dummy_pt_objects.py 99.8 KB
Newer Older
1
# This file is autogenerated by the command `make fix-copies`, do not edit.
2
from ..file_utils import requires_backends
3
4
5
6


class PyTorchBenchmark:
    def __init__(self, *args, **kwargs):
7
        requires_backends(self, ["torch"])
8
9
10
11


class PyTorchBenchmarkArguments:
    def __init__(self, *args, **kwargs):
12
        requires_backends(self, ["torch"])
13
14
15
16


class GlueDataset:
    def __init__(self, *args, **kwargs):
17
        requires_backends(self, ["torch"])
18
19
20
21


class GlueDataTrainingArguments:
    def __init__(self, *args, **kwargs):
22
        requires_backends(self, ["torch"])
23
24
25
26


class LineByLineTextDataset:
    def __init__(self, *args, **kwargs):
27
        requires_backends(self, ["torch"])
28
29


30
31
class LineByLineWithRefDataset:
    def __init__(self, *args, **kwargs):
32
        requires_backends(self, ["torch"])
33
34


35
36
class LineByLineWithSOPTextDataset:
    def __init__(self, *args, **kwargs):
37
        requires_backends(self, ["torch"])
38
39
40
41


class SquadDataset:
    def __init__(self, *args, **kwargs):
42
        requires_backends(self, ["torch"])
43
44
45
46


class SquadDataTrainingArguments:
    def __init__(self, *args, **kwargs):
47
        requires_backends(self, ["torch"])
48
49
50
51


class TextDataset:
    def __init__(self, *args, **kwargs):
52
        requires_backends(self, ["torch"])
53
54
55
56


class TextDatasetForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
57
        requires_backends(self, ["torch"])
58
59


60
61
class BeamScorer:
    def __init__(self, *args, **kwargs):
62
        requires_backends(self, ["torch"])
63
64
65
66


class BeamSearchScorer:
    def __init__(self, *args, **kwargs):
67
        requires_backends(self, ["torch"])
68
69


70
71
class ForcedBOSTokenLogitsProcessor:
    def __init__(self, *args, **kwargs):
72
        requires_backends(self, ["torch"])
73

74
75
76
77
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

78
79
80

class ForcedEOSTokenLogitsProcessor:
    def __init__(self, *args, **kwargs):
81
        requires_backends(self, ["torch"])
82

83
84
85
86
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

87

88
89
class HammingDiversityLogitsProcessor:
    def __init__(self, *args, **kwargs):
90
        requires_backends(self, ["torch"])
91

92
93
94
95
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

96

97
98
class InfNanRemoveLogitsProcessor:
    def __init__(self, *args, **kwargs):
99
        requires_backends(self, ["torch"])
100

101
102
103
104
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

105

106
107
class LogitsProcessor:
    def __init__(self, *args, **kwargs):
108
        requires_backends(self, ["torch"])
109

110
111
112
113
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

114
115
116

class LogitsProcessorList:
    def __init__(self, *args, **kwargs):
117
        requires_backends(self, ["torch"])
118

119
120
121
122
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

123
124
125

class LogitsWarper:
    def __init__(self, *args, **kwargs):
126
        requires_backends(self, ["torch"])
127
128
129
130


class MinLengthLogitsProcessor:
    def __init__(self, *args, **kwargs):
131
        requires_backends(self, ["torch"])
132

133
134
135
136
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

137
138
139

class NoBadWordsLogitsProcessor:
    def __init__(self, *args, **kwargs):
140
        requires_backends(self, ["torch"])
141

142
143
144
145
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

146
147
148

class NoRepeatNGramLogitsProcessor:
    def __init__(self, *args, **kwargs):
149
        requires_backends(self, ["torch"])
150

151
152
153
154
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

155

156
157
class PrefixConstrainedLogitsProcessor:
    def __init__(self, *args, **kwargs):
158
        requires_backends(self, ["torch"])
159

160
161
162
163
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

164

165
166
class RepetitionPenaltyLogitsProcessor:
    def __init__(self, *args, **kwargs):
167
        requires_backends(self, ["torch"])
168

169
170
171
172
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

173
174
175

class TemperatureLogitsWarper:
    def __init__(self, *args, **kwargs):
176
        requires_backends(self, ["torch"])
177
178
179
180


class TopKLogitsWarper:
    def __init__(self, *args, **kwargs):
181
        requires_backends(self, ["torch"])
182
183
184
185


class TopPLogitsWarper:
    def __init__(self, *args, **kwargs):
186
        requires_backends(self, ["torch"])
187
188


189
190
class MaxLengthCriteria:
    def __init__(self, *args, **kwargs):
191
        requires_backends(self, ["torch"])
192
193
194
195


class MaxTimeCriteria:
    def __init__(self, *args, **kwargs):
196
        requires_backends(self, ["torch"])
197
198
199
200


class StoppingCriteria:
    def __init__(self, *args, **kwargs):
201
        requires_backends(self, ["torch"])
202
203
204
205


class StoppingCriteriaList:
    def __init__(self, *args, **kwargs):
206
        requires_backends(self, ["torch"])
207
208


209
def top_k_top_p_filtering(*args, **kwargs):
210
    requires_backends(top_k_top_p_filtering, ["torch"])
211
212


Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
class Conv1D:
    def __init__(self, *args, **kwargs):
215
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
216
217
218
219


class PreTrainedModel:
    def __init__(self, *args, **kwargs):
220
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
221
222

    @classmethod
223
224
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
225
226
227


def apply_chunking_to_forward(*args, **kwargs):
228
    requires_backends(apply_chunking_to_forward, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
229
230
231


def prune_layer(*args, **kwargs):
232
    requires_backends(prune_layer, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
233
234


235
236
237
238
239
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AlbertForMaskedLM:
    def __init__(self, *args, **kwargs):
240
        requires_backends(self, ["torch"])
241
242

    @classmethod
243
244
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
245
246
247
248


class AlbertForMultipleChoice:
    def __init__(self, *args, **kwargs):
249
        requires_backends(self, ["torch"])
250
251

    @classmethod
252
253
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
254
255
256
257


class AlbertForPreTraining:
    def __init__(self, *args, **kwargs):
258
        requires_backends(self, ["torch"])
259
260
261
262


class AlbertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
263
        requires_backends(self, ["torch"])
264
265

    @classmethod
266
267
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
268
269
270
271


class AlbertForSequenceClassification:
    def __init__(self, *args, **kwargs):
272
        requires_backends(self, ["torch"])
273
274

    @classmethod
275
276
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
277
278
279
280


class AlbertForTokenClassification:
    def __init__(self, *args, **kwargs):
281
        requires_backends(self, ["torch"])
282
283

    @classmethod
284
285
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
286
287
288
289


class AlbertModel:
    def __init__(self, *args, **kwargs):
290
        requires_backends(self, ["torch"])
291
292

    @classmethod
293
294
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
295
296
297
298


class AlbertPreTrainedModel:
    def __init__(self, *args, **kwargs):
299
        requires_backends(self, ["torch"])
300
301

    @classmethod
302
303
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
304
305
306


def load_tf_weights_in_albert(*args, **kwargs):
307
    requires_backends(load_tf_weights_in_albert, ["torch"])
308
309


310
311
312
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = None


313
314
315
MODEL_FOR_CAUSAL_LM_MAPPING = None


316
317
318
MODEL_FOR_CTC_MAPPING = None


319
320
321
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None


322
323
324
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING = None


325
326
327
328
329
330
MODEL_FOR_MASKED_LM_MAPPING = None


MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None


331
332
333
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None


NielsRogge's avatar
NielsRogge committed
334
335
336
MODEL_FOR_OBJECT_DETECTION_MAPPING = None


337
338
339
340
341
342
343
344
345
346
347
348
MODEL_FOR_PRETRAINING_MAPPING = None


MODEL_FOR_QUESTION_ANSWERING_MAPPING = None


MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None


MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None


349
350
351
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = None


352
353
354
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None


355
356
357
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None


358
359
360
MODEL_FOR_VISION_2_SEQ_MAPPING = None


361
362
363
364
365
366
367
368
MODEL_MAPPING = None


MODEL_WITH_LM_HEAD_MAPPING = None


class AutoModel:
    def __init__(self, *args, **kwargs):
369
        requires_backends(self, ["torch"])
370
371

    @classmethod
372
373
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
374
375


376
377
378
379
380
381
382
383
384
class AutoModelForAudioClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


385
386
class AutoModelForCausalLM:
    def __init__(self, *args, **kwargs):
387
        requires_backends(self, ["torch"])
388
389

    @classmethod
390
391
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
392
393


394
395
396
397
398
399
400
401
402
class AutoModelForCTC:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


403
404
405
406
407
class AutoModelForImageClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
408
409
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
410
411


412
413
414
415
416
417
418
419
420
class AutoModelForImageSegmentation:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


