modeling_openai.py 39.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
22
import copy
import json
thomwolf's avatar
thomwolf committed
23
import logging
24
25
26
import math
import os
import shutil
thomwolf's avatar
thomwolf committed
27
28
import tarfile
import tempfile
thomwolf's avatar
thomwolf committed
29
30
import sys
from io import open
thomwolf's avatar
thomwolf committed
31
32
33

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
34
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
35
36
from torch.nn.parameter import Parameter

37
from .file_utils import cached_path, CONFIG_NAME, WEIGHTS_NAME
38
from .modeling import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
39

thomwolf's avatar
thomwolf committed
40
41
logger = logging.getLogger(__name__)

42
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
thomwolf's avatar
thomwolf committed
43
PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
44

45

46
47
48
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
49
50
    import re
    import numpy as np
51
52
53
54
55
56
57
58
    print("Loading weights...")
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
59
    # This was used when we had a single embedding matrix for positions and tokens
60
61
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
62
63
64
    init_params = [arr.squeeze() for arr in init_params]

    try:
65
66
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
67
    except AssertionError as e:
68
69
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
70
71
        raise

72
73
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
74
    names.pop(0)
75
76
    # Pop position and token embedding arrays
    init_params.pop(0)
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
115
116
117
118
119
120
121
122
123

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


124
125
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
126

thomwolf's avatar
thomwolf committed
127
128
129
class OpenAIGPTConfig(object):
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
130
131
132
133
134

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
thomwolf's avatar
thomwolf committed
135
        n_positions=512,
136
137
138
139
140
141
142
143
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
144
        layer_norm_epsilon=1e-5,
145
        initializer_range=0.02,
146
        predict_special_tokens=True
147
    ):
thomwolf's avatar
thomwolf committed
148
149
150
151
152
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
153
154
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
thomwolf's avatar
thomwolf committed
155
156
157
158
159
160
161
162
163
164
165
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
166
            layer_norm_epsilon: epsilon to use in the layer norm layers
thomwolf's avatar
thomwolf committed
167
168
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
169
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
170
        """
thomwolf's avatar
thomwolf committed
171
172
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
173
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
174
175
176
177
178
179
180
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
181
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
182
183
184
185
186
187
188
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
189
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
190
            self.initializer_range = initializer_range
191
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
192
        else:
193
194
195
196
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
197
198

    @property
199
200
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
201
202
203
204
205
206
207
208
209
210
211
212

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `OpenAIGPTConfig` from a json file of parameters."""
213
        with open(json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

229
230
231
232
233
    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())

234

thomwolf's avatar
thomwolf committed
235
236
237
238
239
240
241
242
class Conv1D(nn.Module):
    def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            w = torch.empty(nx, nf)
            nn.init.normal_(w, std=0.02)
thomwolf's avatar
thomwolf committed
243
244
            self.weight = Parameter(w)
            self.bias = Parameter(torch.zeros(nf))
thomwolf's avatar
thomwolf committed
245
246
247
248
249
250
        else:  # was used to train LM
            raise NotImplementedError

    def forward(self, x):
        if self.rf == 1:
            size_out = x.size()[:-1] + (self.nf,)
thomwolf's avatar
thomwolf committed
251
            x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
thomwolf's avatar
thomwolf committed
252
253
254
255
256
257
258
            x = x.view(*size_out)
        else:
            raise NotImplementedError
        return x


class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
259
    def __init__(self, nx, n_ctx, config, scale=False, output_attentions=False):
thomwolf's avatar
thomwolf committed
260
261
262
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
263
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
264
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
265
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
266
267
        self.split_size = n_state
        self.scale = scale
thomwolf's avatar
thomwolf committed
268
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
269
270
        self.c_attn = Conv1D(n_state * 3, 1, nx)
        self.c_proj = Conv1D(n_state, 1, nx)
271
272
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
273
274
275
276
277

    def _attn(self, q, k, v):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
278
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
279
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
280
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
281
282
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
283
284
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
thomwolf's avatar
thomwolf committed
285
286
        if self.output_attentions:
            return w, torch.matmul(w, v)
thomwolf's avatar
thomwolf committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

    def forward(self, x):
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
        a = self._attn(query, key, value)
thomwolf's avatar
thomwolf committed
309
310
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
311
312
313
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
314
315
        if self.output_attentions:
            return attentions, a
thomwolf's avatar
thomwolf committed
316
317
318
319
        return a


class MLP(nn.Module):
320
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
321
        super(MLP, self).__init__()
322
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
323
324
        self.c_fc = Conv1D(n_state, 1, nx)
        self.c_proj = Conv1D(nx, 1, n_state)
325
326
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
327
328
329
330
331
332
333
334

