dummy_pt_objects.py 76.5 KB
Newer Older
1
# This file is autogenerated by the command `make fix-copies`, do not edit.
2
from ..file_utils import requires_backends
3
4
5
6


class PyTorchBenchmark:
    def __init__(self, *args, **kwargs):
7
        requires_backends(self, ["torch"])
8
9
10
11


class PyTorchBenchmarkArguments:
    def __init__(self, *args, **kwargs):
12
        requires_backends(self, ["torch"])
13
14
15
16


class DataCollator:
    def __init__(self, *args, **kwargs):
17
        requires_backends(self, ["torch"])
18
19
20
21


class DataCollatorForLanguageModeling:
    def __init__(self, *args, **kwargs):
22
        requires_backends(self, ["torch"])
23
24
25

    @classmethod
    def from_pretrained(self, *args, **kwargs):
26
        requires_backends(self, ["torch"])
27
28
29
30


class DataCollatorForPermutationLanguageModeling:
    def __init__(self, *args, **kwargs):
31
        requires_backends(self, ["torch"])
32
33
34

    @classmethod
    def from_pretrained(self, *args, **kwargs):
35
        requires_backends(self, ["torch"])
36
37


38
39
class DataCollatorForSeq2Seq:
    def __init__(self, *args, **kwargs):
40
        requires_backends(self, ["torch"])
41
42


43
44
class DataCollatorForSOP:
    def __init__(self, *args, **kwargs):
45
        requires_backends(self, ["torch"])
46
47


48
49
class DataCollatorForTokenClassification:
    def __init__(self, *args, **kwargs):
50
        requires_backends(self, ["torch"])
51
52
53

    @classmethod
    def from_pretrained(self, *args, **kwargs):
54
        requires_backends(self, ["torch"])
55
56


57
58
class DataCollatorForWholeWordMask:
    def __init__(self, *args, **kwargs):
59
        requires_backends(self, ["torch"])
60
61


62
63
class DataCollatorWithPadding:
    def __init__(self, *args, **kwargs):
64
        requires_backends(self, ["torch"])
65
66
67


def default_data_collator(*args, **kwargs):
68
    requires_backends(default_data_collator, ["torch"])
69
70
71
72


class GlueDataset:
    def __init__(self, *args, **kwargs):
73
        requires_backends(self, ["torch"])
74
75
76
77


class GlueDataTrainingArguments:
    def __init__(self, *args, **kwargs):
78
        requires_backends(self, ["torch"])
79
80
81
82


class LineByLineTextDataset:
    def __init__(self, *args, **kwargs):
83
        requires_backends(self, ["torch"])
84
85


86
87
class LineByLineWithRefDataset:
    def __init__(self, *args, **kwargs):
88
        requires_backends(self, ["torch"])
89
90


91
92
class LineByLineWithSOPTextDataset:
    def __init__(self, *args, **kwargs):
93
        requires_backends(self, ["torch"])
94
95
96
97


class SquadDataset:
    def __init__(self, *args, **kwargs):
98
        requires_backends(self, ["torch"])
99
100
101
102


class SquadDataTrainingArguments:
    def __init__(self, *args, **kwargs):
103
        requires_backends(self, ["torch"])
104
105
106
107


class TextDataset:
    def __init__(self, *args, **kwargs):
108
        requires_backends(self, ["torch"])
109
110
111
112


class TextDatasetForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
113
        requires_backends(self, ["torch"])
114
115


116
117
class BeamScorer:
    def __init__(self, *args, **kwargs):
118
        requires_backends(self, ["torch"])
119
120
121
122


class BeamSearchScorer:
    def __init__(self, *args, **kwargs):
123
        requires_backends(self, ["torch"])
124
125


126
127
class ForcedBOSTokenLogitsProcessor:
    def __init__(self, *args, **kwargs):
128
        requires_backends(self, ["torch"])
129
130
131
132


class ForcedEOSTokenLogitsProcessor:
    def __init__(self, *args, **kwargs):
133
        requires_backends(self, ["torch"])
134
135


136
137
class HammingDiversityLogitsProcessor:
    def __init__(self, *args, **kwargs):
138
        requires_backends(self, ["torch"])
139
140


141
142
class InfNanRemoveLogitsProcessor:
    def __init__(self, *args, **kwargs):
143
        requires_backends(self, ["torch"])
144
145


146
147
class LogitsProcessor:
    def __init__(self, *args, **kwargs):
148
        requires_backends(self, ["torch"])
149
150
151
152


class LogitsProcessorList:
    def __init__(self, *args, **kwargs):
153
        requires_backends(self, ["torch"])
154
155
156
157


class LogitsWarper:
    def __init__(self, *args, **kwargs):
158
        requires_backends(self, ["torch"])
159
160
161
162


class MinLengthLogitsProcessor:
    def __init__(self, *args, **kwargs):
163
        requires_backends(self, ["torch"])
164
165
166
167


class NoBadWordsLogitsProcessor:
    def __init__(self, *args, **kwargs):
168
        requires_backends(self, ["torch"])
169
170
171
172


class NoRepeatNGramLogitsProcessor:
    def __init__(self, *args, **kwargs):
173
        requires_backends(self, ["torch"])
174
175


176
177
class PrefixConstrainedLogitsProcessor:
    def __init__(self, *args, **kwargs):
178
        requires_backends(self, ["torch"])
179
180


181
182
class RepetitionPenaltyLogitsProcessor:
    def __init__(self, *args, **kwargs):
183
        requires_backends(self, ["torch"])
184
185
186
187


class TemperatureLogitsWarper:
    def __init__(self, *args, **kwargs):
188
        requires_backends(self, ["torch"])
189
190
191
192


class TopKLogitsWarper:
    def __init__(self, *args, **kwargs):
193
        requires_backends(self, ["torch"])
194
195
196
197


class TopPLogitsWarper:
    def __init__(self, *args, **kwargs):
198
        requires_backends(self, ["torch"])
199
200


201
202
class MaxLengthCriteria:
    def __init__(self, *args, **kwargs):
203
        requires_backends(self, ["torch"])
204
205
206
207


class MaxTimeCriteria:
    def __init__(self, *args, **kwargs):
208
        requires_backends(self, ["torch"])
209
210
211
212


class StoppingCriteria:
    def __init__(self, *args, **kwargs):
213
        requires_backends(self, ["torch"])
214
215
216
217


class StoppingCriteriaList:
    def __init__(self, *args, **kwargs):
218
        requires_backends(self, ["torch"])
219
220


221
def top_k_top_p_filtering(*args, **kwargs):
222
    requires_backends(top_k_top_p_filtering, ["torch"])
223
224


Sylvain Gugger's avatar
Sylvain Gugger committed
225
226
class Conv1D:
    def __init__(self, *args, **kwargs):
227
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
228
229
230
231


class PreTrainedModel:
    def __init__(self, *args, **kwargs):
232
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
233
234
235

    @classmethod
    def from_pretrained(self, *args, **kwargs):
236
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
237
238
239


def apply_chunking_to_forward(*args, **kwargs):
240
    requires_backends(apply_chunking_to_forward, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
241
242
243


def prune_layer(*args, **kwargs):
244
    requires_backends(prune_layer, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
245
246


247
248
249
250
251
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AlbertForMaskedLM:
    def __init__(self, *args, **kwargs):
252
        requires_backends(self, ["torch"])
253
254
255

    @classmethod
    def from_pretrained(self, *args, **kwargs):
256
        requires_backends(self, ["torch"])
257
258
259
260


class AlbertForMultipleChoice:
    def __init__(self, *args, **kwargs):
261
        requires_backends(self, ["torch"])
262
263
264

    @classmethod
    def from_pretrained(self, *args, **kwargs):
265
        requires_backends(self, ["torch"])
266
267
268
269


class AlbertForPreTraining:
    def __init__(self, *args, **kwargs):
270
        requires_backends(self, ["torch"])
271
272
273
274


class AlbertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
275
        requires_backends(self, ["torch"])
276
277
278

    @classmethod
    def from_pretrained(self, *args, **kwargs):
279
        requires_backends(self, ["torch"])
280
281
282
283


class AlbertForSequenceClassification:
    def __init__(self, *args, **kwargs):
284
        requires_backends(self, ["torch"])
285
286
287

    @classmethod
    def from_pretrained(self, *args, **kwargs):
288
        requires_backends(self, ["torch"])
289
290
291
292


class AlbertForTokenClassification:
    def __init__(self, *args, **kwargs):
293
        requires_backends(self, ["torch"])
294
295
296

    @classmethod
    def from_pretrained(self, *args, **kwargs):
297
        requires_backends(self, ["torch"])
298
299
300
301


class AlbertModel:
    def __init__(self, *args, **kwargs):
302
        requires_backends(self, ["torch"])
303
304
305