421
422
class AutoModelForMaskedLM:
    def __init__(self, *args, **kwargs):
423
        requires_backends(self, ["torch"])
424
425

    @classmethod
426
427
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
428
429
430
431


class AutoModelForMultipleChoice:
    def __init__(self, *args, **kwargs):
432
        requires_backends(self, ["torch"])
433
434

    @classmethod
435
436
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
437
438


439
440
class AutoModelForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
441
        requires_backends(self, ["torch"])
442
443

    @classmethod
444
445
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
446
447


448
449
450
451
452
453
454
455
456
class AutoModelForObjectDetection:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


457
458
class AutoModelForPreTraining:
    def __init__(self, *args, **kwargs):
459
        requires_backends(self, ["torch"])
460
461

    @classmethod
462
463
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
464
465
466
467


class AutoModelForQuestionAnswering:
    def __init__(self, *args, **kwargs):
468
        requires_backends(self, ["torch"])
469
470

    @classmethod
471
472
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
473
474
475
476


class AutoModelForSeq2SeqLM:
    def __init__(self, *args, **kwargs):
477
        requires_backends(self, ["torch"])
478
479

    @classmethod
480
481
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
482
483
484
485


class AutoModelForSequenceClassification:
    def __init__(self, *args, **kwargs):
486
        requires_backends(self, ["torch"])
487
488

    @classmethod
489
490
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
491
492


493
494
495
496
497
498
499
500
501
class AutoModelForSpeechSeq2Seq:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


502
503
class AutoModelForTableQuestionAnswering:
    def __init__(self, *args, **kwargs):
504
        requires_backends(self, ["torch"])
505
506

    @classmethod
507
508
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
509
510
511
512


class AutoModelForTokenClassification:
    def __init__(self, *args, **kwargs):
513
        requires_backends(self, ["torch"])
514
515

    @classmethod
516
517
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
518
519


520
521
522
523
524
525
526
527
528
class AutoModelForVision2Seq:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


529
530
class AutoModelWithLMHead:
    def __init__(self, *args, **kwargs):
531
        requires_backends(self, ["torch"])
532
533

    @classmethod
534
535
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
536
537
538
539
540


BART_PRETRAINED_MODEL_ARCHIVE_LIST = None


541
542
class BartForCausalLM:
    def __init__(self, *args, **kwargs):
543
        requires_backends(self, ["torch"])
544

545
546
547
548
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

549

550
551
class BartForConditionalGeneration:
    def __init__(self, *args, **kwargs):
552
        requires_backends(self, ["torch"])
553
554

    @classmethod
555
556
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
557
558
559
560


class BartForQuestionAnswering:
    def __init__(self, *args, **kwargs):
561
        requires_backends(self, ["torch"])
562
563

    @classmethod
564
565
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
566
567
568
569


class BartForSequenceClassification:
    def __init__(self, *args, **kwargs):
570
        requires_backends(self, ["torch"])
571
572

    @classmethod
573
574
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
575
576
577
578


class BartModel:
    def __init__(self, *args, **kwargs):
579
        requires_backends(self, ["torch"])
580
581

    @classmethod
582
583
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
584
585


586
587
class BartPretrainedModel:
    def __init__(self, *args, **kwargs):
588
        requires_backends(self, ["torch"])
589
590

    @classmethod
591
592
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
593
594


595
596
class PretrainedBartModel:
    def __init__(self, *args, **kwargs):
597
        requires_backends(self, ["torch"])
598
599

    @classmethod
600
601
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
602
603


NielsRogge's avatar
NielsRogge committed
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BeitForImageClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BeitForMaskedImageModeling:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


621
622
623
624
625
class BeitForSemanticSegmentation:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


NielsRogge's avatar
NielsRogge committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
class BeitModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class BeitPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


644
645
646
647
648
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BertForMaskedLM:
    def __init__(self, *args, **kwargs):
649
        requires_backends(self, ["torch"])
650
651

    @classmethod
652
653
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
654
655
656
657


class BertForMultipleChoice:
    def __init__(self, *args, **kwargs):
658
        requires_backends(self, ["torch"])
659
660

    @classmethod
661
662
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
663
664
665
666


class BertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
667
        requires_backends(self, ["torch"])
668
669
670
671


class BertForPreTraining:
    def __init__(self, *args, **kwargs):
672
        requires_backends(self, ["torch"])
673
674
675
676


class BertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
677
        requires_backends(self, ["torch"])
678
679

    @classmethod
680
681
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
682
683
684
685


class BertForSequenceClassification:
    def __init__(self, *args, **kwargs):
686
        requires_backends(self, ["torch"])
687
688

    @classmethod
689
690
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
691
692
693
694


class BertForTokenClassification:
    def __init__(self, *args, **kwargs):
695
        requires_backends(self, ["torch"])
696
697

    @classmethod
698
699
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
700
701
702
703


class BertLayer:
    def __init__(self, *args, **kwargs):
704
        requires_backends(self, ["torch"])
705
706
707
708


class BertLMHeadModel:
    def __init__(self, *args, **kwargs):
709
        requires_backends(self, ["torch"])
710
711

    @classmethod
712
713
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
714
715
716
717


class BertModel:
    def __init__(self, *args, **kwargs):
718
        requires_backends(self, ["torch"])
719
720

    @classmethod
721
722
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
723
724
725
726


class BertPreTrainedModel:
    def __init__(self, *args, **kwargs):
727
        requires_backends(self, ["torch"])
728
729

    @classmethod
730
731
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
732
733
734


def load_tf_weights_in_bert(*args, **kwargs):
735
    requires_backends(load_tf_weights_in_bert, ["torch"])
736
737
738
739


class BertGenerationDecoder:
    def __init__(self, *args, **kwargs):
740
        requires_backends(self, ["torch"])
741
742
743
744


class BertGenerationEncoder:
    def __init__(self, *args, **kwargs):
745
        requires_backends(self, ["torch"])
746
747


748
749
750
751
752
753
754
755
756
class BertGenerationPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


757
def load_tf_weights_in_bert_generation(*args, **kwargs):
758
    requires_backends(load_tf_weights_in_bert_generation, ["torch"])
759
760


Vasudev Gupta's avatar
Vasudev Gupta committed
761
762
763
764
765
BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BigBirdForCausalLM:
    def __init__(self, *args, **kwargs):
766
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
767

768
769
770
771
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Vasudev Gupta's avatar
Vasudev Gupta committed
772
773
774

class BigBirdForMaskedLM:
    def __init__(self, *args, **kwargs):
775
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
776
777

    @classmethod
778
779
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
780
781
782
783


class BigBirdForMultipleChoice:
    def __init__(self, *args, **kwargs):
784
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
785
786

    @classmethod
787
788
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
789
790
791
792


class BigBirdForPreTraining:
    def __init__(self, *args, **kwargs):
793
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
794
795
796
797


class BigBirdForQuestionAnswering:
    def __init__(self, *args, **kwargs):
798
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
799
800

    @classmethod
801
802
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
803
804
805
806


class BigBirdForSequenceClassification:
    def __init__(self, *args, **kwargs):
807
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
808
809

    @classmethod
810
811
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
812
813
814
815


class BigBirdForTokenClassification:
    def __init__(self, *args, **kwargs):
816
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
817
818

    @classmethod
819
820
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
821
822
823
824


class BigBirdLayer:
    def __init__(self, *args, **kwargs):
825
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
826
827
828
829


class BigBirdModel:
    def __init__(self, *args, **kwargs):
830
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
831
832

    @classmethod
833
834
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
835
836
837
838


class BigBirdPreTrainedModel:
    def __init__(self, *args, **kwargs):
839
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
840
841

    @classmethod
842
843
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
844
845
846


def load_tf_weights_in_big_bird(*args, **kwargs):
847
    requires_backends(load_tf_weights_in_big_bird, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
848
849


Vasudev Gupta's avatar
Vasudev Gupta committed
850
851
852
853
854
855
856
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BigBirdPegasusForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

857
858
859
860
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Vasudev Gupta's avatar
Vasudev Gupta committed
861
862
863
864
865
866

class BigBirdPegasusForConditionalGeneration:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
867
868
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
869
870
871
872
873
874
875


class BigBirdPegasusForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
876
877
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
878
879
880
881
882
883
884


class BigBirdPegasusForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
885
886
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
887
888
889
890
891
892
893


class BigBirdPegasusModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
894
895
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
896
897


898
899
900
901
902
903
904
905
906
class BigBirdPegasusPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Sam Shleifer's avatar
Sam Shleifer committed
907
908
909
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = None


910
911
class BlenderbotForCausalLM:
    def __init__(self, *args, **kwargs):
912
        requires_backends(self, ["torch"])
913

914
915
916
917
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

918

Sam Shleifer's avatar
Sam Shleifer committed
919
920
class BlenderbotForConditionalGeneration:
    def __init__(self, *args, **kwargs):
921
        requires_backends(self, ["torch"])
Sam Shleifer's avatar
Sam Shleifer committed
922
923

