"tests/optimization/test_optimization.py" did not exist on "6c87b73d6ba22935d1ebc994643fee2eef6f40e1"
dummy_pt_objects.py 90 KB
Newer Older
1
# This file is autogenerated by the command `make fix-copies`, do not edit.
2
from ..file_utils import requires_backends
3
4
5
6


class PyTorchBenchmark:
    def __init__(self, *args, **kwargs):
7
        requires_backends(self, ["torch"])
8
9
10
11


class PyTorchBenchmarkArguments:
    def __init__(self, *args, **kwargs):
12
        requires_backends(self, ["torch"])
13
14
15
16


class DataCollator:
    def __init__(self, *args, **kwargs):
17
        requires_backends(self, ["torch"])
18
19
20
21


class DataCollatorForLanguageModeling:
    def __init__(self, *args, **kwargs):
22
        requires_backends(self, ["torch"])
23
24

    @classmethod
25
26
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
27
28
29
30


class DataCollatorForPermutationLanguageModeling:
    def __init__(self, *args, **kwargs):
31
        requires_backends(self, ["torch"])
32
33

    @classmethod
34
35
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
36
37


38
39
class DataCollatorForSeq2Seq:
    def __init__(self, *args, **kwargs):
40
        requires_backends(self, ["torch"])
41
42


43
44
class DataCollatorForSOP:
    def __init__(self, *args, **kwargs):
45
        requires_backends(self, ["torch"])
46
47


48
49
class DataCollatorForTokenClassification:
    def __init__(self, *args, **kwargs):
50
        requires_backends(self, ["torch"])
51
52

    @classmethod
53
54
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
55
56


57
58
class DataCollatorForWholeWordMask:
    def __init__(self, *args, **kwargs):
59
        requires_backends(self, ["torch"])
60
61


62
63
class DataCollatorWithPadding:
    def __init__(self, *args, **kwargs):
64
        requires_backends(self, ["torch"])
65
66
67


def default_data_collator(*args, **kwargs):
68
    requires_backends(default_data_collator, ["torch"])
69
70
71
72


class GlueDataset:
    def __init__(self, *args, **kwargs):
73
        requires_backends(self, ["torch"])
74
75
76
77


class GlueDataTrainingArguments:
    def __init__(self, *args, **kwargs):
78
        requires_backends(self, ["torch"])
79
80
81
82


class LineByLineTextDataset:
    def __init__(self, *args, **kwargs):
83
        requires_backends(self, ["torch"])
84
85


86
87
class LineByLineWithRefDataset:
    def __init__(self, *args, **kwargs):
88
        requires_backends(self, ["torch"])
89
90


91
92
class LineByLineWithSOPTextDataset:
    def __init__(self, *args, **kwargs):
93
        requires_backends(self, ["torch"])
94
95
96
97


class SquadDataset:
    def __init__(self, *args, **kwargs):
98
        requires_backends(self, ["torch"])
99
100
101
102


class SquadDataTrainingArguments:
    def __init__(self, *args, **kwargs):
103
        requires_backends(self, ["torch"])
104
105
106
107


class TextDataset:
    def __init__(self, *args, **kwargs):
108
        requires_backends(self, ["torch"])
109
110
111
112


class TextDatasetForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
113
        requires_backends(self, ["torch"])
114
115


116
117
class BeamScorer:
    def __init__(self, *args, **kwargs):
118
        requires_backends(self, ["torch"])
119
120
121
122


class BeamSearchScorer:
    def __init__(self, *args, **kwargs):
123
        requires_backends(self, ["torch"])
124
125


126
127
class ForcedBOSTokenLogitsProcessor:
    def __init__(self, *args, **kwargs):
128
        requires_backends(self, ["torch"])
129

130
131
132
133
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

134
135
136

class ForcedEOSTokenLogitsProcessor:
    def __init__(self, *args, **kwargs):
137
        requires_backends(self, ["torch"])
138

139
140
141
142
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

143

144
145
class HammingDiversityLogitsProcessor:
    def __init__(self, *args, **kwargs):
146
        requires_backends(self, ["torch"])
147

148
149
150
151
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

152

153
154
class InfNanRemoveLogitsProcessor:
    def __init__(self, *args, **kwargs):
155
        requires_backends(self, ["torch"])
156

157
158
159
160
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

161

162
163
class LogitsProcessor:
    def __init__(self, *args, **kwargs):
164
        requires_backends(self, ["torch"])
165

166
167
168
169
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

170
171
172

class LogitsProcessorList:
    def __init__(self, *args, **kwargs):
173
        requires_backends(self, ["torch"])
174

175
176
177
178
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

179
180
181

class LogitsWarper:
    def __init__(self, *args, **kwargs):
182
        requires_backends(self, ["torch"])
183
184
185
186


class MinLengthLogitsProcessor:
    def __init__(self, *args, **kwargs):
187
        requires_backends(self, ["torch"])
188

189
190
191
192
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

193
194
195

class NoBadWordsLogitsProcessor:
    def __init__(self, *args, **kwargs):
196
        requires_backends(self, ["torch"])
197