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
335
    def __init__(self, n_ctx, config, scale=False, output_attentions=False):
thomwolf's avatar
thomwolf committed
336
        super(Block, self).__init__()
337
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
338
339
        self.output_attentions = output_attentions
        self.attn = Attention(nx, n_ctx, config, scale, output_attentions)
340
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
341
        self.mlp = MLP(4 * nx, config)
342
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
343
344
345

    def forward(self, x):
        a = self.attn(x)
thomwolf's avatar
thomwolf committed
346
347
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
348
349
350
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
351
352
        if self.output_attentions:
            return attentions, h
thomwolf's avatar
thomwolf committed
353
354
355
        return h


thomwolf's avatar
thomwolf committed
356
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
357
358
    """ Language Model Head for the transformer """

359
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
360
        super(OpenAIGPTLMHead, self).__init__()
361
        self.n_embd = config.n_embd
362
363
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
thomwolf's avatar
thomwolf committed
364
365
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
366
367
        self.set_embeddings_weights(model_embeddings_weights)

368
369
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
370
        embed_shape = model_embeddings_weights.shape
371
        self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
372

thomwolf's avatar
thomwolf committed
373
374
    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
375
376
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
377
378
379
        return lm_logits


thomwolf's avatar
thomwolf committed
380
class OpenAIGPTMultipleChoiceHead(nn.Module):
thomwolf's avatar
thomwolf committed
381
382
    """ Classifier Head for the transformer """

383
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
384
        super(OpenAIGPTMultipleChoiceHead, self).__init__()
385
386
387
        self.n_embd = config.n_embd
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)
thomwolf's avatar
thomwolf committed
388

389
        nn.init.normal_(self.linear.weight, std=0.02)
thomwolf's avatar
thomwolf committed
390
391
        nn.init.normal_(self.linear.bias, 0)

thomwolf's avatar
thomwolf committed
392
    def forward(self, hidden_states, mc_token_ids):
thomwolf's avatar
thomwolf committed
393
        # Classification logits
thomwolf's avatar
thomwolf committed
394
        # hidden_state (bsz, num_choices, seq_length, hidden_size)
thomwolf's avatar
thomwolf committed
395
        # mc_token_ids (bsz, num_choices)
thomwolf's avatar
thomwolf committed
396
        mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
thomwolf's avatar
thomwolf committed
397
398
399
        # (bsz, num_choices, 1, hidden_size)
        multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
        # (bsz, num_choices, hidden_size)
Philipp Glock's avatar
Philipp Glock committed
400
        multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
thomwolf's avatar
thomwolf committed
401
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
thomwolf's avatar
thomwolf committed
402
        # (bsz, num_choices)
thomwolf's avatar
thomwolf committed
403
404
405
406
407
408
409
        return multiple_choice_logits


class OpenAIGPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
410

thomwolf's avatar
thomwolf committed
411
412
413
414
415
416
417
418
    def __init__(self, config, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__()
        if not isinstance(config, OpenAIGPTConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
419
420
                )
            )
thomwolf's avatar
thomwolf committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
435

thomwolf's avatar
thomwolf committed
436
    @classmethod
437
    def from_pretrained(
thomwolf's avatar
thomwolf committed
438
        cls, pretrained_model_name_or_path, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
439
    ):
thomwolf's avatar
thomwolf committed
440
441
442
443
444
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
thomwolf's avatar
thomwolf committed
445
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
446
447
448
449
450
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `openai-gpt`
                - a path or url to a pretrained model archive containing:
                    . `openai_gpt_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
451
452
453
454
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
455
456
457
458
459
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
thomwolf's avatar
thomwolf committed
460
461
        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
462
            config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
463
        else:
thomwolf's avatar
thomwolf committed
464
            archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
465
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
thomwolf's avatar
thomwolf committed
466
467
468
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
469
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
470
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
471
472
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
473
474
                "We assumed '{}' was a path or url but couldn't find files {} and {} "
                "at this path or url.".format(
thomwolf's avatar
thomwolf committed
475
                    pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
476
                    archive_file, config_file
477
478
                )
            )
thomwolf's avatar
thomwolf committed
479
            return None
480
481
482
        if resolved_archive_file == archive_file and resolved_config_file == config_file:
            logger.info("loading weights file {}".format(archive_file))
            logger.info("loading configuration file {}".format(config_file))
thomwolf's avatar
thomwolf committed
483
        else:
484
485
486
487
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))
thomwolf's avatar
thomwolf committed
488
        # Load config
489
        config = OpenAIGPTConfig.from_json_file(resolved_config_file)
thomwolf's avatar
thomwolf committed
490
491
492
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
493
        if state_dict is None and not from_tf:
thomwolf's avatar
thomwolf committed
494
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
495
496
        if from_tf:
            # Directly load from a TensorFlow checkpoint (stored as NumPy array)
497
            return load_tf_weights_in_openai_gpt(model, resolved_archive_file)
thomwolf's avatar
thomwolf committed
498
499
500
501
502