    @classmethod
924
925
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sam Shleifer's avatar
Sam Shleifer committed
926
927


928
929
class BlenderbotModel:
    def __init__(self, *args, **kwargs):
930
        requires_backends(self, ["torch"])
931
932

    @classmethod
933
934
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
935
936


937
938
939
940
941
942
943
944
945
class BlenderbotPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


946
947
948
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = None


949
950
class BlenderbotSmallForCausalLM:
    def __init__(self, *args, **kwargs):
951
        requires_backends(self, ["torch"])
952

953
954
955
956
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

957

958
959
class BlenderbotSmallForConditionalGeneration:
    def __init__(self, *args, **kwargs):
960
        requires_backends(self, ["torch"])
961
962

    @classmethod
963
964
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
965
966
967
968


class BlenderbotSmallModel:
    def __init__(self, *args, **kwargs):
969
        requires_backends(self, ["torch"])
970
971

    @classmethod
972
973
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
974
975


976
977
978
979
980
981
982
983
984
class BlenderbotSmallPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


985
986
987
988
989
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CamembertForCausalLM:
    def __init__(self, *args, **kwargs):
990
        requires_backends(self, ["torch"])
991

992
993
994
995
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

996
997
998

class CamembertForMaskedLM:
    def __init__(self, *args, **kwargs):
999
        requires_backends(self, ["torch"])
1000
1001

    @classmethod
1002
1003
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1004
1005
1006
1007


class CamembertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1008
        requires_backends(self, ["torch"])
1009
1010

    @classmethod
1011
1012
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1013
1014
1015
1016


class CamembertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1017
        requires_backends(self, ["torch"])
1018
1019

    @classmethod
1020
1021
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1022
1023
1024
1025


class CamembertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1026
        requires_backends(self, ["torch"])
1027
1028

    @classmethod
1029
1030
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1031
1032
1033
1034


class CamembertForTokenClassification:
    def __init__(self, *args, **kwargs):
1035
        requires_backends(self, ["torch"])
1036
1037

    @classmethod
1038
1039
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1040
1041
1042
1043


class CamembertModel:
    def __init__(self, *args, **kwargs):
Suraj Patil's avatar
Suraj Patil committed
1044
1045
1046
        requires_backends(self, ["torch"])

    @classmethod
1047
1048
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1049
1050


NielsRogge's avatar
NielsRogge committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CanineForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CanineForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CanineForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CanineForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CanineLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CanineModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CaninePreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


def load_tf_weights_in_canine(*args, **kwargs):
    requires_backends(load_tf_weights_in_canine, ["torch"])


Suraj Patil's avatar
Suraj Patil committed
1117
1118
1119
1120
1121
1122
1123
1124
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CLIPModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1125
1126
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1127
1128
1129
1130
1131
1132
1133


class CLIPPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1134
1135
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1136
1137
1138
1139
1140
1141
1142


class CLIPTextModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1143
1144
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1145
1146
1147
1148


class CLIPVisionModel:
    def __init__(self, *args, **kwargs):
1149
        requires_backends(self, ["torch"])
1150
1151

    @classmethod
1152
1153
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1154
1155


abhishek thakur's avatar
abhishek thakur committed
1156
1157
1158
1159
1160
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ConvBertForMaskedLM:
    def __init__(self, *args, **kwargs):
1161
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1162
1163

    @classmethod
1164
1165
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1166
1167
1168
1169


class ConvBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1170
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1171
1172

    @classmethod
1173
1174
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1175
1176
1177
1178


class ConvBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1179
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1180
1181

    @classmethod
1182
1183
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1184
1185
1186
1187


class ConvBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1188
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1189
1190

    @classmethod
1191
1192
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1193
1194
1195
1196


class ConvBertForTokenClassification:
    def __init__(self, *args, **kwargs):
1197
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1198
1199

    @classmethod
1200
1201
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1202
1203
1204
1205


class ConvBertLayer:
    def __init__(self, *args, **kwargs):
1206
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1207
1208
1209
1210


class ConvBertModel:
    def __init__(self, *args, **kwargs):
1211
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1212
1213

    @classmethod
1214
1215
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1216
1217
1218
1219


class ConvBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
1220
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1221
1222

    @classmethod
1223
1224
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1225
1226
1227


def load_tf_weights_in_convbert(*args, **kwargs):
1228
    requires_backends(load_tf_weights_in_convbert, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1229
1230


1231
1232
1233
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None


1234
1235
class CTRLForSequenceClassification:
    def __init__(self, *args, **kwargs):
1236
        requires_backends(self, ["torch"])
1237
1238

    @classmethod
1239
1240
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1241
1242


1243
1244
class CTRLLMHeadModel:
    def __init__(self, *args, **kwargs):
1245
        requires_backends(self, ["torch"])
1246
1247

    @classmethod
1248
1249
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1250
1251
1252
1253


class CTRLModel:
    def __init__(self, *args, **kwargs):
1254
        requires_backends(self, ["torch"])
1255
1256

    @classmethod
1257
1258
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1259
1260
1261
1262


class CTRLPreTrainedModel:
    def __init__(self, *args, **kwargs):
1263
        requires_backends(self, ["torch"])
1264
1265

    @classmethod
1266
1267
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1268
1269
1270
1271
1272


DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


NielsRogge's avatar
NielsRogge committed
1273
1274
class DebertaForMaskedLM:
    def __init__(self, *args, **kwargs):
1275
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1276
1277

    @classmethod
1278
1279
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1280
1281
1282
1283


class DebertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1284
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1285
1286

    @classmethod
1287
1288
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1289
1290


1291
1292
class DebertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
1293
        requires_backends(self, ["torch"])
1294
1295

    @classmethod
1296
1297
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1298
1299


NielsRogge's avatar
NielsRogge committed
1300
1301
class DebertaForTokenClassification:
    def __init__(self, *args, **kwargs):
1302
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1303
1304

    @classmethod
1305
1306
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1307
1308


1309
1310
class DebertaModel:
    def __init__(self, *args, **kwargs):
1311
        requires_backends(self, ["torch"])
1312
1313

    @classmethod
1314
1315
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1316
1317
1318
1319


class DebertaPreTrainedModel:
    def __init__(self, *args, **kwargs):
1320
        requires_backends(self, ["torch"])
1321
1322

    @classmethod
1323
1324
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1325
1326


1327
1328
1329
1330
1331
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DebertaV2ForMaskedLM:
    def __init__(self, *args, **kwargs):
1332
        requires_backends(self, ["torch"])
1333
1334

    @classmethod
1335
1336
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1337
1338
1339
1340


class DebertaV2ForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1341
        requires_backends(self, ["torch"])
1342
1343

    @classmethod
1344
1345
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1346
1347
1348
1349


class DebertaV2ForSequenceClassification:
    def __init__(self, *args, **kwargs):
1350
        requires_backends(self, ["torch"])
1351
1352

    @classmethod
1353
1354
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1355
1356
1357
1358


class DebertaV2ForTokenClassification:
    def __init__(self, *args, **kwargs):
1359
        requires_backends(self, ["torch"])
1360
1361

    @classmethod
1362
1363
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1364
1365
1366
1367


class DebertaV2Model:
    def __init__(self, *args, **kwargs):
1368
        requires_backends(self, ["torch"])
1369
1370

    @classmethod
1371
1372
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1373
1374
1375


class DebertaV2PreTrainedModel:
NielsRogge's avatar
NielsRogge committed
1376
1377
1378
1379
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1380
1381
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401


DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DeiTForImageClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTForImageClassificationWithTeacher:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1402
1403
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1404
1405
1406


class DeiTPreTrainedModel:
1407
    def __init__(self, *args, **kwargs):
1408
        requires_backends(self, ["torch"])
1409
1410

    @classmethod
1411
1412
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1413
1414


1415
1416
1417
1418
1419
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DistilBertForMaskedLM:
    def __init__(self, *args, **kwargs):
1420
        requires_backends(self, ["torch"])
1421
1422

    @classmethod
1423
1424
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1425
1426
1427
1428


class DistilBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1429
        requires_backends(self, ["torch"])
1430
1431

    @classmethod
1432
1433
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1434
1435
1436
1437


class DistilBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1438
        requires_backends(self, ["torch"])
1439
1440

    @classmethod
1441
1442
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1443
1444
1445
1446


class DistilBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1447
        requires_backends(self, ["torch"])
1448
1449

    @classmethod
1450
1451
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1452
1453
1454
1455


class DistilBertForTokenClassification:
    def __init__(self, *args, **kwargs):
1456
        requires_backends(self, ["torch"])
1457
1458

    @classmethod
1459
1460
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1461
1462
1463
1464


class DistilBertModel:
    def __init__(self, *args, **kwargs):
1465
        requires_backends(self, ["torch"])
1466
1467

