run_glue.py 25.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19
20

from __future__ import absolute_import, division, print_function

import argparse
thomwolf's avatar
thomwolf committed
21
import glob
thomwolf's avatar
thomwolf committed
22
23
24
25
26
27
28
29
30
import logging
import os
import random

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
31
from tensorboardX import SummaryWriter
thomwolf's avatar
thomwolf committed
32
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
33

thomwolf's avatar
thomwolf committed
34
35
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
                                  BertForSequenceClassification, BertTokenizer,
36
37
38
                                  RobertaConfig,
                                  RobertaForSequenceClassification,
                                  RobertaTokenizer,
thomwolf's avatar
thomwolf committed
39
40
41
                                  XLMConfig, XLMForSequenceClassification,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForSequenceClassification,
42
43
44
45
                                  XLNetTokenizer,
                                  DistilBertConfig,
                                  DistilBertForSequenceClassification,
                                  DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
46
47
48

from pytorch_transformers import AdamW, WarmupLinearSchedule

thomwolf's avatar
thomwolf committed
49
50
from utils_glue import (compute_metrics, convert_examples_to_features,
                        output_modes, processors)
thomwolf's avatar
thomwolf committed
51
52
53

logger = logging.getLogger(__name__)

54
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig)), ())
55
56

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
57
58
59
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
60
    'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
61
    'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer)
62
}
thomwolf's avatar
thomwolf committed
63

thomwolf's avatar
thomwolf committed
64
65
66
67
68
69
70
71
72

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
73
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
74
75
76
77
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
78
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
79
80
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
81

thomwolf's avatar
thomwolf committed
82
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
83
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
84
85
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
86
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
87

thomwolf's avatar
thomwolf committed
88
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
89
    no_decay = ['bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
90
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
91
92
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
93
        ]
thomwolf's avatar
thomwolf committed
94
95
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
thomwolf's avatar
thomwolf committed
96
97
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
98
            from apex import amp
thomwolf's avatar
thomwolf committed
99
100
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
101
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
102

103
104
105
106
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
107
108
109
110
111
112
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
113
114
    # Train!
    logger.info("***** Running training *****")
115
116
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
117
118
119
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
120
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
121
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
122
123

    global_step = 0
thomwolf's avatar
thomwolf committed
124
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
125
    model.zero_grad()
thomwolf's avatar
thomwolf committed
126
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
thomwolf's avatar
thomwolf committed
127
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
thomwolf's avatar
thomwolf committed
128
129
130
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
thomwolf's avatar
thomwolf committed
131
            model.train()
thomwolf's avatar
thomwolf committed
132
            batch = tuple(t.to(args.device) for t in batch)
133
134
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
135
                      'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None,  # XLM, DistilBERT and RoBERTa don't use segment_ids
136
                      'labels':         batch[3]}
Peiqin Lin's avatar
typos  
Peiqin Lin committed
137
138
            outputs = model(**inputs)
            loss = outputs[0]  # model outputs are always tuple in pytorch-transformers (see doc)
thomwolf's avatar
thomwolf committed
139
140
141
142
143
144

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
145
146
147
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
thomwolf's avatar
thomwolf committed
148
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
thomwolf's avatar
thomwolf committed
149
150
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
151
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
thomwolf's avatar
thomwolf committed
152
153
154

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
thomwolf's avatar
thomwolf committed
155
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
156
                optimizer.step()
thomwolf's avatar
thomwolf committed
157
                model.zero_grad()
thomwolf's avatar
thomwolf committed
158
                global_step += 1
thomwolf's avatar
thomwolf committed
159

thomwolf's avatar
thomwolf committed
160
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
thomwolf's avatar
thomwolf committed
161
                    # Log metrics
thomwolf's avatar
thomwolf committed
162
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
163
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
164
165
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
thomwolf's avatar
thomwolf committed
166
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
thomwolf's avatar
thomwolf committed
167
168
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
169
170
171
172
173
174
175
176
177

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
178
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
179

thomwolf's avatar
thomwolf committed
180
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
181
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
182
183
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
184
            train_iterator.close()
thomwolf's avatar
thomwolf committed
185
            break
thomwolf's avatar
thomwolf committed
186

thomwolf's avatar
thomwolf committed
187
188
189
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
190
191
192
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
193
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
194
195
196
197
198
199
200
201
202
203
204
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
205
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
206
207
208
209
210
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