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
thomwolf's avatar
thomwolf committed
503
504
505
506
507
508
            if key.endswith(".g"):
                new_key = key[:-2] + ".weight"
            elif key.endswith(".b"):
                new_key = key[:-2] + ".bias"
            elif key.endswith(".w"):
                new_key = key[:-2] + ".weight"
thomwolf's avatar
thomwolf committed
509
510
511
512
513
514
515
516
517
518
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
519
        metadata = getattr(state_dict, "_metadata", None)
thomwolf's avatar
thomwolf committed
520
521
522
523
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

524
        def load(module, prefix=""):
thomwolf's avatar
thomwolf committed
525
526
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
527
528
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
            )
thomwolf's avatar
thomwolf committed
529
530
            for name, child in module._modules.items():
                if child is not None:
531
532
                    load(child, prefix + name + ".")

thomwolf's avatar
thomwolf committed
533
534
        start_model = model
        if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
thomwolf's avatar
update  
thomwolf committed
535
536
537
            start_model = model.transformer
        load(start_model, prefix="")

thomwolf's avatar
thomwolf committed
538
        if len(missing_keys) > 0:
539
540
541
            logger.info(
                "Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
            )
thomwolf's avatar
thomwolf committed
542
        if len(unexpected_keys) > 0:
543
544
545
            logger.info(
                "Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
            )
thomwolf's avatar
thomwolf committed
546
        if len(error_msgs) > 0:
547
548
549
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
            )
550

thomwolf's avatar
thomwolf committed
551
        # Add additional embeddings for special tokens if needed
552
553
        # This step also make sure we are still sharing the output and input embeddings after loading weights
        model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
thomwolf's avatar
thomwolf committed
554
        return model
thomwolf's avatar
thomwolf committed
555
556


thomwolf's avatar
thomwolf committed
557
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
558
559
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

560
561
562
563
564
565
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
566
567
568
569
570
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
571
         config.vocab_size + config.n_special - 1]                  ______________________
572

573
574
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
575
576
577
578
579
580
581
    You should use the associate indices to index the embeddings.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
582
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
583
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
584
            with the position indices (selected in the range [0, config.n_positions - 1[.
585
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
586
587
588
589
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

    Outputs:
        `hidden_states`: the encoded-hidden-states at the top of the model
            as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
607

thomwolf's avatar
thomwolf committed
608
    def __init__(self, config, output_attentions=False):
609
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
610
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
611
        self.tokens_embed = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
612
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
613
        self.drop = nn.Dropout(config.embd_pdrop)
thomwolf's avatar
thomwolf committed
614
        block = Block(config.n_ctx, config, scale=True, output_attentions=output_attentions)
615
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
616

thomwolf's avatar
thomwolf committed
617
618
619
        self.apply(self.init_weights)

    def set_num_special_tokens(self, num_special_tokens):
620
621
622
        " Update input embeddings with new embedding matrice if needed "
        if self.config.n_special == num_special_tokens:
            return
thomwolf's avatar
thomwolf committed
623
624
        # Update config
        self.config.n_special = num_special_tokens
thomwolf's avatar
thomwolf committed
625
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
626
        old_embed = self.tokens_embed
627
        self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
thomwolf's avatar
thomwolf committed
628
        self.tokens_embed.to(old_embed.weight.device)
629
        self.init_weights(self.tokens_embed)
thomwolf's avatar
thomwolf committed
630
631
        # Copy word embeddings from the previous weights
        self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
thomwolf's avatar
thomwolf committed
632

thomwolf's avatar
thomwolf committed
633
634
    def forward(self, input_ids, position_ids=None, token_type_ids=None):
        if position_ids is None:
635
636
637
638
639
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
640
641
642
643
644
645
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