    @classmethod
1468
1469
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1470
1471
1472
1473


class DistilBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
1474
        requires_backends(self, ["torch"])
1475
1476

    @classmethod
1477
1478
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1479
1480


Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1481
1482
1483
1484
1485
1486
1487
1488
1489
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None


DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None


DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None


1490
1491
class DPRContextEncoder:
    def __init__(self, *args, **kwargs):
1492
        requires_backends(self, ["torch"])
1493
1494
1495
1496


class DPRPretrainedContextEncoder:
    def __init__(self, *args, **kwargs):
1497
        requires_backends(self, ["torch"])
1498
1499


1500
1501
1502
1503
1504
1505
1506
1507
1508
class DPRPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1509
1510
class DPRPretrainedQuestionEncoder:
    def __init__(self, *args, **kwargs):
1511
        requires_backends(self, ["torch"])
1512
1513
1514
1515


class DPRPretrainedReader:
    def __init__(self, *args, **kwargs):
1516
        requires_backends(self, ["torch"])
1517
1518
1519
1520


class DPRQuestionEncoder:
    def __init__(self, *args, **kwargs):
1521
        requires_backends(self, ["torch"])
1522
1523
1524
1525


class DPRReader:
    def __init__(self, *args, **kwargs):
1526
        requires_backends(self, ["torch"])
1527
1528
1529
1530
1531
1532
1533


ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ElectraForMaskedLM:
    def __init__(self, *args, **kwargs):
1534
        requires_backends(self, ["torch"])
1535
1536

    @classmethod
1537
1538
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1539
1540
1541
1542


class ElectraForMultipleChoice:
    def __init__(self, *args, **kwargs):
1543
        requires_backends(self, ["torch"])
1544
1545

    @classmethod
1546
1547
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1548
1549
1550
1551


class ElectraForPreTraining:
    def __init__(self, *args, **kwargs):
1552
        requires_backends(self, ["torch"])
1553
1554
1555
1556


class ElectraForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1557
        requires_backends(self, ["torch"])
1558
1559

    @classmethod
1560
1561
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1562
1563
1564
1565


class ElectraForSequenceClassification:
    def __init__(self, *args, **kwargs):
1566
        requires_backends(self, ["torch"])
1567
1568

    @classmethod
1569
1570
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1571
1572
1573
1574


class ElectraForTokenClassification:
    def __init__(self, *args, **kwargs):
1575
        requires_backends(self, ["torch"])
1576
1577

    @classmethod
1578
1579
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1580
1581
1582
1583


class ElectraModel:
    def __init__(self, *args, **kwargs):
1584
        requires_backends(self, ["torch"])
1585
1586

    @classmethod
1587
1588
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1589
1590
1591
1592


class ElectraPreTrainedModel:
    def __init__(self, *args, **kwargs):
1593
        requires_backends(self, ["torch"])
1594
1595

    @classmethod
1596
1597
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1598
1599
1600


def load_tf_weights_in_electra(*args, **kwargs):
1601
    requires_backends(load_tf_weights_in_electra, ["torch"])
1602
1603
1604
1605


class EncoderDecoderModel:
    def __init__(self, *args, **kwargs):
1606
        requires_backends(self, ["torch"])
1607
1608

    @classmethod
1609
1610
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1611
1612
1613
1614
1615
1616
1617


FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FlaubertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1618
        requires_backends(self, ["torch"])
1619
1620

    @classmethod
1621
1622
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1623
1624
1625
1626


class FlaubertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1627
        requires_backends(self, ["torch"])
1628
1629

    @classmethod
1630
1631
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1632
1633
1634
1635


class FlaubertForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
1636
        requires_backends(self, ["torch"])
1637
1638

    @classmethod
1639
1640
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1641
1642
1643
1644


class FlaubertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1645
        requires_backends(self, ["torch"])
1646
1647

    @classmethod
1648
1649
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1650
1651
1652
1653


class FlaubertForTokenClassification:
    def __init__(self, *args, **kwargs):
1654
        requires_backends(self, ["torch"])
1655
1656

    @classmethod
1657
1658
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1659
1660
1661
1662


class FlaubertModel:
    def __init__(self, *args, **kwargs):
1663
        requires_backends(self, ["torch"])
1664
1665

    @classmethod
1666
1667
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1668
1669
1670
1671


class FlaubertWithLMHeadModel:
    def __init__(self, *args, **kwargs):
1672
        requires_backends(self, ["torch"])
1673
1674

    @classmethod
1675
1676
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1677
1678


Gunjan Chhablani's avatar
Gunjan Chhablani committed
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
FNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FNetForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class FNetForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class FNetForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class FNetForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class FNetForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class FNetLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class FNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1760
1761
class FSMTForConditionalGeneration:
    def __init__(self, *args, **kwargs):
1762
        requires_backends(self, ["torch"])
1763
1764

    @classmethod
1765
1766
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1767
1768
1769
1770


class FSMTModel:
    def __init__(self, *args, **kwargs):
1771
        requires_backends(self, ["torch"])
1772
1773

    @classmethod
1774
1775
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1776
1777
1778
1779


class PretrainedFSMTModel:
    def __init__(self, *args, **kwargs):
1780
        requires_backends(self, ["torch"])
1781
1782

    @classmethod
1783
1784
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1785
1786
1787
1788
1789
1790
1791


FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FunnelBaseModel:
    def __init__(self, *args, **kwargs):
1792
        requires_backends(self, ["torch"])
1793
1794

    @classmethod
1795
1796
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1797
1798
1799
1800


class FunnelForMaskedLM:
    def __init__(self, *args, **kwargs):
1801
        requires_backends(self, ["torch"])
1802
1803

    @classmethod
1804
1805
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1806
1807
1808
1809


class FunnelForMultipleChoice:
    def __init__(self, *args, **kwargs):
1810
        requires_backends(self, ["torch"])
1811
1812

    @classmethod
1813
1814
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1815
1816
1817
1818


class FunnelForPreTraining:
    def __init__(self, *args, **kwargs):
1819
        requires_backends(self, ["torch"])
1820
1821
1822
1823


class FunnelForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1824
        requires_backends(self, ["torch"])
1825
1826

    @classmethod
1827
1828
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1829
1830
1831
1832


class FunnelForSequenceClassification:
    def __init__(self, *args, **kwargs):
1833
        requires_backends(self, ["torch"])
1834
1835

    @classmethod
1836
1837
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1838
1839
1840
1841


class FunnelForTokenClassification:
    def __init__(self, *args, **kwargs):
1842
        requires_backends(self, ["torch"])
1843
1844

    @classmethod
1845
1846
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1847
1848
1849
1850


class FunnelModel:
    def __init__(self, *args, **kwargs):
1851
        requires_backends(self, ["torch"])
1852
1853

    @classmethod
1854
1855
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1856
1857


1858
1859
1860
1861
1862
1863
1864
1865
1866
class FunnelPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1867
def load_tf_weights_in_funnel(*args, **kwargs):
1868
    requires_backends(load_tf_weights_in_funnel, ["torch"])
1869
1870
1871
1872
1873
1874
1875


GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPT2DoubleHeadsModel:
    def __init__(self, *args, **kwargs):
1876
        requires_backends(self, ["torch"])
1877
1878

    @classmethod
1879
1880
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1881
1882


Lysandre's avatar
Lysandre committed
1883
1884
class GPT2ForSequenceClassification:
    def __init__(self, *args, **kwargs):
1885
        requires_backends(self, ["torch"])
Lysandre's avatar
Lysandre committed
1886
1887

    @classmethod
1888
1889
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Lysandre's avatar
Lysandre committed
1890
1891


1892
1893
1894
1895
1896
1897
1898
1899
1900
class GPT2ForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1901
1902
class GPT2LMHeadModel:
    def __init__(self, *args, **kwargs):
1903
        requires_backends(self, ["torch"])
1904
1905

    @classmethod
1906
1907
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1908
1909
1910
1911


class GPT2Model:
    def __init__(self, *args, **kwargs):
1912
        requires_backends(self, ["torch"])
1913
1914

    @classmethod
1915
1916
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1917
1918
1919
1920


class GPT2PreTrainedModel:
    def __init__(self, *args, **kwargs):
1921
        requires_backends(self, ["torch"])
1922
1923

    @classmethod
1924
1925
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1926
1927
1928


def load_tf_weights_in_gpt2(*args, **kwargs):
1929
    requires_backends(load_tf_weights_in_gpt2, ["torch"])
1930
1931


Suraj Patil's avatar
Suraj Patil committed
1932
1933
1934
1935
1936
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPTNeoForCausalLM:
    def __init__(self, *args, **kwargs):
1937
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1938

1939
1940
1941
1942
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Suraj Patil's avatar
Suraj Patil committed
1943

1944
1945
1946
1947
1948
class GPTNeoForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1949
1950
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1951
1952


Suraj Patil's avatar
Suraj Patil committed
1953
1954
class GPTNeoModel:
    def __init__(self, *args, **kwargs):
1955
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1956
1957

