run_glue.py 25.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19
20

from __future__ import absolute_import, division, print_function

import argparse
thomwolf's avatar
thomwolf committed
21
import glob
thomwolf's avatar
thomwolf committed
22
23
24
25
26
27
28
29
30
import logging
import os
import random

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
31
from tensorboardX import SummaryWriter
thomwolf's avatar
thomwolf committed
32
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
33

thomwolf's avatar
thomwolf committed
34
35
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
                                  BertForSequenceClassification, BertTokenizer,
36
37
38
                                  RobertaConfig,
                                  RobertaForSequenceClassification,
                                  RobertaTokenizer,
thomwolf's avatar
thomwolf committed
39
40
41
                                  XLMConfig, XLMForSequenceClassification,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForSequenceClassification,
42
43
44
45
                                  XLNetTokenizer,
                                  DistilBertConfig,
                                  DistilBertForSequenceClassification,
                                  DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
46
47
48

from pytorch_transformers import AdamW, WarmupLinearSchedule

49
from pytorch_transformers.preprocessing import (compute_metrics, output_modes, processors, convert_examples_to_glue_features)
thomwolf's avatar
thomwolf committed
50
51
52

logger = logging.getLogger(__name__)

53
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig)), ())
54
55

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
56
57
58
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
59
    'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
60
    'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer)
61
}
thomwolf's avatar
thomwolf committed
62

thomwolf's avatar
thomwolf committed
63
64
65
66
67
68
69
70
71

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
72
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
73
74
75
76
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
77
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
78
79
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
80

thomwolf's avatar
thomwolf committed
81
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
82
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
83
84
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
85
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
86

thomwolf's avatar
thomwolf committed
87
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
88
    no_decay = ['bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
89
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
90
91
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
92
        ]
thomwolf's avatar
thomwolf committed
93
94
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
thomwolf's avatar
thomwolf committed
95
96
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
97
            from apex import amp
thomwolf's avatar
thomwolf committed
98
99
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
100
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
101

102
103
104
105
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
106
107
108
109
110
111
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
112
113
    # Train!
    logger.info("***** Running training *****")
114
115
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
116
117
118
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
119
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
120
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
121
122

    global_step = 0
thomwolf's avatar
thomwolf committed
123
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
124
    model.zero_grad()
thomwolf's avatar
thomwolf committed
125
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
thomwolf's avatar
thomwolf committed
126
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
thomwolf's avatar
thomwolf committed
127
128
129
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
thomwolf's avatar
thomwolf committed
130
            model.train()
thomwolf's avatar
thomwolf committed
131
            batch = tuple(t.to(args.device) for t in batch)
132
133
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
134
                      'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None,  # XLM, DistilBERT and RoBERTa don't use segment_ids
135
                      'labels':         batch[3]}
Peiqin Lin's avatar
typos  
Peiqin Lin committed
136
137
            outputs = model(**inputs)
            loss = outputs[0]  # model outputs are always tuple in pytorch-transformers (see doc)
thomwolf's avatar
thomwolf committed
138
139
140
141
142
143

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
144
145
146
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
thomwolf's avatar
thomwolf committed
147
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
thomwolf's avatar
thomwolf committed
148
149
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
150
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
thomwolf's avatar
thomwolf committed
151
152
153

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
thomwolf's avatar
thomwolf committed
154
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
155
                optimizer.step()
thomwolf's avatar
thomwolf committed
156
                model.zero_grad()
thomwolf's avatar
thomwolf committed
157
                global_step += 1
thomwolf's avatar
thomwolf committed
158

thomwolf's avatar
thomwolf committed
159
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
thomwolf's avatar
thomwolf committed
160
                    # Log metrics
thomwolf's avatar
thomwolf committed
161
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
162
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
163
164
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
thomwolf's avatar
thomwolf committed
165
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
thomwolf's avatar
thomwolf committed
166
167
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
168
169
170
171
172
173
174
175
176

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
177
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
178

thomwolf's avatar
thomwolf committed
179
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
180
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
181
182
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
183
            train_iterator.close()
thomwolf's avatar
thomwolf committed
184
            break
thomwolf's avatar
thomwolf committed
185

thomwolf's avatar
thomwolf committed
186
187
188
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
189
190
191
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
192
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
193
194
195
196
197
198
199
200
201
202
203
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
204
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
205
206
207
208
209
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