    @classmethod
    def from_pretrained(self, *args, **kwargs):
306
        requires_backends(self, ["torch"])
307
308
309
310


class AlbertPreTrainedModel:
    def __init__(self, *args, **kwargs):
311
        requires_backends(self, ["torch"])
312
313
314

    @classmethod
    def from_pretrained(self, *args, **kwargs):
315
        requires_backends(self, ["torch"])
316
317
318


def load_tf_weights_in_albert(*args, **kwargs):
319
    requires_backends(load_tf_weights_in_albert, ["torch"])
320
321
322
323
324


MODEL_FOR_CAUSAL_LM_MAPPING = None


325
326
327
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None


328
329
330
331
332
333
MODEL_FOR_MASKED_LM_MAPPING = None


MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None


334
335
336
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None


337
338
339
340
341
342
343
344
345
346
347
348
MODEL_FOR_PRETRAINING_MAPPING = None


MODEL_FOR_QUESTION_ANSWERING_MAPPING = None


MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None


MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None


349
350
351
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None


352
353
354
355
356
357
358
359
360
361
362
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None


MODEL_MAPPING = None


MODEL_WITH_LM_HEAD_MAPPING = None


class AutoModel:
    def __init__(self, *args, **kwargs):
363
        requires_backends(self, ["torch"])
364
365
366

    @classmethod
    def from_pretrained(self, *args, **kwargs):
367
        requires_backends(self, ["torch"])
368
369
370
371


class AutoModelForCausalLM:
    def __init__(self, *args, **kwargs):
372
        requires_backends(self, ["torch"])
373
374
375

    @classmethod
    def from_pretrained(self, *args, **kwargs):
376
        requires_backends(self, ["torch"])
377
378
379
380
381
382
383
384
385


class AutoModelForImageClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])
386
387
388
389


class AutoModelForMaskedLM:
    def __init__(self, *args, **kwargs):
390
        requires_backends(self, ["torch"])
391
392
393

    @classmethod
    def from_pretrained(self, *args, **kwargs):
394
        requires_backends(self, ["torch"])
395
396
397
398


class AutoModelForMultipleChoice:
    def __init__(self, *args, **kwargs):
399
        requires_backends(self, ["torch"])
400
401
402

    @classmethod
    def from_pretrained(self, *args, **kwargs):
403
        requires_backends(self, ["torch"])
404
405


406
407
class AutoModelForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
408
        requires_backends(self, ["torch"])
409
410
411

    @classmethod
    def from_pretrained(self, *args, **kwargs):
412
        requires_backends(self, ["torch"])
413
414


415
416
class AutoModelForPreTraining:
    def __init__(self, *args, **kwargs):
417
        requires_backends(self, ["torch"])
418
419
420

    @classmethod
    def from_pretrained(self, *args, **kwargs):
421
        requires_backends(self, ["torch"])
422
423
424
425


class AutoModelForQuestionAnswering:
    def __init__(self, *args, **kwargs):
426
        requires_backends(self, ["torch"])
427
428
429

    @classmethod
    def from_pretrained(self, *args, **kwargs):
430
        requires_backends(self, ["torch"])
431
432
433
434


class AutoModelForSeq2SeqLM:
    def __init__(self, *args, **kwargs):
435
        requires_backends(self, ["torch"])
436
437
438

    @classmethod
    def from_pretrained(self, *args, **kwargs):
439
        requires_backends(self, ["torch"])
440
441
442
443


class AutoModelForSequenceClassification:
    def __init__(self, *args, **kwargs):
444
        requires_backends(self, ["torch"])
445
446
447

    @classmethod
    def from_pretrained(self, *args, **kwargs):
448
        requires_backends(self, ["torch"])
449
450
451
452


class AutoModelForTableQuestionAnswering:
    def __init__(self, *args, **kwargs):
453
        requires_backends(self, ["torch"])
454
455
456

    @classmethod
    def from_pretrained(self, *args, **kwargs):
457
        requires_backends(self, ["torch"])
458
459
460
461


class AutoModelForTokenClassification:
    def __init__(self, *args, **kwargs):
462
        requires_backends(self, ["torch"])
463
464
465

    @classmethod
    def from_pretrained(self, *args, **kwargs):
466
        requires_backends(self, ["torch"])
467
468
469
470


class AutoModelWithLMHead:
    def __init__(self, *args, **kwargs):
471
        requires_backends(self, ["torch"])
472
473
474

    @classmethod
    def from_pretrained(self, *args, **kwargs):
475
        requires_backends(self, ["torch"])
476
477
478
479
480


BART_PRETRAINED_MODEL_ARCHIVE_LIST = None


481
482
class BartForCausalLM:
    def __init__(self, *args, **kwargs):
483
        requires_backends(self, ["torch"])
484
485


486
487
class BartForConditionalGeneration:
    def __init__(self, *args, **kwargs):
488
        requires_backends(self, ["torch"])
489
490
491

    @classmethod
    def from_pretrained(self, *args, **kwargs):
492
        requires_backends(self, ["torch"])
493
494
495
496


class BartForQuestionAnswering:
    def __init__(self, *args, **kwargs):
497
        requires_backends(self, ["torch"])
498
499
500

    @classmethod
    def from_pretrained(self, *args, **kwargs):
501
        requires_backends(self, ["torch"])
502
503
504
505


class BartForSequenceClassification:
    def __init__(self, *args, **kwargs):
506
        requires_backends(self, ["torch"])
507
508
509

    @classmethod
    def from_pretrained(self, *args, **kwargs):
510
        requires_backends(self, ["torch"])
511
512
513
514


class BartModel:
    def __init__(self, *args, **kwargs):
515
        requires_backends(self, ["torch"])
516
517
518

    @classmethod
    def from_pretrained(self, *args, **kwargs):
519
        requires_backends(self, ["torch"])
520
521


522
523
class BartPretrainedModel:
    def __init__(self, *args, **kwargs):
524
        requires_backends(self, ["torch"])
525
526
527

    @classmethod
    def from_pretrained(self, *args, **kwargs):
528
        requires_backends(self, ["torch"])
529
530


531
532
class PretrainedBartModel:
    def __init__(self, *args, **kwargs):
533
        requires_backends(self, ["torch"])
534
535
536

    @classmethod
    def from_pretrained(self, *args, **kwargs):
537
        requires_backends(self, ["torch"])
538
539
540
541
542
543
544


BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BertForMaskedLM:
    def __init__(self, *args, **kwargs):
545
        requires_backends(self, ["torch"])
546
547
548

    @classmethod
    def from_pretrained(self, *args, **kwargs):
549
        requires_backends(self, ["torch"])
550
551
552
553


class BertForMultipleChoice:
    def __init__(self, *args, **kwargs):
554
        requires_backends(self, ["torch"])
555
556
557

    @classmethod
    def from_pretrained(self, *args, **kwargs):
558
        requires_backends(self, ["torch"])
559
560
561
562


class BertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
563
        requires_backends(self, ["torch"])
564
565
566
567


class BertForPreTraining:
    def __init__(self, *args, **kwargs):
568
        requires_backends(self, ["torch"])
569
570
571
572


class BertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
573
        requires_backends(self, ["torch"])
574
575
576

    @classmethod
    def from_pretrained(self, *args, **kwargs):
577
        requires_backends(self, ["torch"])
578
579
580
581


class BertForSequenceClassification:
    def __init__(self, *args, **kwargs):
582
        requires_backends(self, ["torch"])
583
584
585

    @classmethod
    def from_pretrained(self, *args, **kwargs):
586
        requires_backends(self, ["torch"])
587
588
589
590


class BertForTokenClassification:
    def __init__(self, *args, **kwargs):
591
        requires_backends(self, ["torch"])
592
593
594

    @classmethod
    def from_pretrained(self, *args, **kwargs):
595
        requires_backends(self, ["torch"])
596
597
598
599


class BertLayer:
    def __init__(self, *args, **kwargs):
600
        requires_backends(self, ["torch"])
601
602
603
604


class BertLMHeadModel:
    def __init__(self, *args, **kwargs):
605
        requires_backends(self, ["torch"])
606
607
608

    @classmethod
    def from_pretrained(self, *args, **kwargs):
609
        requires_backends(self, ["torch"])
610
611
612
613


class BertModel:
    def __init__(self, *args, **kwargs):
614
        requires_backends(self, ["torch"])
615
616
617

    @classmethod
    def from_pretrained(self, *args, **kwargs):
618
        requires_backends(self, ["torch"])
619
620
621
622


class BertPreTrainedModel:
    def __init__(self, *args, **kwargs):
623
        requires_backends(self, ["torch"])
624
625
626