    @classmethod
1958
1959
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1960
1961
1962
1963


class GPTNeoPreTrainedModel:
    def __init__(self, *args, **kwargs):
1964
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1965
1966

    @classmethod
1967
1968
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1969
1970
1971


def load_tf_weights_in_gpt_neo(*args, **kwargs):
1972
    requires_backends(load_tf_weights_in_gpt_neo, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1973
1974


Stella Biderman's avatar
Stella Biderman committed
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPTJForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class GPTJForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class GPTJModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class GPTJPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Patrick von Platen's avatar
Patrick von Platen committed
2014
2015
2016
2017
2018
2019
2020
2021
HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class HubertForCTC:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


2022
2023
2024
2025
2026
2027
2028
2029
2030
class HubertForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Patrick von Platen's avatar
Patrick von Platen committed
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
class HubertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class HubertPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Sehoon Kim's avatar
Sehoon Kim committed
2049
2050
2051
2052
2053
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class IBertForMaskedLM:
    def __init__(self, *args, **kwargs):
2054
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2055
2056

    @classmethod
2057
2058
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2059
2060
2061
2062


class IBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
2063
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2064
2065

    @classmethod
2066
2067
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2068
2069
2070
2071


class IBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2072
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2073
2074

    @classmethod
2075
2076
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2077
2078
2079
2080


class IBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
2081
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2082
2083

    @classmethod
2084
2085
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2086
2087
2088
2089


class IBertForTokenClassification:
    def __init__(self, *args, **kwargs):
2090
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2091
2092

    @classmethod
2093
2094
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2095
2096
2097
2098


class IBertModel:
    def __init__(self, *args, **kwargs):
2099
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2100
2101

    @classmethod
2102
2103
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2104
2105


2106
2107
class IBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2108
        requires_backends(self, ["torch"])
2109
2110

    @classmethod
2111
2112
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2113
2114


2115
2116
2117
2118
2119
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LayoutLMForMaskedLM:
    def __init__(self, *args, **kwargs):
2120
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2121
2122

    @classmethod
2123
2124
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
2125
2126
2127
2128


class LayoutLMForSequenceClassification:
    def __init__(self, *args, **kwargs):
2129
        requires_backends(self, ["torch"])
2130
2131

    @classmethod
2132
2133
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2134
2135
2136
2137


class LayoutLMForTokenClassification:
    def __init__(self, *args, **kwargs):
2138
        requires_backends(self, ["torch"])
2139
2140

    @classmethod
2141
2142
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2143
2144
2145
2146


class LayoutLMModel:
    def __init__(self, *args, **kwargs):
2147
        requires_backends(self, ["torch"])
2148
2149

    @classmethod
2150
2151
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2152
2153


2154
2155
2156
2157
2158
2159
2160
2161
2162
class LayoutLMPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LayoutLMv2ForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class LayoutLMv2ForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class LayoutLMv2ForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class LayoutLMv2Model:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class LayoutLMv2PreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Patrick von Platen's avatar
Patrick von Platen committed
2211
2212
2213
2214
2215
LED_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LEDForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2216
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2217
2218

    @classmethod
2219
2220
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2221
2222
2223
2224


class LEDForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2225
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2226
2227

    @classmethod
2228
2229
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2230
2231
2232
2233


class LEDForSequenceClassification:
    def __init__(self, *args, **kwargs):
2234
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2235
2236

    @classmethod
2237
2238
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2239
2240
2241
2242


class LEDModel:
    def __init__(self, *args, **kwargs):
2243
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2244
2245

    @classmethod
2246
2247
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2248
2249


2250
2251
2252
2253
2254
2255
2256
2257
2258
class LEDPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2259
2260
2261
2262
2263
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LongformerForMaskedLM:
    def __init__(self, *args, **kwargs):
2264
        requires_backends(self, ["torch"])
2265
2266

    @classmethod
2267
2268
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2269
2270
2271
2272


class LongformerForMultipleChoice:
    def __init__(self, *args, **kwargs):
2273
        requires_backends(self, ["torch"])
2274
2275

    @classmethod
2276
2277
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2278
2279
2280
2281


class LongformerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2282
        requires_backends(self, ["torch"])
2283
2284

    @classmethod
2285
2286
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2287
2288
2289
2290


class LongformerForSequenceClassification:
    def __init__(self, *args, **kwargs):
2291
        requires_backends(self, ["torch"])
2292
2293

    @classmethod
2294
2295
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2296
2297
2298
2299


class LongformerForTokenClassification:
    def __init__(self, *args, **kwargs):
2300
        requires_backends(self, ["torch"])
2301
2302

    @classmethod
2303
2304
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2305
2306
2307
2308


class LongformerModel:
    def __init__(self, *args, **kwargs):
2309
        requires_backends(self, ["torch"])
2310
2311

    @classmethod
2312
2313
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2314
2315


2316
2317
2318
2319
2320
2321
2322
2323
2324
class LongformerPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2325
2326
class LongformerSelfAttention:
    def __init__(self, *args, **kwargs):
2327
        requires_backends(self, ["torch"])
2328
2329


NielsRogge's avatar
NielsRogge committed
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LukeForEntityClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForEntityPairClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForEntitySpanClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2353
2354
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
2355
2356
2357
2358
2359
2360
2361


class LukePreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2362
2363
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
2364
2365


2366
2367
class LxmertEncoder:
    def __init__(self, *args, **kwargs):
2368
        requires_backends(self, ["torch"])
2369
2370
2371
2372


class LxmertForPreTraining:
    def __init__(self, *args, **kwargs):
2373
        requires_backends(self, ["torch"])
2374
2375
2376
2377


class LxmertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2378
        requires_backends(self, ["torch"])
2379
2380

    @classmethod
2381
2382
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2383
2384
2385
2386


class LxmertModel:
    def __init__(self, *args, **kwargs):
2387
        requires_backends(self, ["torch"])
2388
2389

    @classmethod
2390
2391
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2392
2393
2394
2395


class LxmertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2396
        requires_backends(self, ["torch"])
2397
2398

    @classmethod
2399
2400
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2401
2402
2403
2404


class LxmertVisualFeatureEncoder:
    def __init__(self, *args, **kwargs):
2405
        requires_backends(self, ["torch"])
2406
2407
2408
2409


class LxmertXLayer:
    def __init__(self, *args, **kwargs):
2410
        requires_backends(self, ["torch"])
2411
2412


Suraj Patil's avatar
Suraj Patil committed
2413
2414
2415
2416
2417
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST = None


class M2M100ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2418
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2419
2420

    @classmethod
2421
2422
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2423
2424
2425
2426


class M2M100Model:
    def __init__(self, *args, **kwargs):
2427
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2428
2429

    @classmethod
2430
2431
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2432
2433


2434
2435
2436
2437
2438
2439
2440
2441
2442
class M2M100PreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2443
2444
class MarianForCausalLM:
    def __init__(self, *args, **kwargs):
2445
        requires_backends(self, ["torch"])
2446

2447
2448
2449
2450
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

2451

2452
2453
class MarianModel:
    def __init__(self, *args, **kwargs):
2454
        requires_backends(self, ["torch"])
2455
2456

    @classmethod
2457
2458
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2459
2460


2461
2462
class MarianMTModel:
    def __init__(self, *args, **kwargs):
2463
        requires_backends(self, ["torch"])
2464
2465

    @classmethod
2466
2467
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2468
2469


2470
2471
class MBartForCausalLM:
    def __init__(self, *args, **kwargs):
2472
        requires_backends(self, ["torch"])
2473

2474
2475
2476
2477
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

2478

2479
2480
class MBartForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2481
        requires_backends(self, ["torch"])
2482
2483

    @classmethod
2484
2485
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2486
2487


2488
2489
class MBartForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2490
        requires_backends(self, ["torch"])
2491
2492

    @classmethod
2493
2494
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2495
2496
2497
2498


class MBartForSequenceClassification:
    def __init__(self, *args, **kwargs):
2499
        requires_backends(self, ["torch"])
2500
2501

    @classmethod
2502
2503
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2504
2505


2506
2507
class MBartModel:
    def __init__(self, *args, **kwargs):
2508
        requires_backends(self, ["torch"])
2509
2510

    @classmethod
2511
2512
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2513
2514


2515
2516
2517
2518
2519
2520
2521
2522
2523
class MBartPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2524
2525
2526
2527
2528
2529
2530
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MegatronBertForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

2531
2532
2533
2534
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

2535
2536
2537
2538
2539
2540

class MegatronBertForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2541
2542
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2543
2544
2545
2546
2547
2548
2549


class MegatronBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2550
2551
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568


class MegatronBertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2569
2570
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2571
2572
2573
2574
2575
2576
2577


class MegatronBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2578
2579
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2580
2581
2582
2583
2584
2585
2586


class MegatronBertForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2587
2588
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2589
2590
2591
2592
2593
2594
2595


class MegatronBertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2596
2597
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2598
2599