        # Eval!
thomwolf's avatar
thomwolf committed
210
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
211
212
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
213
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
214
215
216
217
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
218
            model.eval()
thomwolf's avatar
thomwolf committed
219
220
221
222
223
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
                inputs = {'input_ids':      batch[0],
                          'attention_mask': batch[1],
224
                          'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None,  # XLM, DistilBERT and RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
225
226
227
228
                          'labels':         batch[3]}
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
229
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

        output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
248
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
249
250
251
252
253
254
255
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
256
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
257
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
258
259
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
260
    processor = processors[task]()
261
262
263
264
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
265
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
thomwolf's avatar
thomwolf committed
266
267
        str(args.max_seq_length),
        str(task)))
thomwolf's avatar
thomwolf committed
268
    if os.path.exists(cached_features_file):
thomwolf's avatar
thomwolf committed
269
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
270
271
        features = torch.load(cached_features_file)
    else:
272
273
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
274
275
276
        if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta']:
            # HACK(label indices are swapped in RoBERTa pretrained model)
            label_list[1], label_list[2] = label_list[2], label_list[1] 
277
        examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
278
        features = convert_examples_to_glue_features(examples, label_list, args.max_seq_length, tokenizer, output_mode,
279
            pad_on_left=bool(args.model_type in ['xlnet']),                 # pad on the left for xlnet
280
            pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
281
282
            pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
        )
283
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
284
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
285
286
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
287
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
288
289
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

290
291
292
293
294
295
296
297
298
299
300
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    if output_mode == "classification":
        all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
    elif output_mode == "regression":
        all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.float)

    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    return dataset
thomwolf's avatar
thomwolf committed
301
302


thomwolf's avatar
thomwolf committed
303
304
305
306
307
308
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
309
310
311
312
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
thomwolf's avatar
thomwolf committed
313
    parser.add_argument("--task_name", default=None, type=str, required=True,
314
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
thomwolf's avatar
thomwolf committed
315
316
317
318
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
thomwolf's avatar
thomwolf committed
319
320
321
322
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
thomwolf's avatar
thomwolf committed
323
324
325
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
326
327
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
thomwolf's avatar
thomwolf committed
328
329
330
331
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
332
333
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
334
335
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
336
337

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
338
                        help="Batch size per GPU/CPU for training.")
thomwolf's avatar
thomwolf committed
339
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
340
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
341
342
343
344
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
thomwolf's avatar
thomwolf committed
345
346
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
thomwolf's avatar
thomwolf committed
347
348
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
thomwolf's avatar
thomwolf committed
349
350
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
thomwolf's avatar
thomwolf committed
351
352
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
thomwolf's avatar
thomwolf committed
353
354
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
thomwolf's avatar
thomwolf committed
355
356
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
thomwolf's avatar
thomwolf committed
357

thomwolf's avatar
thomwolf committed
358
    parser.add_argument('--logging_steps', type=int, default=50,
thomwolf's avatar
thomwolf committed
359
                        help="Log every X updates steps.")
thomwolf's avatar
thomwolf committed
360
361
362
363
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
364
365
366
367
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
368
369
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
370
371
372
373
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
thomwolf's avatar
thomwolf committed
374
375
376
377
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
thomwolf's avatar
thomwolf committed
378
    parser.add_argument("--local_rank", type=int, default=-1,
thomwolf's avatar
thomwolf committed
379
380
381
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
thomwolf's avatar
thomwolf committed
382
383
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
384
385
386
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

thomwolf's avatar
thomwolf committed
387
388
389
390
391
392
393
394
395
396
397
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
398
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
399
400
401
402
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
403
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
404
405
406
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
407
408
409
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
410
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
thomwolf's avatar
thomwolf committed
411
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
thomwolf's avatar
thomwolf committed
412

thomwolf's avatar
thomwolf committed
413
414
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
415
416

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
417
418
419
420
421
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
422
423
424
425
426
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
427
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
428

429
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
430
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
431
432
433
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
thomwolf's avatar
thomwolf committed
434
435

    if args.local_rank == 0:
436
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
437

thomwolf's avatar
thomwolf committed
438
    model.to(args.device)
thomwolf's avatar
thomwolf committed
439

thomwolf's avatar
thomwolf committed
440
441
    logger.info("Training/evaluation parameters %s", args)

442

thomwolf's avatar
thomwolf committed
443
    # Training
thomwolf's avatar
thomwolf committed
444
    if args.do_train:
445
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
446
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
447
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
448
449


thomwolf's avatar
thomwolf committed
450
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
thomwolf's avatar
thomwolf committed
451
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
452
453
454
455
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
456
        logger.info("Saving model checkpoint to %s", args.output_dir)
457
458
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
459
460
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
461
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
462
463

        # Good practice: save your training arguments together with the trained model
464
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
465

466
        # Load a trained model and vocabulary that you have fine-tuned
467
        model = model_class.from_pretrained(args.output_dir)
Peng Qi's avatar
Peng Qi committed
468
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
469
        model.to(args.device)
thomwolf's avatar
thomwolf committed
470

471

thomwolf's avatar
thomwolf committed
472
    # Evaluation
thomwolf's avatar
thomwolf committed
473
    results = {}
thomwolf's avatar
thomwolf committed
474
    if args.do_eval and args.local_rank in [-1, 0]:
475
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
476
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
477
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
478
479
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
480
481
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
482
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
thomwolf's avatar
thomwolf committed
483
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
484
485
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
486
487
488
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

thomwolf's avatar
thomwolf committed
489
    return results
thomwolf's avatar
thomwolf committed
490
491
492
493


if __name__ == "__main__":
    main()