras.layers.Dropout(config.summary_last_dropout)

Julien Plu's avatar
Julien Plu committed
1544
    def call(self, inputs, cls_index=None, training=False):
thomwolf's avatar
thomwolf committed
1545
1546
1547
1548
1549
1550
1551
        if not isinstance(inputs, (dict, tuple, list)):
            hidden_states = inputs
        elif isinstance(inputs, (tuple, list)):
            hidden_states = inputs[0]
            cls_index = inputs[1] if len(inputs) > 1 else None
            assert len(inputs) <= 2, "Too many inputs."
        else:
1552
            hidden_states = inputs.get("hidden_states")
1553
            cls_index = inputs.get("cls_index", None)
thomwolf's avatar
thomwolf committed
1554

1555
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
1556
            output = hidden_states[:, -1]
1557
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
1558
            output = hidden_states[:, 0]
1559
        elif self.summary_type == "mean":
Lysandre's avatar
Lysandre committed
1560
            output = tf.reduce_mean(hidden_states, axis=1)
1561
        elif self.summary_type == "cls_index":
1562
            hidden_shape = shape_list(hidden_states)  # e.g. [batch, num choices, seq length, hidden dims]
thomwolf's avatar
thomwolf committed
1563
            if cls_index is None:
1564
1565
1566
                cls_index = tf.fill(
                    hidden_shape[:-2], hidden_shape[-2] - 1
                )  # A tensor full of shape [batch] or [batch, num choices] full of sequence length
1567
1568
            cls_shape = shape_list(cls_index)
            if len(cls_shape) <= len(hidden_shape) - 2:
1569
                cls_index = tf.expand_dims(cls_index, axis=-1)
1570
            # else:
1571
1572
            # cls_index = cls_index[..., tf.newaxis]
            # cls_index = cls_index.expand((-1,) * (cls_index.dim()-1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
1573
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
1574
            output = tf.gather(hidden_states, cls_index, batch_dims=len(hidden_shape) - 2)
1575
1576
1577
1578
            output = tf.squeeze(
                output, axis=len(hidden_shape) - 2
            )  # shape of output: (batch, num choices, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
1579
1580
            raise NotImplementedError

1581
1582
        if self.has_first_dropout:
            output = self.first_dropout(output, training=training)
thomwolf's avatar
thomwolf committed
1583

1584
        if self.has_summary:
1585
            output = self.summary(output)
thomwolf's avatar
thomwolf committed
1586

1587
        if self.has_activation:
thomwolf's avatar
thomwolf committed
1588
1589
            output = self.activation(output)

1590
1591
        if self.has_last_dropout:
            output = self.last_dropout(output, training=training)
thomwolf's avatar
thomwolf committed
1592
1593
1594

        return output

1595

Julien Plu's avatar
Julien Plu committed
1596
def shape_list(tensor: tf.Tensor) -> List[int]:
Sylvain Gugger's avatar
Sylvain Gugger committed
1597
1598
1599
1600
    """
    Deal with dynamic shape in tensorflow cleanly.

    Args:
Julien Plu's avatar
Julien Plu committed
1601
        tensor (:obj:`tf.Tensor`): The tensor we want the shape of.
Sylvain Gugger's avatar
Sylvain Gugger committed
1602
1603
1604
1605

    Returns:
        :obj:`List[int]`: The shape of the tensor as a list.
    """
Julien Plu's avatar
Julien Plu committed
1606
    dynamic = tf.shape(tensor)
Julien Plu's avatar
Julien Plu committed
1607
1608

    if tensor.shape == tf.TensorShape(None):
1609
        return dynamic
Julien Plu's avatar
Julien Plu committed
1610
1611
1612

    static = tensor.shape.as_list()

thomwolf's avatar
thomwolf committed
1613
    return [dynamic[i] if s is None else s for i, s in enumerate(static)]
thomwolf's avatar
thomwolf committed
1614

1615

Sylvain Gugger's avatar
Sylvain Gugger committed
1616
1617
1618
1619
def get_initializer(initializer_range: float = 0.02) -> tf.initializers.TruncatedNormal:
    """
    Creates a :obj:`tf.initializers.TruncatedNormal` with the given range.

Julien Chaumond's avatar
Julien Chaumond committed
1620
    Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
1621
1622
        initializer_range (`float`, defaults to 0.02): Standard deviation of the initializer range.

Julien Chaumond's avatar
Julien Chaumond committed
1623
    Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1624
        :obj:`tf.initializers.TruncatedNormal`: The truncated normal initializer.
Julien Chaumond's avatar
Julien Chaumond committed
1625
1626
    """
    return tf.keras.initializers.TruncatedNormal(stddev=initializer_range)
1627
1628


Sam Shleifer's avatar
Sam Shleifer committed
1629
1630
class TFWrappedEmbeddings:
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1631
1632
1633
    this class wraps a the TFSharedEmbeddingTokens layer into a python 'no-keras-layer' class to avoid problem with
    weight restoring. Also it makes sure that the layer is called from the correct scope to avoid problem with
    saving/storing the correct weights
Sam Shleifer's avatar
Sam Shleifer committed
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
    """

    def __init__(self, layer, abs_scope_name=None):
        self._layer = layer
        self._abs_scope_name = abs_scope_name

    def call(self, inputs, mode="embedding"):
        if self._abs_scope_name is None:
            return self._layer.call(inputs, mode)

        # if an abs scope name is given to the embedding variable, call variable from absolute scope
        with tf.compat.v1.variable_scope(self._abs_scope_name, auxiliary_name_scope=False) as abs_scope_name:
            with tf.name_scope(abs_scope_name.original_name_scope):
                return self._layer.call(inputs, mode)

    def __call__(self, inputs, mode="embedding"):
        if self._abs_scope_name is None:
            return self._layer(inputs, mode)

        # if an abs scope name is given to the embedding variable, call variable from absolute scope
        with tf.compat.v1.variable_scope(self._abs_scope_name, auxiliary_name_scope=False) as abs_scope_name:
            with tf.name_scope(abs_scope_name.original_name_scope):
                return self._layer(inputs, mode)