646
647
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
648
649
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
650
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
651
652
653
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
654
655
        hidden_states = self.drop(hidden_states)

thomwolf's avatar
thomwolf committed
656
        all_attentions = []
thomwolf's avatar
thomwolf committed
657
        for block in self.h:
thomwolf's avatar
thomwolf committed
658
659
660
661
662
            if self.output_attentions:
                attentions, hidden_states = block(hidden_states)
                all_attentions.append(attentions)
            else:
                hidden_states = block(hidden_states)
thomwolf's avatar
thomwolf committed
663
        output_shape = input_shape + (hidden_states.size(-1),)
thomwolf's avatar
thomwolf committed
664
665
        if self.output_attentions:
            return all_attentions, hidden_states.view(*output_shape)
thomwolf's avatar
thomwolf committed
666
        return hidden_states.view(*output_shape)
thomwolf's avatar
thomwolf committed
667

668

thomwolf's avatar
thomwolf committed
669
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
670
671
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

672
673
674
675
676
677
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
678
679
680
681
682
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
683
         config.vocab_size + config.n_special - 1]                  ______________________
684

685
686
687
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
688
689
690
691
692
693

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
694
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
695
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
696
            with the position indices (selected in the range [0, config.n_positions - 1[.
697
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
698
699
700
701
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
702
703
704
705
706
707
708
709
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
710
711
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
                (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
712
713
714
715
716
717
718
719
720
721
722
723

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
724

thomwolf's avatar
thomwolf committed
725
    def __init__(self, config, output_attentions=False):
726
        super(OpenAIGPTLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
727
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions)
728
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
729
730
        self.apply(self.init_weights)

731
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
732
733
734
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
735
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
736
        self.transformer.set_num_special_tokens(num_special_tokens)
737
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
738
739
740

    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
thomwolf's avatar
thomwolf committed
741
742
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
thomwolf's avatar
thomwolf committed
743
744
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
745
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
746
747
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
748
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
749
            loss_fct = CrossEntropyLoss(ignore_index=-1)
750
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
751
                            shift_labels.view(-1))
thomwolf's avatar
thomwolf committed
752
            return loss
thomwolf's avatar
thomwolf committed
753
754
        if self.transformer.output_attentions:
            return all_attentions, lm_logits
thomwolf's avatar
thomwolf committed
755
        return lm_logits
thomwolf's avatar
thomwolf committed
756

757

thomwolf's avatar
thomwolf committed
758
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
759
    """OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
760

761
762
763
764
765
766
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
767
768
769
770
771
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
772
         config.vocab_size + config.n_special - 1]                  ______________________
773

774
775
776
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
777
778
779
780
781

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
thomwolf's avatar
thomwolf committed
782
783
784
785
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, total_tokens_embeddings[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
786
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
787
            with the position indices (selected in the range [0, config.n_positions - 1[.
788
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
789
790
791
792
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
793
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
794
795
            with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_tokens_embeddings]
796
797
798
799
800
801
802
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
803
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
804
805
806
807
808
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
thomwolf's avatar
thomwolf committed
809
810
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
811
812
813
814

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
thomwolf's avatar
thomwolf committed
815
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
816
817
    ```
    """
818

thomwolf's avatar
thomwolf committed
819
    def __init__(self, config, output_attentions=False):
820
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
821
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions)
822
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
823
        self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
824
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
825

826
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
827
828
829
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
830
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
831
        self.transformer.set_num_special_tokens(num_special_tokens)
832
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
833

thomwolf's avatar
thomwolf committed
834
    def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None):
thomwolf's avatar
thomwolf committed
835
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
thomwolf's avatar
thomwolf committed
836
837
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
thomwolf's avatar
thomwolf committed
838
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
839
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
thomwolf's avatar
thomwolf committed
840
841
        losses = []
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
842
843
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
844
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
845
            losses.append(loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)))
846
        if mc_labels is not None:
thomwolf's avatar
thomwolf committed
847
            loss_fct = CrossEntropyLoss()
848
            losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
thomwolf's avatar
thomwolf committed
849
850
        if losses:
            return losses
thomwolf's avatar
thomwolf committed
851
852
        if self.transformer.output_attentions:
            return all_attentions, lm_logits, mc_logits
853
        return lm_logits, mc_logits