    @classmethod
    def from_pretrained(self, *args, **kwargs):
627
        requires_backends(self, ["torch"])
628
629
630


def load_tf_weights_in_bert(*args, **kwargs):
631
    requires_backends(load_tf_weights_in_bert, ["torch"])
632
633
634
635


class BertGenerationDecoder:
    def __init__(self, *args, **kwargs):
636
        requires_backends(self, ["torch"])
637
638
639
640


class BertGenerationEncoder:
    def __init__(self, *args, **kwargs):
641
        requires_backends(self, ["torch"])
642
643
644


def load_tf_weights_in_bert_generation(*args, **kwargs):
645
    requires_backends(load_tf_weights_in_bert_generation, ["torch"])
646
647


Vasudev Gupta's avatar
Vasudev Gupta committed
648
649
650
651
652
BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BigBirdForCausalLM:
    def __init__(self, *args, **kwargs):
653
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
654
655
656
657


class BigBirdForMaskedLM:
    def __init__(self, *args, **kwargs):
658
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
659
660
661

    @classmethod
    def from_pretrained(self, *args, **kwargs):
662
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
663
664
665
666


class BigBirdForMultipleChoice:
    def __init__(self, *args, **kwargs):
667
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
668
669
670

    @classmethod
    def from_pretrained(self, *args, **kwargs):
671
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
672
673
674
675


class BigBirdForPreTraining:
    def __init__(self, *args, **kwargs):
676
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
677
678
679
680


class BigBirdForQuestionAnswering:
    def __init__(self, *args, **kwargs):
681
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
682
683
684

    @classmethod
    def from_pretrained(self, *args, **kwargs):
685
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
686
687
688
689


class BigBirdForSequenceClassification:
    def __init__(self, *args, **kwargs):
690
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
691
692
693

    @classmethod
    def from_pretrained(self, *args, **kwargs):
694
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
695
696
697
698


class BigBirdForTokenClassification:
    def __init__(self, *args, **kwargs):
699
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
700
701
702

    @classmethod
    def from_pretrained(self, *args, **kwargs):
703
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
704
705
706
707


class BigBirdLayer:
    def __init__(self, *args, **kwargs):
708
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
709
710
711
712


class BigBirdModel:
    def __init__(self, *args, **kwargs):
713
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
714
715
716

    @classmethod
    def from_pretrained(self, *args, **kwargs):
717
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
718
719
720
721


class BigBirdPreTrainedModel:
    def __init__(self, *args, **kwargs):
722
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
723
724
725

    @classmethod
    def from_pretrained(self, *args, **kwargs):
726
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
727
728
729


def load_tf_weights_in_big_bird(*args, **kwargs):
730
    requires_backends(load_tf_weights_in_big_bird, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
731
732


Vasudev Gupta's avatar
Vasudev Gupta committed
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BigBirdPegasusForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdPegasusForConditionalGeneration:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdPegasusForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdPegasusForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdPegasusModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


Sam Shleifer's avatar
Sam Shleifer committed
777
778
779
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = None


780
781
class BlenderbotForCausalLM:
    def __init__(self, *args, **kwargs):
782
        requires_backends(self, ["torch"])
783
784


Sam Shleifer's avatar
Sam Shleifer committed
785
786
class BlenderbotForConditionalGeneration:
    def __init__(self, *args, **kwargs):
787
        requires_backends(self, ["torch"])
Sam Shleifer's avatar
Sam Shleifer committed
788
789
790

    @classmethod
    def from_pretrained(self, *args, **kwargs):
791
        requires_backends(self, ["torch"])
Sam Shleifer's avatar
Sam Shleifer committed
792
793


794
795
class BlenderbotModel:
    def __init__(self, *args, **kwargs):
796
        requires_backends(self, ["torch"])
797
798
799

    @classmethod
    def from_pretrained(self, *args, **kwargs):
800
        requires_backends(self, ["torch"])
801
802


803
804
805
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = None


806
807
class BlenderbotSmallForCausalLM:
    def __init__(self, *args, **kwargs):
808
        requires_backends(self, ["torch"])
809
810


811
812
class BlenderbotSmallForConditionalGeneration:
    def __init__(self, *args, **kwargs):
813
        requires_backends(self, ["torch"])
814
815
816

    @classmethod
    def from_pretrained(self, *args, **kwargs):
817
        requires_backends(self, ["torch"])
818
819
820
821


class BlenderbotSmallModel:
    def __init__(self, *args, **kwargs):
822
        requires_backends(self, ["torch"])
823
824
825

    @classmethod
    def from_pretrained(self, *args, **kwargs):
826
        requires_backends(self, ["torch"])
827
828


829
830
831
832
833
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CamembertForCausalLM:
    def __init__(self, *args, **kwargs):
834
        requires_backends(self, ["torch"])
835
836
837
838


class CamembertForMaskedLM:
    def __init__(self, *args, **kwargs):
839
        requires_backends(self, ["torch"])
840
841
842

    @classmethod
    def from_pretrained(self, *args, **kwargs):
843
        requires_backends(self, ["torch"])
844
845
846
847


class CamembertForMultipleChoice:
    def __init__(self, *args, **kwargs):
848
        requires_backends(self, ["torch"])
849
850
851

    @classmethod
    def from_pretrained(self, *args, **kwargs):
852
        requires_backends(self, ["torch"])
853
854
855
856


class CamembertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
857
        requires_backends(self, ["torch"])
858
859
860

    @classmethod
    def from_pretrained(self, *args, **kwargs):
861
        requires_backends(self, ["torch"])
862
863
864
865


class CamembertForSequenceClassification:
    def __init__(self, *args, **kwargs):
866
        requires_backends(self, ["torch"])
867
868
869

    @classmethod
    def from_pretrained(self, *args, **kwargs):
870
        requires_backends(self, ["torch"])
871
872
873
874


class CamembertForTokenClassification:
    def __init__(self, *args, **kwargs):
875
        requires_backends(self, ["torch"])
876
877
878

    @classmethod
    def from_pretrained(self, *args, **kwargs):
879
        requires_backends(self, ["torch"])
880
881
882
883


class CamembertModel:
    def __init__(self, *args, **kwargs):
Suraj Patil's avatar
Suraj Patil committed
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CLIPModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPTextModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPVisionModel:
    def __init__(self, *args, **kwargs):
923
        requires_backends(self, ["torch"])
924
925
926

    @classmethod
    def from_pretrained(self, *args, **kwargs):
927
        requires_backends(self, ["torch"])
928
929


abhishek thakur's avatar
abhishek thakur committed
930
931
932
933
934
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ConvBertForMaskedLM:
    def __init__(self, *args, **kwargs):
935
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
936
937
938

    @classmethod
    def from_pretrained(self, *args, **kwargs):
939
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
940
941
942
943


class ConvBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
944
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
945
946
947

    @classmethod
    def from_pretrained(self, *args, **kwargs):
948
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
949
950
951
952


class ConvBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
953
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
954
955
956

    @classmethod
    def from_pretrained(self, *args, **kwargs):
957
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
958
959
960
961


class ConvBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
962
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
963
964
965

    @classmethod
    def from_pretrained(self, *args, **kwargs):
966
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
967
968
969
970


class ConvBertForTokenClassification:
    def __init__(self, *args, **kwargs):
971
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
972
973
974

    @classmethod
    def from_pretrained(self, *args, **kwargs):
975
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
976
977
978
979


class ConvBertLayer:
    def __init__(self, *args, **kwargs):
980
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
981
982
983
984


class ConvBertModel:
    def __init__(self, *args, **kwargs):
985
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
986
987
988

    @classmethod
    def from_pretrained(self, *args, **kwargs):
989
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
990
991
992
993


class ConvBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
994
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
995
996
997

    @classmethod
    def from_pretrained(self, *args, **kwargs):
998
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
999
1000
1001


def load_tf_weights_in_convbert(*args, **kwargs):
1002
    requires_backends(load_tf_weights_in_convbert, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1003
1004


1005
1006
1007
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None


1008
1009
class CTRLForSequenceClassification:
    def __init__(self, *args, **kwargs):
1010
        requires_backends(self, ["torch"])
1011
1012
1013

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1014
        requires_backends(self, ["torch"])
1015
1016


1017
1018
class CTRLLMHeadModel:
    def __init__(self, *args, **kwargs):
1019
        requires_backends(self, ["torch"])
1020
1021
1022

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1023
        requires_backends(self, ["torch"])
1024
1025
1026
1027


class CTRLModel:
    def __init__(self, *args, **kwargs):
1028
        requires_backends(self, ["torch"])
1029
1030
1031

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1032
        requires_backends(self, ["torch"])
1033
1034
1035
1036


class CTRLPreTrainedModel:
    def __init__(self, *args, **kwargs):
1037
        requires_backends(self, ["torch"])
1038
1039
1040

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1041
        requires_backends(self, ["torch"])
1042
1043
1044
1045
1046


DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


NielsRogge's avatar
NielsRogge committed
1047
1048
class DebertaForMaskedLM:
    def __init__(self, *args, **kwargs):
1049
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1050
1051
1052