        # Eval!
thomwolf's avatar
thomwolf committed
211
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
212
213
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
214
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
215
216
217
218
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
219
            model.eval()
thomwolf's avatar
thomwolf committed
220
221
222
223
224
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
                inputs = {'input_ids':      batch[0],
                          'attention_mask': batch[1],
225
                          'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None,  # XLM, DistilBERT and RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
226
227
228
229
                          'labels':         batch[3]}
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
230
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

        output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
249
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
250
251
252
253
254
255
256
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
257
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
258
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
259
260
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
261
    processor = processors[task]()
262
263
264
265
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
266
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
thomwolf's avatar
thomwolf committed
267
268
        str(args.max_seq_length),
        str(task)))
thomwolf's avatar
thomwolf committed
269
    if os.path.exists(cached_features_file):
thomwolf's avatar
thomwolf committed
270
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
271
272
        features = torch.load(cached_features_file)
    else:
273
274
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
275
276
277
        if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta']:
            # HACK(label indices are swapped in RoBERTa pretrained model)
            label_list[1], label_list[2] = label_list[2], label_list[1] 
278
        examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
279
        features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer, output_mode,
280
            pad_on_left=bool(args.model_type in ['xlnet']),                 # pad on the left for xlnet
281
            pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
282
283
            pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
        )
284
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
285
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
286
287
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
288
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
289
290
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

291
292
293
294
295
296
297
298
299
300
301
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    if output_mode == "classification":
        all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
    elif output_mode == "regression":
        all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.float)

    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    return dataset
thomwolf's avatar
thomwolf committed
302
303


thomwolf's avatar
thomwolf committed
304
305
306
307
308
309
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
310
311
312
313
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
thomwolf's avatar
thomwolf committed
314
    parser.add_argument("--task_name", default=None, type=str, required=True,
315
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
thomwolf's avatar
thomwolf committed
316
317
318
319
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
thomwolf's avatar
thomwolf committed
320
321
322
323
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
thomwolf's avatar
thomwolf committed
324
325
326
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
327
328
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
thomwolf's avatar
thomwolf committed
329
330
331
332
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
333
334
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
335
336
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
337
338

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
339
                        help="Batch size per GPU/CPU for training.")
thomwolf's avatar
thomwolf committed
340
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
341
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
342
343
344
345
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
thomwolf's avatar
thomwolf committed
346
347
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
thomwolf's avatar
thomwolf committed
348
349
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
thomwolf's avatar
thomwolf committed
350
351
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
thomwolf's avatar
thomwolf committed
352
353
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
thomwolf's avatar
thomwolf committed
354
355
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
thomwolf's avatar
thomwolf committed
356
357
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
thomwolf's avatar
thomwolf committed
358

thomwolf's avatar
thomwolf committed
359
    parser.add_argument('--logging_steps', type=int, default=50,
thomwolf's avatar
thomwolf committed
360
                        help="Log every X updates steps.")
thomwolf's avatar
thomwolf committed
361
362
363
364
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
365
366
367
368
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
369
370
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
371
372
373
374
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
thomwolf's avatar
thomwolf committed
375
376
377
378
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
thomwolf's avatar
thomwolf committed
379
    parser.add_argument("--local_rank", type=int, default=-1,
thomwolf's avatar
thomwolf committed
380
381
382
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
thomwolf's avatar
thomwolf committed
383
384
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
385
386
387
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

thomwolf's avatar
thomwolf committed
388
389
390
391
392
393
394
395
396
397
398
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
399
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
400
401
402
403
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
404
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
405
406
407
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
408
409
410
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
411
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
thomwolf's avatar
thomwolf committed
412
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
thomwolf's avatar
thomwolf committed
413

thomwolf's avatar
thomwolf committed
414
415
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
416
417

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
418
419
420
421
422
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
423
424
425
426
427
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
428
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
429

430
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
431
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
432
433
434
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
thomwolf's avatar
thomwolf committed
435
436

    if args.local_rank == 0:
437
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
438

thomwolf's avatar
thomwolf committed
439
    model.to(args.device)
thomwolf's avatar
thomwolf committed
440

thomwolf's avatar
thomwolf committed
441
442
    logger.info("Training/evaluation parameters %s", args)

443

thomwolf's avatar
thomwolf committed
444
    # Training
thomwolf's avatar
thomwolf committed
445
    if args.do_train:
446
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
447
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
448
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
449
450


thomwolf's avatar
thomwolf committed
451
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
thomwolf's avatar
thomwolf committed
452
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
453
454
455
456
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
457
        logger.info("Saving model checkpoint to %s", args.output_dir)
458
459
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
460
461
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
462
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
463
464

        # Good practice: save your training arguments together with the trained model
465
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
466

467
        # Load a trained model and vocabulary that you have fine-tuned
468
        model = model_class.from_pretrained(args.output_dir)
Peng Qi's avatar
Peng Qi committed
469
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
470
        model.to(args.device)
thomwolf's avatar
thomwolf committed
471

472

thomwolf's avatar
thomwolf committed
473
    # Evaluation
thomwolf's avatar
thomwolf committed
474
    results = {}
thomwolf's avatar
thomwolf committed
475
    if args.do_eval and args.local_rank in [-1, 0]:
476
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
477
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
478
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
479
480
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
481
482
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
483
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
thomwolf's avatar
thomwolf committed
484
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
485
486
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
487
488
489
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

thomwolf's avatar
thomwolf committed
490
    return results
thomwolf's avatar
thomwolf committed
491
492
493
494


if __name__ == "__main__":
    main()