2600
2601
2602
2603
2604
2605
2606
2607
2608
class MegatronBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2609
2610
class MMBTForClassification:
    def __init__(self, *args, **kwargs):
2611
        requires_backends(self, ["torch"])
2612
2613
2614
2615


class MMBTModel:
    def __init__(self, *args, **kwargs):
2616
        requires_backends(self, ["torch"])
2617
2618

    @classmethod
2619
2620
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2621
2622
2623
2624


class ModalEmbeddings:
    def __init__(self, *args, **kwargs):
2625
        requires_backends(self, ["torch"])
2626
2627
2628
2629
2630
2631
2632


MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MobileBertForMaskedLM:
    def __init__(self, *args, **kwargs):
2633
        requires_backends(self, ["torch"])
2634
2635

    @classmethod
2636
2637
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2638
2639
2640
2641


class MobileBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
2642
        requires_backends(self, ["torch"])
2643
2644

    @classmethod
2645
2646
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2647
2648
2649
2650


class MobileBertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
2651
        requires_backends(self, ["torch"])
2652
2653
2654
2655


class MobileBertForPreTraining:
    def __init__(self, *args, **kwargs):
2656
        requires_backends(self, ["torch"])
2657
2658
2659
2660


class MobileBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2661
        requires_backends(self, ["torch"])
2662
2663

    @classmethod
2664
2665
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2666
2667
2668
2669


class MobileBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
2670
        requires_backends(self, ["torch"])
2671
2672

    @classmethod
2673
2674
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2675
2676
2677
2678


class MobileBertForTokenClassification:
    def __init__(self, *args, **kwargs):
2679
        requires_backends(self, ["torch"])
2680
2681

    @classmethod
2682
2683
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2684
2685
2686
2687


class MobileBertLayer:
    def __init__(self, *args, **kwargs):
2688
        requires_backends(self, ["torch"])
2689
2690
2691
2692


class MobileBertModel:
    def __init__(self, *args, **kwargs):
2693
        requires_backends(self, ["torch"])
2694
2695

    @classmethod
2696
2697
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2698
2699
2700
2701


class MobileBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2702
        requires_backends(self, ["torch"])
2703
2704

    @classmethod
2705
2706
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2707
2708
2709


def load_tf_weights_in_mobilebert(*args, **kwargs):
2710
    requires_backends(load_tf_weights_in_mobilebert, ["torch"])
2711
2712


StillKeepTry's avatar
StillKeepTry committed
2713
2714
2715
2716
2717
MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MPNetForMaskedLM:
    def __init__(self, *args, **kwargs):
2718
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2719
2720

    @classmethod
2721
2722
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2723
2724
2725
2726


class MPNetForMultipleChoice:
    def __init__(self, *args, **kwargs):
2727
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2728
2729

    @classmethod
2730
2731
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2732
2733
2734
2735


class MPNetForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2736
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2737
2738

    @classmethod
2739
2740
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2741
2742
2743
2744


class MPNetForSequenceClassification:
    def __init__(self, *args, **kwargs):
2745
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2746
2747

    @classmethod
2748
2749
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2750
2751
2752
2753


class MPNetForTokenClassification:
    def __init__(self, *args, **kwargs):
2754
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2755
2756

    @classmethod
2757
2758
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2759
2760
2761
2762


class MPNetLayer:
    def __init__(self, *args, **kwargs):
2763
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2764
2765
2766
2767


class MPNetModel:
    def __init__(self, *args, **kwargs):
2768
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2769
2770

    @classmethod
2771
2772
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2773
2774
2775
2776


class MPNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
2777
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2778
2779

    @classmethod
2780
2781
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2782
2783


2784
2785
class MT5EncoderModel:
    def __init__(self, *args, **kwargs):
2786
        requires_backends(self, ["torch"])
2787
2788

    @classmethod
2789
2790
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2791
2792


Patrick von Platen's avatar
Patrick von Platen committed
2793
2794
class MT5ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2795
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2796
2797

    @classmethod
2798
2799
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2800
2801
2802
2803


class MT5Model:
    def __init__(self, *args, **kwargs):
2804
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2805
2806

    @classmethod
2807
2808
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2809
2810


2811
2812
2813
2814
2815
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class OpenAIGPTDoubleHeadsModel:
    def __init__(self, *args, **kwargs):
2816
        requires_backends(self, ["torch"])
2817
2818

    @classmethod
2819
2820
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2821
2822


2823
2824
class OpenAIGPTForSequenceClassification:
    def __init__(self, *args, **kwargs):
2825
        requires_backends(self, ["torch"])
2826
2827

    @classmethod
2828
2829
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2830
2831


2832
2833
class OpenAIGPTLMHeadModel:
    def __init__(self, *args, **kwargs):
2834
        requires_backends(self, ["torch"])
2835
2836

    @classmethod
2837
2838
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2839
2840
2841
2842


class OpenAIGPTModel:
    def __init__(self, *args, **kwargs):
2843
        requires_backends(self, ["torch"])
2844
2845

    @classmethod
2846
2847
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2848
2849
2850
2851


class OpenAIGPTPreTrainedModel:
    def __init__(self, *args, **kwargs):
2852
        requires_backends(self, ["torch"])
2853
2854

    @classmethod
2855
2856
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2857
2858
2859


def load_tf_weights_in_openai_gpt(*args, **kwargs):
2860
    requires_backends(load_tf_weights_in_openai_gpt, ["torch"])
2861
2862


2863
2864
class PegasusForCausalLM:
    def __init__(self, *args, **kwargs):
2865
        requires_backends(self, ["torch"])
2866

2867
2868
2869
2870
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

2871

2872
2873
class PegasusForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2874
        requires_backends(self, ["torch"])
2875
2876

    @classmethod
2877
2878
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2879
2880


2881
2882
class PegasusModel:
    def __init__(self, *args, **kwargs):
2883
        requires_backends(self, ["torch"])
2884
2885

    @classmethod
2886
2887
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2888
2889


2890
2891
2892
2893
2894
2895
2896
2897
2898
class PegasusPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Weizhen's avatar
Weizhen committed
2899
2900
2901
2902
2903
PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ProphetNetDecoder:
    def __init__(self, *args, **kwargs):
2904
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2905
2906
2907
2908


class ProphetNetEncoder:
    def __init__(self, *args, **kwargs):
2909
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2910
2911
2912
2913


class ProphetNetForCausalLM:
    def __init__(self, *args, **kwargs):
2914
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2915

2916
2917
2918
2919
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Weizhen's avatar
Weizhen committed
2920
2921
2922

class ProphetNetForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2923
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2924
2925

    @classmethod
2926
2927
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
2928
2929
2930
2931


class ProphetNetModel:
    def __init__(self, *args, **kwargs):
2932
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2933
2934

    @classmethod
2935
2936
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
2937
2938
2939
2940


class ProphetNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
2941
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2942
2943

    @classmethod
2944
2945
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
2946
2947


2948
2949
class RagModel:
    def __init__(self, *args, **kwargs):
2950
        requires_backends(self, ["torch"])
2951
2952

    @classmethod
2953
2954
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2955
2956


2957
2958
2959
2960
2961
2962
2963
2964
2965
class RagPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2966
2967
class RagSequenceForGeneration:
    def __init__(self, *args, **kwargs):
2968
        requires_backends(self, ["torch"])
2969
2970
2971
2972


class RagTokenForGeneration:
    def __init__(self, *args, **kwargs):
2973
        requires_backends(self, ["torch"])
2974
2975
2976
2977
2978
2979
2980


REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ReformerAttention:
    def __init__(self, *args, **kwargs):
2981
        requires_backends(self, ["torch"])
2982
2983
2984
2985


class ReformerForMaskedLM:
    def __init__(self, *args, **kwargs):
2986
        requires_backends(self, ["torch"])
2987
2988

    @classmethod
2989
2990
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2991
2992
2993
2994


class ReformerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2995
        requires_backends(self, ["torch"])
2996
2997

    @classmethod
2998
2999
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3000
3001
3002
3003


class ReformerForSequenceClassification:
    def __init__(self, *args, **kwargs):
3004
        requires_backends(self, ["torch"])
3005
3006

    @classmethod
3007
3008
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3009
3010
3011
3012


class ReformerLayer:
    def __init__(self, *args, **kwargs):
3013
        requires_backends(self, ["torch"])
3014
3015
3016
3017


class ReformerModel:
    def __init__(self, *args, **kwargs):
3018
        requires_backends(self, ["torch"])
3019
3020

    @classmethod
3021
3022
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3023
3024
3025
3026


class ReformerModelWithLMHead:
    def __init__(self, *args, **kwargs):
3027
        requires_backends(self, ["torch"])
3028
3029

    @classmethod
3030
3031
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3032
3033