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1053
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1054
1055
1056
1057


class DebertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1058
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1059
1060
1061

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1062
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1063
1064


1065
1066
class DebertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
1067
        requires_backends(self, ["torch"])
1068
1069
1070

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1071
        requires_backends(self, ["torch"])
1072
1073


NielsRogge's avatar
NielsRogge committed
1074
1075
class DebertaForTokenClassification:
    def __init__(self, *args, **kwargs):
1076
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1077
1078
1079

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1080
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1081
1082


1083
1084
class DebertaModel:
    def __init__(self, *args, **kwargs):
1085
        requires_backends(self, ["torch"])
1086
1087
1088

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1089
        requires_backends(self, ["torch"])
1090
1091
1092
1093


class DebertaPreTrainedModel:
    def __init__(self, *args, **kwargs):
1094
        requires_backends(self, ["torch"])
1095
1096
1097

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1098
        requires_backends(self, ["torch"])
1099
1100


1101
1102
1103
1104
1105
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DebertaV2ForMaskedLM:
    def __init__(self, *args, **kwargs):
1106
        requires_backends(self, ["torch"])
1107
1108
1109

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1110
        requires_backends(self, ["torch"])
1111
1112
1113
1114


class DebertaV2ForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1115
        requires_backends(self, ["torch"])
1116
1117
1118

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1119
        requires_backends(self, ["torch"])
1120
1121
1122
1123


class DebertaV2ForSequenceClassification:
    def __init__(self, *args, **kwargs):
1124
        requires_backends(self, ["torch"])
1125
1126
1127

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1128
        requires_backends(self, ["torch"])
1129
1130
1131
1132


class DebertaV2ForTokenClassification:
    def __init__(self, *args, **kwargs):
1133
        requires_backends(self, ["torch"])
1134
1135
1136

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1137
        requires_backends(self, ["torch"])
1138
1139
1140
1141


class DebertaV2Model:
    def __init__(self, *args, **kwargs):
1142
        requires_backends(self, ["torch"])
1143
1144
1145

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1146
        requires_backends(self, ["torch"])
1147
1148
1149


class DebertaV2PreTrainedModel:
NielsRogge's avatar
NielsRogge committed
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DeiTForImageClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTForImageClassificationWithTeacher:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTPreTrainedModel:
1181
    def __init__(self, *args, **kwargs):
1182
        requires_backends(self, ["torch"])
1183
1184
1185

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1186
        requires_backends(self, ["torch"])
1187
1188


1189
1190
1191
1192
1193
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DistilBertForMaskedLM:
    def __init__(self, *args, **kwargs):
1194
        requires_backends(self, ["torch"])
1195
1196
1197

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1198
        requires_backends(self, ["torch"])
1199
1200
1201
1202


class DistilBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1203
        requires_backends(self, ["torch"])
1204
1205
1206

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1207
        requires_backends(self, ["torch"])
1208
1209
1210
1211


class DistilBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1212
        requires_backends(self, ["torch"])
1213
1214
1215

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1216
        requires_backends(self, ["torch"])
1217
1218
1219
1220


class DistilBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1221
        requires_backends(self, ["torch"])
1222
1223
1224

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1225
        requires_backends(self, ["torch"])
1226
1227
1228
1229


class DistilBertForTokenClassification:
    def __init__(self, *args, **kwargs):
1230
        requires_backends(self, ["torch"])
1231
1232
1233

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1234
        requires_backends(self, ["torch"])
1235
1236
1237
1238


class DistilBertModel:
    def __init__(self, *args, **kwargs):
1239
        requires_backends(self, ["torch"])
1240
1241
1242

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1243
        requires_backends(self, ["torch"])
1244
1245
1246
1247


class DistilBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
1248
        requires_backends(self, ["torch"])
1249
1250
1251

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1252
        requires_backends(self, ["torch"])
1253
1254


Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1255
1256
1257
1258
1259
1260
1261
1262
1263
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None


DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None


DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None


1264
1265
class DPRContextEncoder:
    def __init__(self, *args, **kwargs):
1266
        requires_backends(self, ["torch"])
1267
1268
1269
1270


class DPRPretrainedContextEncoder:
    def __init__(self, *args, **kwargs):
1271
        requires_backends(self, ["torch"])
1272
1273
1274
1275


class DPRPretrainedQuestionEncoder:
    def __init__(self, *args, **kwargs):
1276
        requires_backends(self, ["torch"])
1277
1278
1279
1280


class DPRPretrainedReader:
    def __init__(self, *args, **kwargs):
1281
        requires_backends(self, ["torch"])
1282
1283
1284
1285


class DPRQuestionEncoder:
    def __init__(self, *args, **kwargs):
1286
        requires_backends(self, ["torch"])
1287
1288
1289
1290


class DPRReader:
    def __init__(self, *args, **kwargs):
1291
        requires_backends(self, ["torch"])
1292
1293
1294
1295
1296
1297
1298


ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ElectraForMaskedLM:
    def __init__(self, *args, **kwargs):
1299
        requires_backends(self, ["torch"])
1300
1301
1302

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1303
        requires_backends(self, ["torch"])
1304
1305
1306
1307


class ElectraForMultipleChoice:
    def __init__(self, *args, **kwargs):
1308
        requires_backends(self, ["torch"])
1309
1310
1311

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1312
        requires_backends(self, ["torch"])
1313
1314
1315
1316


class ElectraForPreTraining:
    def __init__(self, *args, **kwargs):
1317
        requires_backends(self, ["torch"])
1318
1319
1320
1321


class ElectraForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1322
        requires_backends(self, ["torch"])
1323
1324
1325

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1326
        requires_backends(self, ["torch"])
1327
1328
1329
1330


class ElectraForSequenceClassification:
    def __init__(self, *args, **kwargs):
1331
        requires_backends(self, ["torch"])
1332
1333
1334

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1335
        requires_backends(self, ["torch"])
1336
1337
1338
1339


class ElectraForTokenClassification:
    def __init__(self, *args, **kwargs):
1340
        requires_backends(self, ["torch"])
1341
1342
1343

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1344
        requires_backends(self, ["torch"])
1345
1346
1347
1348


class ElectraModel:
    def __init__(self, *args, **kwargs):
1349
        requires_backends(self, ["torch"])
1350
1351
1352

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1353
        requires_backends(self, ["torch"])
1354
1355
1356
1357


class ElectraPreTrainedModel:
    def __init__(self, *args, **kwargs):
1358
        requires_backends(self, ["torch"])
1359
1360
1361

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1362
        requires_backends(self, ["torch"])
1363
1364
1365


def load_tf_weights_in_electra(*args, **kwargs):
1366
    requires_backends(load_tf_weights_in_electra, ["torch"])
1367
1368
1369
1370


class EncoderDecoderModel:
    def __init__(self, *args, **kwargs):
1371
        requires_backends(self, ["torch"])
1372
1373
1374

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1375
        requires_backends(self, ["torch"])
1376
1377
1378
1379
1380
1381
1382


FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FlaubertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1383
        requires_backends(self, ["torch"])
1384
1385
1386

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1387
        requires_backends(self, ["torch"])
1388
1389
1390
1391


class FlaubertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1392
        requires_backends(self, ["torch"])
1393
1394
1395

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1396
        requires_backends(self, ["torch"])
1397
1398
1399
1400


class FlaubertForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
1401
        requires_backends(self, ["torch"])
1402
1403
1404

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1405
        requires_backends(self, ["torch"])
1406
1407
1408
1409


class FlaubertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1410
        requires_backends(self, ["torch"])
1411
1412
1413

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1414
        requires_backends(self, ["torch"])
1415
1416
1417
1418


class FlaubertForTokenClassification:
    def __init__(self, *args, **kwargs):
1419
        requires_backends(self, ["torch"])
1420
1421
1422

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1423
        requires_backends(self, ["torch"])
1424
1425
1426
1427


class FlaubertModel:
    def __init__(self, *args, **kwargs):
1428
        requires_backends(self, ["torch"])
1429
1430
1431

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1432
        requires_backends(self, ["torch"])
1433
1434
1435
1436


class FlaubertWithLMHeadModel:
    def __init__(self, *args, **kwargs):
1437
        requires_backends(self, ["torch"])
1438
1439
1440

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1441
        requires_backends(self, ["torch"])
1442
1443
1444
1445


class FSMTForConditionalGeneration:
    def __init__(self, *args, **kwargs):
1446
        requires_backends(self, ["torch"])
1447
1448
1449

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1450
        requires_backends(self, ["torch"])
1451
1452
1453
1454


class FSMTModel:
    def __init__(self, *args, **kwargs):
1455
        requires_backends(self, ["torch"])
1456
1457
1458

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1459
        requires_backends(self, ["torch"])
1460
1461
1462
1463


class PretrainedFSMTModel:
    def __init__(self, *args, **kwargs):
1464
        requires_backends(self, ["torch"])
1465
1466
1467

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1468
        requires_backends(self, ["torch"])
1469
1470
1471
1472
1473
1474
1475


FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FunnelBaseModel:
    def __init__(self, *args, **kwargs):
1476
        requires_backends(self, ["torch"])
1477
1478
1479

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1480
        requires_backends(self, ["torch"])
1481
1482
1483
1484


class FunnelForMaskedLM:
    def __init__(self, *args, **kwargs):
1485
        requires_backends(self, ["torch"])
1486
1487
1488

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1489
        requires_backends(self, ["torch"])
1490
1491
1492
1493


class FunnelForMultipleChoice:
    def __init__(self, *args, **kwargs):
1494
        requires_backends(self, ["torch"])
1495
1496
1497

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1498
        requires_backends(self, ["torch"])
1499
1500
1501
1502


class FunnelForPreTraining:
    def __init__(self, *args, **kwargs):
1503
        requires_backends(self, ["torch"])
1504
1505
1506
1507


class FunnelForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1508
        requires_backends(self, ["torch"])
1509
1510
1511

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1512
        requires_backends(self, ["torch"])
1513
1514
1515
1516


class FunnelForSequenceClassification:
    def __init__(self, *args, **kwargs):
1517
        requires_backends(self, ["torch"])
1518
1519
1520

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1521
        requires_backends(self, ["torch"])
1522
1523
1524
1525


class FunnelForTokenClassification:
    def __init__(self, *args, **kwargs):
1526
        requires_backends(self, ["torch"])
1527
1528
1529

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1530
        requires_backends(self, ["torch"])
1531
1532
1533
1534


class FunnelModel:
    def __init__(self, *args, **kwargs):
1535
        requires_backends(self, ["torch"])
1536
1537
1538

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1539
        requires_backends(self, ["torch"])
1540
1541
1542


def load_tf_weights_in_funnel(*args, **kwargs):
1543
    requires_backends(load_tf_weights_in_funnel, ["torch"])
1544
1545
1546
1547
1548
1549
1550


GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPT2DoubleHeadsModel:
    def __init__(self, *args, **kwargs):
1551
        requires_backends(self, ["torch"])
1552
1553
1554

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1555
        requires_backends(self, ["torch"])
1556
1557


Lysandre's avatar
Lysandre committed
1558
1559
class GPT2ForSequenceClassification:
    def __init__(self, *args, **kwargs):
1560
        requires_backends(self, ["torch"])
Lysandre's avatar
Lysandre committed
1561
1562
1563

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1564
        requires_backends(self, ["torch"])
Lysandre's avatar
Lysandre committed
1565
1566


1567
1568
class GPT2LMHeadModel:
    def __init__(self, *args, **kwargs):
1569
        requires_backends(self, ["torch"])
1570
1571
1572

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1573
        requires_backends(self, ["torch"])
1574
1575
1576
1577


class GPT2Model:
    def __init__(self, *args, **kwargs):
1578
        requires_backends(self, ["torch"])
1579
1580
1581

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1582
        requires_backends(self, ["torch"])
1583
1584
1585
1586


class GPT2PreTrainedModel:
    def __init__(self, *args, **kwargs):
1587
        requires_backends(self, ["torch"])
1588
1589
1590

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1591
        requires_backends(self, ["torch"])
1592
1593
1594


def load_tf_weights_in_gpt2(*args, **kwargs):
1595
    requires_backends(load_tf_weights_in_gpt2, ["torch"])
1596
1597


Suraj Patil's avatar
Suraj Patil committed
1598
1599
1600
1601
1602
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPTNeoForCausalLM:
    def __init__(self, *args, **kwargs):
1603
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1604
1605
1606
1607


class GPTNeoModel:
    def __init__(self, *args, **kwargs):
1608
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1609
1610
1611

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1612
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1613
1614
1615
1616


class GPTNeoPreTrainedModel:
    def __init__(self, *args, **kwargs):
1617
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1618
1619
1620

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1621
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1622
1623
1624


def load_tf_weights_in_gpt_neo(*args, **kwargs):
1625
    requires_backends(load_tf_weights_in_gpt_neo, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1626
1627


Sehoon Kim's avatar
Sehoon Kim committed
1628
1629
1630
1631
1632
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class IBertForMaskedLM:
    def __init__(self, *args, **kwargs):
1633
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1634
1635
1636

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1637
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1638
1639
1640
1641


class IBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1642
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1643
1644
1645

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1646
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1647
1648
1649
1650


class IBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1651
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1652
1653
1654

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1655
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1656
1657
1658
1659


class IBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1660
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1661
1662
1663

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1664
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1665
1666
1667
1668


class IBertForTokenClassification:
    def __init__(self, *args, **kwargs):
1669
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1670
1671
1672

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1673
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1674
1675
1676
1677


class IBertModel:
    def __init__(self, *args, **kwargs):
1678
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1679
1680
1681

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1682
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1683
1684


1685
1686
class IBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
1687
        requires_backends(self, ["torch"])
1688
1689
1690

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1691
        requires_backends(self, ["torch"])
1692
1693


1694
1695
1696
1697
1698
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LayoutLMForMaskedLM:
    def __init__(self, *args, **kwargs):
1699
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1700
1701
1702

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1703
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1704
1705
1706
1707


class LayoutLMForSequenceClassification:
    def __init__(self, *args, **kwargs):
1708
        requires_backends(self, ["torch"])
1709
1710
1711

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1712
        requires_backends(self, ["torch"])
1713
1714
1715
1716


class LayoutLMForTokenClassification:
    def __init__(self, *args, **kwargs):
1717
        requires_backends(self, ["torch"])
1718
1719
1720

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1721
        requires_backends(self, ["torch"])
1722
1723
1724
1725


class LayoutLMModel:
    def __init__(self, *args, **kwargs):
1726
        requires_backends(self, ["torch"])
1727
1728
1729

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1730
        requires_backends(self, ["torch"])
1731
1732


Patrick von Platen's avatar
Patrick von Platen committed
1733
1734
1735
1736
1737
LED_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LEDForConditionalGeneration:
    def __init__(self, *args, **kwargs):
1738
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1739
1740
1741

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1742
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1743
1744
1745
1746


class LEDForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1747
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1748
1749
1750

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1751
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1752
1753
1754
1755


class LEDForSequenceClassification:
    def __init__(self, *args, **kwargs):
1756
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1757
1758
1759

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1760
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1761
1762
1763
1764


class LEDModel:
    def __init__(self, *args, **kwargs):
1765
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1766
1767
1768

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1769
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1770
1771


1772
1773
1774
1775
1776
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LongformerForMaskedLM:
    def __init__(self, *args, **kwargs):
1777
        requires_backends(self, ["torch"])
1778
1779
1780

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1781
        requires_backends(self, ["torch"])
1782
1783
1784
1785


class LongformerForMultipleChoice:
    def __init__(self, *args, **kwargs):
1786
        requires_backends(self, ["torch"])
1787
1788
1789

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1790
        requires_backends(self, ["torch"])
1791
1792
1793
1794


class LongformerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1795
        requires_backends(self, ["torch"])
1796
1797
1798

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1799
        requires_backends(self, ["torch"])
1800
1801
1802
1803


class LongformerForSequenceClassification:
    def __init__(self, *args, **kwargs):
1804
        requires_backends(self, ["torch"])
1805
1806
1807

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1808
        requires_backends(self, ["torch"])
1809
1810
1811
1812


class LongformerForTokenClassification:
    def __init__(self, *args, **kwargs):
1813
        requires_backends(self, ["torch"])
1814
1815
1816

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1817
        requires_backends(self, ["torch"])
1818
1819
1820
1821


class LongformerModel:
    def __init__(self, *args, **kwargs):
1822
        requires_backends(self, ["torch"])
1823
1824
1825

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1826
        requires_backends(self, ["torch"])
1827
1828
1829
1830


class LongformerSelfAttention:
    def __init__(self, *args, **kwargs):
1831
        requires_backends(self, ["torch"])
1832
1833


NielsRogge's avatar
NielsRogge committed
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LukeForEntityClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForEntityPairClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForEntitySpanClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukePreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


1870
1871
class LxmertEncoder:
    def __init__(self, *args, **kwargs):
1872
        requires_backends(self, ["torch"])
1873
1874
1875
1876


class LxmertForPreTraining:
    def __init__(self, *args, **kwargs):
1877
        requires_backends(self, ["torch"])
1878
1879
1880
1881


class LxmertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1882
        requires_backends(self, ["torch"])
1883
1884
1885

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1886
        requires_backends(self, ["torch"])
1887
1888
1889
1890


class LxmertModel:
    def __init__(self, *args, **kwargs):
1891
        requires_backends(self, ["torch"])
1892
1893
1894