3034
3035
3036
3037
3038
3039
3040
3041
3042
class ReformerPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RemBertForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RemBertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


def load_tf_weights_in_rembert(*args, **kwargs):
    requires_backends(load_tf_weights_in_rembert, ["torch"])


3127
3128
3129
3130
3131
RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RetriBertModel:
    def __init__(self, *args, **kwargs):
3132
        requires_backends(self, ["torch"])
3133
3134

    @classmethod
3135
3136
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3137
3138
3139
3140


class RetriBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
3141
        requires_backends(self, ["torch"])
3142
3143

    @classmethod
3144
3145
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3146
3147
3148
3149
3150
3151
3152


ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RobertaForCausalLM:
    def __init__(self, *args, **kwargs):
3153
        requires_backends(self, ["torch"])
3154

3155
3156
3157
3158
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

3159
3160
3161

class RobertaForMaskedLM:
    def __init__(self, *args, **kwargs):
3162
        requires_backends(self, ["torch"])
3163
3164

    @classmethod
3165
3166
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3167
3168
3169
3170


class RobertaForMultipleChoice:
    def __init__(self, *args, **kwargs):
3171
        requires_backends(self, ["torch"])
3172
3173

    @classmethod
3174
3175
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3176
3177
3178
3179


class RobertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3180
        requires_backends(self, ["torch"])
3181
3182

    @classmethod
3183
3184
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3185
3186
3187
3188


class RobertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
3189
        requires_backends(self, ["torch"])
3190
3191

    @classmethod
3192
3193
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3194
3195
3196
3197


class RobertaForTokenClassification:
    def __init__(self, *args, **kwargs):
3198
        requires_backends(self, ["torch"])
3199
3200

    @classmethod
3201
3202
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3203
3204
3205
3206


class RobertaModel:
    def __init__(self, *args, **kwargs):
3207
        requires_backends(self, ["torch"])
3208
3209

    @classmethod
3210
3211
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3212
3213


3214
3215
3216
3217
3218
3219
3220
3221
3222
class RobertaPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


3223
3224
3225
3226
3227
3228
3229
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RoFormerForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

3230
3231
3232
3233
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

3234
3235
3236
3237
3238
3239

class RoFormerForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3240
3241
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3242
3243
3244
3245
3246
3247
3248


class RoFormerForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3249
3250
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3251
3252
3253
3254
3255
3256
3257


class RoFormerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3258
3259
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3260
3261
3262
3263
3264
3265
3266


class RoFormerForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3267
3268
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3269
3270
3271
3272
3273
3274
3275


class RoFormerForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3276
3277
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289


class RoFormerLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3290
3291
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3292
3293
3294
3295
3296
3297
3298


class RoFormerPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3299
3300
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3301
3302
3303
3304
3305
3306


def load_tf_weights_in_roformer(*args, **kwargs):
    requires_backends(load_tf_weights_in_roformer, ["torch"])


NielsRogge's avatar
NielsRogge committed
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SegformerDecodeHead:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SegformerForImageClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SegformerForSemanticSegmentation:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SegformerLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SegformerModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class SegformerPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


3348
3349
3350
3351
3352
3353
3354
3355
SEW_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SEWForCTC:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


3356
3357
3358
3359
3360
3361
3362
3363
3364
class SEWForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
class SEWModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class SEWPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SEWDForCTC:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


3391
3392
3393
3394
3395
3396
3397
3398
3399
class SEWDForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
class SEWDModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class SEWDPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


3418
3419
3420
3421
3422
3423
3424
3425
3426
class SpeechEncoderDecoderModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Suraj Patil's avatar
Suraj Patil committed
3427
3428
3429
3430
3431
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Speech2TextForConditionalGeneration:
    def __init__(self, *args, **kwargs):
3432
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
3433
3434

    @classmethod
3435
3436
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
3437
3438
3439
3440


class Speech2TextModel:
    def __init__(self, *args, **kwargs):
3441
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
3442
3443

    @classmethod
3444
3445
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
3446
3447


3448
3449
3450
3451
3452
3453
3454
3455
3456
class Speech2TextPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
class Speech2Text2ForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class Speech2Text2PreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Ori Ram's avatar
Ori Ram committed
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SplinterForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class SplinterLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SplinterModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class SplinterPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Sylvain Gugger's avatar
Sylvain Gugger committed
3510
3511
3512
3513
3514
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SqueezeBertForMaskedLM:
    def __init__(self, *args, **kwargs):
3515
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3516
3517

    @classmethod
3518
3519
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3520
3521
3522
3523


class SqueezeBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
3524
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3525
3526

    @classmethod
3527
3528
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3529
3530
3531
3532


class SqueezeBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3533
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3534
3535

    @classmethod
3536
3537
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3538
3539
3540
3541


class SqueezeBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
3542
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3543
3544

    @classmethod
3545
3546
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3547
3548
3549
3550


class SqueezeBertForTokenClassification:
    def __init__(self, *args, **kwargs):
3551
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3552
3553

    @classmethod
3554
3555
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3556
3557
3558
3559


class SqueezeBertModel:
    def __init__(self, *args, **kwargs):
3560
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3561
3562

    @classmethod
3563
3564
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3565
3566
3567
3568


class SqueezeBertModule:
    def __init__(self, *args, **kwargs):
3569
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3570
3571
3572
3573


class SqueezeBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
3574
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3575
3576

    @classmethod
3577
3578
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3579
3580


3581
3582
3583
T5_PRETRAINED_MODEL_ARCHIVE_LIST = None


3584
3585
class T5EncoderModel:
    def __init__(self, *args, **kwargs):
3586
        requires_backends(self, ["torch"])
3587
3588

    @classmethod
3589
3590
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3591
3592


3593
3594
class T5ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
3595
        requires_backends(self, ["torch"])
3596
3597

    @classmethod
3598
3599
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3600
3601
3602
3603


class T5Model:
    def __init__(self, *args, **kwargs):
3604
        requires_backends(self, ["torch"])
3605
3606

    @classmethod
3607
3608
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3609
3610
3611
3612


class T5PreTrainedModel:
    def __init__(self, *args, **kwargs):
3613
        requires_backends(self, ["torch"])
3614
3615

    @classmethod
3616
3617
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3618
3619
3620


def load_tf_weights_in_t5(*args, **kwargs):
3621
    requires_backends(load_tf_weights_in_t5, ["torch"])
3622
3623
3624
3625
3626
3627
3628


TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AdaptiveEmbedding:
    def __init__(self, *args, **kwargs):
3629
        requires_backends(self, ["torch"])
3630
3631


sandip's avatar
sandip committed
3632
3633
class TransfoXLForSequenceClassification:
    def __init__(self, *args, **kwargs):
3634
        requires_backends(self, ["torch"])
sandip's avatar
sandip committed
3635
3636

    @classmethod
3637
3638
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
sandip's avatar
sandip committed
3639
3640


3641
3642
class TransfoXLLMHeadModel:
    def __init__(self, *args, **kwargs):
3643
        requires_backends(self, ["torch"])
3644
3645

    @classmethod
3646
3647
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3648
3649
3650
3651


class TransfoXLModel:
    def __init__(self, *args, **kwargs):
3652
        requires_backends(self, ["torch"])
3653
3654

    @classmethod
3655
3656
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3657
3658
3659
3660


class TransfoXLPreTrainedModel:
    def __init__(self, *args, **kwargs):
3661
        requires_backends(self, ["torch"])
3662
3663

    @classmethod
3664
3665
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3666
3667
3668


def load_tf_weights_in_transfo_xl(*args, **kwargs):
3669
    requires_backends(load_tf_weights_in_transfo_xl, ["torch"])
3670
3671


3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
TROCR_PRETRAINED_MODEL_ARCHIVE_LIST = None


class TrOCRForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class TrOCRPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST = None


class UniSpeechForCTC:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UniSpeechForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UniSpeechForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class UniSpeechModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class UniSpeechPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class UniSpeechSatForCTC:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UniSpeechSatForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class UniSpeechSatForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class UniSpeechSatModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class UniSpeechSatPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class VisionEncoderDecoderModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Gunjan Chhablani's avatar
Gunjan Chhablani committed
3782
3783
3784
3785
3786
3787
3788
3789
VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class VisualBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3790
3791
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Gunjan Chhablani's avatar
Gunjan Chhablani committed
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803


class VisualBertForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3804
3805
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Gunjan Chhablani's avatar
Gunjan Chhablani committed
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827


class VisualBertForRegionToPhraseAlignment:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertForVisualReasoning:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3828
3829
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Gunjan Chhablani's avatar
Gunjan Chhablani committed
3830
3831
3832
3833
3834
3835
3836


class VisualBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3837
3838
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Gunjan Chhablani's avatar
Gunjan Chhablani committed
3839
3840