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1895
        requires_backends(self, ["torch"])
1896
1897
1898
1899


class LxmertPreTrainedModel:
    def __init__(self, *args, **kwargs):
1900
        requires_backends(self, ["torch"])
1901
1902
1903

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1904
        requires_backends(self, ["torch"])
1905
1906
1907
1908


class LxmertVisualFeatureEncoder:
    def __init__(self, *args, **kwargs):
1909
        requires_backends(self, ["torch"])
1910
1911
1912
1913


class LxmertXLayer:
    def __init__(self, *args, **kwargs):
1914
        requires_backends(self, ["torch"])
1915
1916


Suraj Patil's avatar
Suraj Patil committed
1917
1918
1919
1920
1921
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST = None


class M2M100ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
1922
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1923
1924
1925

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1926
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1927
1928
1929
1930


class M2M100Model:
    def __init__(self, *args, **kwargs):
1931
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1932
1933
1934

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1935
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1936
1937


1938
1939
class MarianForCausalLM:
    def __init__(self, *args, **kwargs):
1940
        requires_backends(self, ["torch"])
1941
1942


1943
1944
class MarianModel:
    def __init__(self, *args, **kwargs):
1945
        requires_backends(self, ["torch"])
1946
1947
1948

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1949
        requires_backends(self, ["torch"])
1950
1951


1952
1953
class MarianMTModel:
    def __init__(self, *args, **kwargs):
1954
        requires_backends(self, ["torch"])
1955
1956
1957

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1958
        requires_backends(self, ["torch"])
1959
1960


1961
1962
class MBartForCausalLM:
    def __init__(self, *args, **kwargs):
1963
        requires_backends(self, ["torch"])
1964
1965


1966
1967
class MBartForConditionalGeneration:
    def __init__(self, *args, **kwargs):
1968
        requires_backends(self, ["torch"])
1969
1970
1971

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1972
        requires_backends(self, ["torch"])
1973
1974


1975
1976
class MBartForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1977
        requires_backends(self, ["torch"])
1978
1979
1980

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1981
        requires_backends(self, ["torch"])
1982
1983
1984
1985


class MBartForSequenceClassification:
    def __init__(self, *args, **kwargs):
1986
        requires_backends(self, ["torch"])
1987
1988
1989

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1990
        requires_backends(self, ["torch"])
1991
1992


1993
1994
class MBartModel:
    def __init__(self, *args, **kwargs):
1995
        requires_backends(self, ["torch"])
1996
1997
1998

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1999
        requires_backends(self, ["torch"])
2000
2001


2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MegatronBertForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


2074
2075
class MMBTForClassification:
    def __init__(self, *args, **kwargs):
2076
        requires_backends(self, ["torch"])
2077
2078
2079
2080


class MMBTModel:
    def __init__(self, *args, **kwargs):
2081
        requires_backends(self, ["torch"])
2082
2083
2084

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2085
        requires_backends(self, ["torch"])
2086
2087
2088
2089


class ModalEmbeddings:
    def __init__(self, *args, **kwargs):
2090
        requires_backends(self, ["torch"])
2091
2092
2093
2094
2095
2096
2097


MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MobileBertForMaskedLM:
    def __init__(self, *args, **kwargs):
2098
        requires_backends(self, ["torch"])
2099
2100
2101

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2102
        requires_backends(self, ["torch"])
2103
2104
2105
2106


class MobileBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
2107
        requires_backends(self, ["torch"])
2108
2109
2110

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2111
        requires_backends(self, ["torch"])
2112
2113
2114
2115


class MobileBertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
2116
        requires_backends(self, ["torch"])
2117
2118
2119
2120


class MobileBertForPreTraining:
    def __init__(self, *args, **kwargs):
2121
        requires_backends(self, ["torch"])
2122
2123
2124
2125


class MobileBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2126
        requires_backends(self, ["torch"])
2127
2128
2129

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2130
        requires_backends(self, ["torch"])
2131
2132
2133
2134


class MobileBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
2135
        requires_backends(self, ["torch"])
2136
2137
2138

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2139
        requires_backends(self, ["torch"])
2140
2141
2142
2143


class MobileBertForTokenClassification:
    def __init__(self, *args, **kwargs):
2144
        requires_backends(self, ["torch"])
2145
2146
2147

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2148
        requires_backends(self, ["torch"])
2149
2150
2151
2152


class MobileBertLayer:
    def __init__(self, *args, **kwargs):
2153
        requires_backends(self, ["torch"])
2154
2155
2156
2157


class MobileBertModel:
    def __init__(self, *args, **kwargs):
2158
        requires_backends(self, ["torch"])
2159
2160
2161

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2162
        requires_backends(self, ["torch"])
2163
2164
2165
2166


class MobileBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2167
        requires_backends(self, ["torch"])
2168
2169
2170

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2171
        requires_backends(self, ["torch"])
2172
2173
2174


def load_tf_weights_in_mobilebert(*args, **kwargs):
2175
    requires_backends(load_tf_weights_in_mobilebert, ["torch"])
2176
2177


StillKeepTry's avatar
StillKeepTry committed
2178
2179
2180
2181
2182
MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MPNetForMaskedLM:
    def __init__(self, *args, **kwargs):
2183
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2184
2185
2186

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2187
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2188
2189
2190
2191


class MPNetForMultipleChoice:
    def __init__(self, *args, **kwargs):
2192
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2193
2194
2195

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2196
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2197
2198
2199
2200


class MPNetForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2201
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2202
2203
2204

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2205
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2206
2207
2208
2209


class MPNetForSequenceClassification:
    def __init__(self, *args, **kwargs):
2210
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2211
2212
2213

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2214
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2215
2216
2217
2218


class MPNetForTokenClassification:
    def __init__(self, *args, **kwargs):
2219
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2220
2221
2222

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2223
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2224
2225
2226
2227


class MPNetLayer:
    def __init__(self, *args, **kwargs):
2228
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2229
2230
2231
2232


class MPNetModel:
    def __init__(self, *args, **kwargs):
2233
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2234
2235
2236

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2237
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2238
2239
2240
2241


class MPNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
2242
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2243
2244
2245

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2246
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2247
2248


2249
2250
class MT5EncoderModel:
    def __init__(self, *args, **kwargs):
2251
        requires_backends(self, ["torch"])
2252
2253
2254

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2255
        requires_backends(self, ["torch"])
2256
2257


Patrick von Platen's avatar
Patrick von Platen committed
2258
2259
class MT5ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2260
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2261
2262
2263

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2264
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2265
2266
2267
2268


class MT5Model:
    def __init__(self, *args, **kwargs):
2269
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2270
2271
2272

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2273
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2274
2275


2276
2277
2278
2279
2280
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class OpenAIGPTDoubleHeadsModel:
    def __init__(self, *args, **kwargs):
2281
        requires_backends(self, ["torch"])
2282
2283
2284

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2285
        requires_backends(self, ["torch"])
2286
2287


2288
2289
class OpenAIGPTForSequenceClassification:
    def __init__(self, *args, **kwargs):
2290
        requires_backends(self, ["torch"])
2291
2292
2293

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2294
        requires_backends(self, ["torch"])
2295
2296


2297
2298
class OpenAIGPTLMHeadModel:
    def __init__(self, *args, **kwargs):
2299
        requires_backends(self, ["torch"])
2300
2301
2302

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2303
        requires_backends(self, ["torch"])
2304
2305
2306
2307


class OpenAIGPTModel:
    def __init__(self, *args, **kwargs):
2308
        requires_backends(self, ["torch"])
2309
2310
2311

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2312
        requires_backends(self, ["torch"])
2313
2314
2315
2316


class OpenAIGPTPreTrainedModel:
    def __init__(self, *args, **kwargs):
2317
        requires_backends(self, ["torch"])
2318
2319
2320

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2321
        requires_backends(self, ["torch"])
2322
2323
2324


def load_tf_weights_in_openai_gpt(*args, **kwargs):
2325
    requires_backends(load_tf_weights_in_openai_gpt, ["torch"])
2326
2327


2328
2329
class PegasusForCausalLM:
    def __init__(self, *args, **kwargs):
2330
        requires_backends(self, ["torch"])
2331
2332


2333
2334
class PegasusForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2335
        requires_backends(self, ["torch"])
2336
2337
2338

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2339
        requires_backends(self, ["torch"])
2340
2341


2342
2343
class PegasusModel:
    def __init__(self, *args, **kwargs):
2344
        requires_backends(self, ["torch"])
2345
2346
2347

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2348
        requires_backends(self, ["torch"])
2349
2350


Weizhen's avatar
Weizhen committed
2351
2352
2353
2354
2355
PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ProphetNetDecoder:
    def __init__(self, *args, **kwargs):
2356
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2357
2358
2359
2360


class ProphetNetEncoder:
    def __init__(self, *args, **kwargs):
2361
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2362
2363
2364
2365


class ProphetNetForCausalLM:
    def __init__(self, *args, **kwargs):
2366
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2367
2368
2369
2370


class ProphetNetForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2371
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2372
2373
2374

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2375
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2376
2377
2378
2379


class ProphetNetModel:
    def __init__(self, *args, **kwargs):
2380
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2381
2382
2383

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2384
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2385
2386
2387
2388


class ProphetNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
2389
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2390
2391
2392

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2393
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2394
2395


2396
2397
class RagModel:
    def __init__(self, *args, **kwargs):
2398
        requires_backends(self, ["torch"])
2399
2400
2401

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2402
        requires_backends(self, ["torch"])
2403
2404
2405
2406


class RagSequenceForGeneration:
    def __init__(self, *args, **kwargs):
2407
        requires_backends(self, ["torch"])
2408
2409
2410
2411


class RagTokenForGeneration:
    def __init__(self, *args, **kwargs):
2412
        requires_backends(self, ["torch"])
2413
2414
2415
2416
2417
2418
2419


REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ReformerAttention:
    def __init__(self, *args, **kwargs):
2420
        requires_backends(self, ["torch"])
2421
2422
2423
2424


class ReformerForMaskedLM:
    def __init__(self, *args, **kwargs):
2425
        requires_backends(self, ["torch"])
2426
2427
2428

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2429
        requires_backends(self, ["torch"])
2430
2431
2432
2433


class ReformerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2434
        requires_backends(self, ["torch"])
2435
2436
2437

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2438
        requires_backends(self, ["torch"])
2439
2440
2441
2442


class ReformerForSequenceClassification:
    def __init__(self, *args, **kwargs):
2443
        requires_backends(self, ["torch"])
2444
2445
2446

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2447
        requires_backends(self, ["torch"])
2448
2449
2450
2451


class ReformerLayer:
    def __init__(self, *args, **kwargs):
2452
        requires_backends(self, ["torch"])
2453
2454
2455
2456


class ReformerModel:
    def __init__(self, *args, **kwargs):
2457
        requires_backends(self, ["torch"])
2458
2459
2460

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2461
        requires_backends(self, ["torch"])
2462
2463
2464
2465


class ReformerModelWithLMHead:
    def __init__(self, *args, **kwargs):
2466
        requires_backends(self, ["torch"])
2467
2468
2469

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2470
        requires_backends(self, ["torch"])
2471
2472
2473
2474
2475
2476
2477


RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RetriBertModel:
    def __init__(self, *args, **kwargs):
2478
        requires_backends(self, ["torch"])
2479
2480
2481

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2482
        requires_backends(self, ["torch"])
2483
2484
2485
2486


class RetriBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2487
        requires_backends(self, ["torch"])
2488
2489
2490

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2491
        requires_backends(self, ["torch"])
2492
2493
2494
2495
2496
2497
2498


ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RobertaForCausalLM:
    def __init__(self, *args, **kwargs):
2499
        requires_backends(self, ["torch"])
2500
2501
2502
2503


class RobertaForMaskedLM:
    def __init__(self, *args, **kwargs):
2504
        requires_backends(self, ["torch"])
2505
2506
2507

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2508
        requires_backends(self, ["torch"])
2509
2510
2511
2512


class RobertaForMultipleChoice:
    def __init__(self, *args, **kwargs):
2513
        requires_backends(self, ["torch"])
2514
2515
2516

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2517
        requires_backends(self, ["torch"])
2518
2519
2520
2521


class RobertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2522
        requires_backends(self, ["torch"])
2523
2524
2525

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2526
        requires_backends(self, ["torch"])
2527
2528
2529
2530


class RobertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
2531
        requires_backends(self, ["torch"])
2532
2533
2534

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2535
        requires_backends(self, ["torch"])
2536
2537
2538
2539


class RobertaForTokenClassification:
    def __init__(self, *args, **kwargs):
2540
        requires_backends(self, ["torch"])
2541
2542
2543

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2544
        requires_backends(self, ["torch"])
2545
2546
2547
2548


class RobertaModel:
    def __init__(self, *args, **kwargs):
2549
        requires_backends(self, ["torch"])
2550
2551
2552

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2553
        requires_backends(self, ["torch"])
2554
2555


2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RoFormerForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_roformer(*args, **kwargs):
    requires_backends(load_tf_weights_in_roformer, ["torch"])


Suraj Patil's avatar
Suraj Patil committed
2636
2637
2638
2639
2640
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Speech2TextForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2641
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2642
2643
2644

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2645
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2646
2647
2648
2649


class Speech2TextModel:
    def __init__(self, *args, **kwargs):
2650
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2651
2652
2653

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2654
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2655
2656


Sylvain Gugger's avatar
Sylvain Gugger committed
2657
2658
2659
2660
2661
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SqueezeBertForMaskedLM:
    def __init__(self, *args, **kwargs):
2662
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2663
2664
2665

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2666
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2667
2668
2669
2670


class SqueezeBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
2671
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2672
2673
2674

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2675
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2676
2677
2678
2679


class SqueezeBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2680
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2681
2682
2683

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2684
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2685
2686
2687
2688


class SqueezeBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
2689
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2690
2691
2692

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2693
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2694
2695
2696
2697


class SqueezeBertForTokenClassification:
    def __init__(self, *args, **kwargs):
2698
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2699
2700
2701

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2702
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2703
2704
2705
2706


class SqueezeBertModel:
    def __init__(self, *args, **kwargs):
2707
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2708
2709
2710

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2711
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2712
2713
2714
2715


class SqueezeBertModule:
    def __init__(self, *args, **kwargs):
2716
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2717
2718
2719
2720


class SqueezeBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2721
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2722
2723
2724

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2725
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2726
2727


2728
2729
2730
T5_PRETRAINED_MODEL_ARCHIVE_LIST = None


2731
2732
class T5EncoderModel:
    def __init__(self, *args, **kwargs):
2733
        requires_backends(self, ["torch"])
2734
2735
2736

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2737
        requires_backends(self, ["torch"])
2738
2739


2740
2741
class T5ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2742
        requires_backends(self, ["torch"])
2743
2744
2745

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2746
        requires_backends(self, ["torch"])
2747
2748
2749
2750


class T5Model:
    def __init__(self, *args, **kwargs):
2751
        requires_backends(self, ["torch"])
2752
2753
2754

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2755
        requires_backends(self, ["torch"])
2756
2757
2758
2759


class T5PreTrainedModel:
    def __init__(self, *args, **kwargs):
2760
        requires_backends(self, ["torch"])
2761
2762
2763

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2764
        requires_backends(self, ["torch"])
2765
2766
2767


def load_tf_weights_in_t5(*args, **kwargs):
2768
    requires_backends(load_tf_weights_in_t5, ["torch"])
2769
2770


NielsRogge's avatar
NielsRogge committed
2771
2772
2773
2774
2775
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class TapasForMaskedLM:
    def __init__(self, *args, **kwargs):
2776
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2777
2778
2779

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2780
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2781
2782
2783
2784


class TapasForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2785
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2786
2787
2788

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2789
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2790
2791
2792
2793


class TapasForSequenceClassification:
    def __init__(self, *args, **kwargs):
2794
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2795
2796
2797

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2798
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2799
2800
2801
2802


class TapasModel:
    def __init__(self, *args, **kwargs):
2803
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2804
2805
2806

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2807
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2808
2809


2810
2811
2812
2813
2814
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AdaptiveEmbedding:
    def __init__(self, *args, **kwargs):
2815
        requires_backends(self, ["torch"])
2816
2817


sandip's avatar
sandip committed
2818
2819
class TransfoXLForSequenceClassification:
    def __init__(self, *args, **kwargs):
2820
        requires_backends(self, ["torch"])
sandip's avatar
sandip committed
2821
2822
2823

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2824
        requires_backends(self, ["torch"])
sandip's avatar
sandip committed
2825
2826


2827
2828
class TransfoXLLMHeadModel:
    def __init__(self, *args, **kwargs):
2829
        requires_backends(self, ["torch"])
2830
2831
2832

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2833
        requires_backends(self, ["torch"])
2834
2835
2836
2837


class TransfoXLModel:
    def __init__(self, *args, **kwargs):
2838
        requires_backends(self, ["torch"])
2839
2840
2841

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2842
        requires_backends(self, ["torch"])
2843
2844
2845
2846


class TransfoXLPreTrainedModel:
    def __init__(self, *args, **kwargs):
2847
        requires_backends(self, ["torch"])
2848
2849
2850

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2851
        requires_backends(self, ["torch"])
2852
2853
2854


def load_tf_weights_in_transfo_xl(*args, **kwargs):
2855
    requires_backends(load_tf_weights_in_transfo_xl, ["torch"])
2856
2857