3841
3842
3843
3844
3845
VIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ViTForImageClassification:
    def __init__(self, *args, **kwargs):
3846
        requires_backends(self, ["torch"])
3847
3848
3849
3850


class ViTModel:
    def __init__(self, *args, **kwargs):
3851
        requires_backends(self, ["torch"])
3852
3853

    @classmethod
3854
3855
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3856
3857
3858
3859


class ViTPreTrainedModel:
    def __init__(self, *args, **kwargs):
3860
        requires_backends(self, ["torch"])
3861
3862

    @classmethod
3863
3864
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3865
3866


Patrick von Platen's avatar
Patrick von Platen committed
3867
3868
3869
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None


3870
3871
class Wav2Vec2ForCTC:
    def __init__(self, *args, **kwargs):
3872
        requires_backends(self, ["torch"])
3873
3874


Patrick von Platen's avatar
Patrick von Platen committed
3875
3876
class Wav2Vec2ForMaskedLM:
    def __init__(self, *args, **kwargs):
3877
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3878
3879

    @classmethod
3880
3881
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3882
3883


Anton Lozhkov's avatar
Anton Lozhkov committed
3884
3885
3886
class Wav2Vec2ForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])
3887
3888
3889
3890
3891
3892
3893
3894
3895


class Wav2Vec2ForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Anton Lozhkov's avatar
Anton Lozhkov committed
3896
3897


Patrick von Platen's avatar
Patrick von Platen committed
3898
3899
class Wav2Vec2Model:
    def __init__(self, *args, **kwargs):
3900
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3901
3902

    @classmethod
3903
3904
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3905
3906
3907
3908


class Wav2Vec2PreTrainedModel:
    def __init__(self, *args, **kwargs):
3909
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3910
3911

    @classmethod
3912
3913
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3914
3915


3916
3917
3918
3919
3920
XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMForMultipleChoice:
    def __init__(self, *args, **kwargs):
3921
        requires_backends(self, ["torch"])
3922
3923

    @classmethod
3924
3925
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3926
3927
3928
3929


class XLMForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3930
        requires_backends(self, ["torch"])
3931
3932

    @classmethod
3933
3934
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3935
3936
3937
3938


class XLMForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
3939
        requires_backends(self, ["torch"])
3940
3941

    @classmethod
3942
3943
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3944
3945
3946
3947


class XLMForSequenceClassification:
    def __init__(self, *args, **kwargs):
3948
        requires_backends(self, ["torch"])
3949
3950

    @classmethod
3951
3952
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3953
3954
3955
3956


class XLMForTokenClassification:
    def __init__(self, *args, **kwargs):
3957
        requires_backends(self, ["torch"])
3958
3959

    @classmethod
3960
3961
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3962
3963
3964
3965


class XLMModel:
    def __init__(self, *args, **kwargs):
3966
        requires_backends(self, ["torch"])
3967
3968

    @classmethod
3969
3970
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3971
3972
3973
3974


class XLMPreTrainedModel:
    def __init__(self, *args, **kwargs):
3975
        requires_backends(self, ["torch"])
3976
3977

    @classmethod
3978
3979
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3980
3981
3982
3983


class XLMWithLMHeadModel:
    def __init__(self, *args, **kwargs):
3984
        requires_backends(self, ["torch"])
3985
3986

    @classmethod
3987
3988
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3989
3990


Weizhen's avatar
Weizhen committed
3991
3992
3993
3994
3995
XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMProphetNetDecoder:
    def __init__(self, *args, **kwargs):
3996
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3997
3998
3999
4000


class XLMProphetNetEncoder:
    def __init__(self, *args, **kwargs):
4001
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
4002
4003
4004
4005


class XLMProphetNetForCausalLM:
    def __init__(self, *args, **kwargs):
4006
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
4007

4008
4009
4010
4011
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Weizhen's avatar
Weizhen committed
4012
4013
4014

class XLMProphetNetForConditionalGeneration:
    def __init__(self, *args, **kwargs):
4015
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
4016
4017

    @classmethod
4018
4019
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
4020
4021
4022
4023


class XLMProphetNetModel:
    def __init__(self, *args, **kwargs):
4024
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
4025
4026

    @classmethod
4027
4028
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
4029
4030


4031
4032
4033
4034
4035
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMRobertaForCausalLM:
    def __init__(self, *args, **kwargs):
4036
        requires_backends(self, ["torch"])
4037

4038
4039
4040
4041
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

4042
4043
4044

class XLMRobertaForMaskedLM:
    def __init__(self, *args, **kwargs):
4045
        requires_backends(self, ["torch"])
4046
4047

    @classmethod
4048
4049
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
4050
4051
4052
4053


class XLMRobertaForMultipleChoice:
    def __init__(self, *args, **kwargs):
4054
        requires_backends(self, ["torch"])
4055
4056

    @classmethod
4057
4058
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
4059
4060
4061
4062


class XLMRobertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
4063
        requires_backends(self, ["torch"])
4064
4065

    @classmethod
4066
4067
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
4068
4069
4070
4071


class XLMRobertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
4072
        requires_backends(self, ["torch"])
4073
4074

    @classmethod
4075
4076
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
4077
4078
4079
4080


class XLMRobertaForTokenClassification:
    def __init__(self, *args, **kwargs):
4081
        requires_backends(self, ["torch"])
4082
4083

    @classmethod
4084
4085
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
4086
4087
4088
4089


class XLMRobertaModel:
    def __init__(self, *args, **kwargs):
4090
        requires_backends(self, ["torch"])
4091
4092

    @classmethod
4093
4094
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
4095
4096
4097
4098
4099
4100
4101


XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLNetForMultipleChoice:
    def __init__(self, *args, **kwargs):
4102
        requires_backends(self, ["torch"])
4103
4104

    @classmethod
4105
4106
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
4107
4108
4109
4110


class XLNetForQuestionAnswering:
    def __init__(self, *args, **kwargs):
4111
        requires_backends(self, ["torch"])
4112
4113

    @classmethod
4114
4115
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
4116
4117
4118
4119


class XLNetForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
4120
        requires_backends(self, ["torch"])
4121
4122

    @classmethod
4123
4124
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
4125
4126
4127
4128


class XLNetForSequenceClassification:
    def __init__(self, *args, **kwargs):
4129
        requires_backends(self, ["torch"])
4130
4131

    @classmethod
4132
4133
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
4134
4135
4136
4137


class XLNetForTokenClassification:
    def __init__(self, *args, **kwargs):
4138
        requires_backends(self, ["torch"])
4139
4140

    @classmethod
4141
4142
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
4143
4144
4145
4146


class XLNetLMHeadModel:
    def __init__(self, *args, **kwargs):
4147
        requires_backends(self, ["torch"])
4148
4149

    @classmethod
4150
4151
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
4152
4153
4154
4155


class XLNetModel:
    def __init__(self, *args, **kwargs):
4156
        requires_backends(self, ["torch"])
4157
4158

    @classmethod
4159
4160
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
4161
4162
4163
4164


class XLNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
4165
        requires_backends(self, ["torch"])
4166
4167

    @classmethod
4168
4169
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
4170
4171
4172


def load_tf_weights_in_xlnet(*args, **kwargs):
4173
    requires_backends(load_tf_weights_in_xlnet, ["torch"])
4174
4175
4176
4177


class Adafactor:
    def __init__(self, *args, **kwargs):
4178
        requires_backends(self, ["torch"])
4179
4180
4181
4182


class AdamW:
    def __init__(self, *args, **kwargs):
4183
        requires_backends(self, ["torch"])
4184
4185
4186


def get_constant_schedule(*args, **kwargs):
4187
    requires_backends(get_constant_schedule, ["torch"])
4188
4189
4190


def get_constant_schedule_with_warmup(*args, **kwargs):
4191
    requires_backends(get_constant_schedule_with_warmup, ["torch"])
4192
4193
4194


def get_cosine_schedule_with_warmup(*args, **kwargs):
4195
    requires_backends(get_cosine_schedule_with_warmup, ["torch"])
4196
4197
4198


def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs):
4199
    requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"])
4200
4201
4202


def get_linear_schedule_with_warmup(*args, **kwargs):
4203
    requires_backends(get_linear_schedule_with_warmup, ["torch"])
4204
4205
4206


def get_polynomial_decay_schedule_with_warmup(*args, **kwargs):
4207
    requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"])
4208
4209


Sylvain Gugger's avatar
Sylvain Gugger committed
4210
def get_scheduler(*args, **kwargs):
4211
    requires_backends(get_scheduler, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
4212
4213


4214
4215
class Trainer:
    def __init__(self, *args, **kwargs):
4216
        requires_backends(self, ["torch"])
4217
4218
4219


def torch_distributed_zero_first(*args, **kwargs):
4220
    requires_backends(torch_distributed_zero_first, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
4221
4222
4223
4224


class Seq2SeqTrainer:
    def __init__(self, *args, **kwargs):
4225
        requires_backends(self, ["torch"])