2858
2859
2860
2861
2862
VIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ViTForImageClassification:
    def __init__(self, *args, **kwargs):
2863
        requires_backends(self, ["torch"])
2864
2865
2866
2867


class ViTModel:
    def __init__(self, *args, **kwargs):
2868
        requires_backends(self, ["torch"])
2869
2870
2871

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2872
        requires_backends(self, ["torch"])
2873
2874
2875
2876


class ViTPreTrainedModel:
    def __init__(self, *args, **kwargs):
2877
        requires_backends(self, ["torch"])
2878
2879
2880

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2881
        requires_backends(self, ["torch"])
2882
2883


Patrick von Platen's avatar
Patrick von Platen committed
2884
2885
2886
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None


2887
2888
class Wav2Vec2ForCTC:
    def __init__(self, *args, **kwargs):
2889
        requires_backends(self, ["torch"])
2890
2891


Patrick von Platen's avatar
Patrick von Platen committed
2892
2893
class Wav2Vec2ForMaskedLM:
    def __init__(self, *args, **kwargs):
2894
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2895
2896
2897

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2898
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2899
2900
2901
2902


class Wav2Vec2Model:
    def __init__(self, *args, **kwargs):
2903
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2904
2905
2906

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2907
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2908
2909
2910
2911


class Wav2Vec2PreTrainedModel:
    def __init__(self, *args, **kwargs):
2912
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2913
2914
2915

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2916
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2917
2918


2919
2920
2921
2922
2923
XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMForMultipleChoice:
    def __init__(self, *args, **kwargs):
2924
        requires_backends(self, ["torch"])
2925
2926
2927

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2928
        requires_backends(self, ["torch"])
2929
2930
2931
2932


class XLMForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2933
        requires_backends(self, ["torch"])
2934
2935
2936

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2937
        requires_backends(self, ["torch"])
2938
2939
2940
2941


class XLMForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
2942
        requires_backends(self, ["torch"])
2943
2944
2945

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2946
        requires_backends(self, ["torch"])
2947
2948
2949
2950


class XLMForSequenceClassification:
    def __init__(self, *args, **kwargs):
2951
        requires_backends(self, ["torch"])
2952
2953
2954

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2955
        requires_backends(self, ["torch"])
2956
2957
2958
2959


class XLMForTokenClassification:
    def __init__(self, *args, **kwargs):
2960
        requires_backends(self, ["torch"])
2961
2962
2963

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2964
        requires_backends(self, ["torch"])
2965
2966
2967
2968


class XLMModel:
    def __init__(self, *args, **kwargs):
2969
        requires_backends(self, ["torch"])
2970
2971
2972

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2973
        requires_backends(self, ["torch"])
2974
2975
2976
2977


class XLMPreTrainedModel:
    def __init__(self, *args, **kwargs):
2978
        requires_backends(self, ["torch"])
2979
2980
2981

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2982
        requires_backends(self, ["torch"])
2983
2984
2985
2986


class XLMWithLMHeadModel:
    def __init__(self, *args, **kwargs):
2987
        requires_backends(self, ["torch"])
2988
2989
2990

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2991
        requires_backends(self, ["torch"])
2992
2993


Weizhen's avatar
Weizhen committed
2994
2995
2996
2997
2998
XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMProphetNetDecoder:
    def __init__(self, *args, **kwargs):
2999
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3000
3001
3002
3003


class XLMProphetNetEncoder:
    def __init__(self, *args, **kwargs):
3004
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3005
3006
3007
3008


class XLMProphetNetForCausalLM:
    def __init__(self, *args, **kwargs):
3009
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3010
3011
3012
3013


class XLMProphetNetForConditionalGeneration:
    def __init__(self, *args, **kwargs):
3014
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3015
3016
3017

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3018
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3019
3020
3021
3022


class XLMProphetNetModel:
    def __init__(self, *args, **kwargs):
3023
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3024
3025
3026

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3027
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3028
3029


3030
3031
3032
3033
3034
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMRobertaForCausalLM:
    def __init__(self, *args, **kwargs):
3035
        requires_backends(self, ["torch"])
3036
3037
3038
3039


class XLMRobertaForMaskedLM:
    def __init__(self, *args, **kwargs):
3040
        requires_backends(self, ["torch"])
3041
3042
3043

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3044
        requires_backends(self, ["torch"])
3045
3046
3047
3048


class XLMRobertaForMultipleChoice:
    def __init__(self, *args, **kwargs):
3049
        requires_backends(self, ["torch"])
3050
3051
3052

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3053
        requires_backends(self, ["torch"])
3054
3055
3056
3057


class XLMRobertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3058
        requires_backends(self, ["torch"])
3059
3060
3061

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3062
        requires_backends(self, ["torch"])
3063
3064
3065
3066


class XLMRobertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
3067
        requires_backends(self, ["torch"])
3068
3069
3070

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3071
        requires_backends(self, ["torch"])
3072
3073
3074
3075


class XLMRobertaForTokenClassification:
    def __init__(self, *args, **kwargs):
3076
        requires_backends(self, ["torch"])
3077
3078
3079

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3080
        requires_backends(self, ["torch"])
3081
3082
3083
3084


class XLMRobertaModel:
    def __init__(self, *args, **kwargs):
3085
        requires_backends(self, ["torch"])
3086
3087
3088

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3089
        requires_backends(self, ["torch"])
3090
3091
3092
3093
3094
3095
3096


XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLNetForMultipleChoice:
    def __init__(self, *args, **kwargs):
3097
        requires_backends(self, ["torch"])
3098
3099
3100

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3101
        requires_backends(self, ["torch"])
3102
3103
3104
3105


class XLNetForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3106
        requires_backends(self, ["torch"])
3107
3108
3109

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3110
        requires_backends(self, ["torch"])
3111
3112
3113
3114


class XLNetForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
3115
        requires_backends(self, ["torch"])
3116
3117
3118

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3119
        requires_backends(self, ["torch"])
3120
3121
3122
3123


class XLNetForSequenceClassification:
    def __init__(self, *args, **kwargs):
3124
        requires_backends(self, ["torch"])
3125
3126
3127

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3128
        requires_backends(self, ["torch"])
3129
3130
3131
3132


class XLNetForTokenClassification:
    def __init__(self, *args, **kwargs):
3133
        requires_backends(self, ["torch"])
3134
3135
3136

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3137
        requires_backends(self, ["torch"])
3138
3139
3140
3141


class XLNetLMHeadModel:
    def __init__(self, *args, **kwargs):
3142
        requires_backends(self, ["torch"])
3143
3144
3145

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3146
        requires_backends(self, ["torch"])
3147
3148
3149
3150


class XLNetModel:
    def __init__(self, *args, **kwargs):
3151
        requires_backends(self, ["torch"])
3152
3153
3154

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3155
        requires_backends(self, ["torch"])
3156
3157
3158
3159


class XLNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
3160
        requires_backends(self, ["torch"])
3161
3162
3163

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3164
        requires_backends(self, ["torch"])
3165
3166
3167


def load_tf_weights_in_xlnet(*args, **kwargs):
3168
    requires_backends(load_tf_weights_in_xlnet, ["torch"])
3169
3170
3171
3172


class Adafactor:
    def __init__(self, *args, **kwargs):
3173
        requires_backends(self, ["torch"])
3174
3175
3176
3177


class AdamW:
    def __init__(self, *args, **kwargs):
3178
        requires_backends(self, ["torch"])
3179
3180
3181


def get_constant_schedule(*args, **kwargs):
3182
    requires_backends(get_constant_schedule, ["torch"])
3183
3184
3185


def get_constant_schedule_with_warmup(*args, **kwargs):
3186
    requires_backends(get_constant_schedule_with_warmup, ["torch"])
3187
3188
3189


def get_cosine_schedule_with_warmup(*args, **kwargs):
3190
    requires_backends(get_cosine_schedule_with_warmup, ["torch"])
3191
3192
3193


def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs):
3194
    requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"])
3195
3196
3197


def get_linear_schedule_with_warmup(*args, **kwargs):
3198
    requires_backends(get_linear_schedule_with_warmup, ["torch"])
3199
3200
3201


def get_polynomial_decay_schedule_with_warmup(*args, **kwargs):
3202
    requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"])
3203
3204


Sylvain Gugger's avatar
Sylvain Gugger committed
3205
def get_scheduler(*args, **kwargs):
3206
    requires_backends(get_scheduler, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3207
3208


3209
3210
class Trainer:
    def __init__(self, *args, **kwargs):
3211
        requires_backends(self, ["torch"])
3212
3213
3214


def torch_distributed_zero_first(*args, **kwargs):
3215
    requires_backends(torch_distributed_zero_first, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3216
3217
3218
3219


class Seq2SeqTrainer:
    def __init__(self, *args, **kwargs):
3220
        requires_backends(self, ["torch"])