198
199
200
201
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

202
203
204

class NoRepeatNGramLogitsProcessor:
    def __init__(self, *args, **kwargs):
205
        requires_backends(self, ["torch"])
206

207
208
209
210
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

211

212
213
class PrefixConstrainedLogitsProcessor:
    def __init__(self, *args, **kwargs):
214
        requires_backends(self, ["torch"])
215

216
217
218
219
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

220

221
222
class RepetitionPenaltyLogitsProcessor:
    def __init__(self, *args, **kwargs):
223
        requires_backends(self, ["torch"])
224

225
226
227
228
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

229
230
231

class TemperatureLogitsWarper:
    def __init__(self, *args, **kwargs):
232
        requires_backends(self, ["torch"])
233
234
235
236


class TopKLogitsWarper:
    def __init__(self, *args, **kwargs):
237
        requires_backends(self, ["torch"])
238
239
240
241


class TopPLogitsWarper:
    def __init__(self, *args, **kwargs):
242
        requires_backends(self, ["torch"])
243
244


245
246
class MaxLengthCriteria:
    def __init__(self, *args, **kwargs):
247
        requires_backends(self, ["torch"])
248
249
250
251


class MaxTimeCriteria:
    def __init__(self, *args, **kwargs):
252
        requires_backends(self, ["torch"])
253
254
255
256


class StoppingCriteria:
    def __init__(self, *args, **kwargs):
257
        requires_backends(self, ["torch"])
258
259
260
261


class StoppingCriteriaList:
    def __init__(self, *args, **kwargs):
262
        requires_backends(self, ["torch"])
263
264


265
def top_k_top_p_filtering(*args, **kwargs):
266
    requires_backends(top_k_top_p_filtering, ["torch"])
267
268


Sylvain Gugger's avatar
Sylvain Gugger committed
269
270
class Conv1D:
    def __init__(self, *args, **kwargs):
271
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
272
273
274
275


class PreTrainedModel:
    def __init__(self, *args, **kwargs):
276
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
277
278

    @classmethod
279
280
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
281
282
283


def apply_chunking_to_forward(*args, **kwargs):
284
    requires_backends(apply_chunking_to_forward, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
285
286
287


def prune_layer(*args, **kwargs):
288
    requires_backends(prune_layer, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
289
290


291
292
293
294
295
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AlbertForMaskedLM:
    def __init__(self, *args, **kwargs):
296
        requires_backends(self, ["torch"])
297
298

    @classmethod
299
300
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
301
302
303
304


class AlbertForMultipleChoice:
    def __init__(self, *args, **kwargs):
305
        requires_backends(self, ["torch"])
306
307

    @classmethod
308
309
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
310
311
312
313


class AlbertForPreTraining:
    def __init__(self, *args, **kwargs):
314
        requires_backends(self, ["torch"])
315
316
317
318


class AlbertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
319
        requires_backends(self, ["torch"])
320
321

    @classmethod
322
323
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
324
325
326
327


class AlbertForSequenceClassification:
    def __init__(self, *args, **kwargs):
328
        requires_backends(self, ["torch"])
329
330

    @classmethod
331
332
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
333
334
335
336


class AlbertForTokenClassification:
    def __init__(self, *args, **kwargs):
337
        requires_backends(self, ["torch"])
338
339

    @classmethod
340
341
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
342
343
344
345


class AlbertModel:
    def __init__(self, *args, **kwargs):
346
        requires_backends(self, ["torch"])
347
348

    @classmethod
349
350
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
351
352
353
354


class AlbertPreTrainedModel:
    def __init__(self, *args, **kwargs):
355
        requires_backends(self, ["torch"])
356
357

    @classmethod
358
359
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
360
361
362


def load_tf_weights_in_albert(*args, **kwargs):
363
    requires_backends(load_tf_weights_in_albert, ["torch"])
364
365
366
367
368


MODEL_FOR_CAUSAL_LM_MAPPING = None


369
370
371
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None


372
373
374
375
376
377
MODEL_FOR_MASKED_LM_MAPPING = None


MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None


378
379
380
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None


NielsRogge's avatar
NielsRogge committed
381
382
383
MODEL_FOR_OBJECT_DETECTION_MAPPING = None


384
385
386
387
388
389
390
391
392
393
394
395
MODEL_FOR_PRETRAINING_MAPPING = None


MODEL_FOR_QUESTION_ANSWERING_MAPPING = None


MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None


MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None


396
397
398
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None


399
400
401
402
403
404
405
406
407
408
409
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None


MODEL_MAPPING = None


MODEL_WITH_LM_HEAD_MAPPING = None


class AutoModel:
    def __init__(self, *args, **kwargs):
410
        requires_backends(self, ["torch"])
411
412

    @classmethod
413
414
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
415
416
417
418


class AutoModelForCausalLM:
    def __init__(self, *args, **kwargs):
419
        requires_backends(self, ["torch"])
420
421

    @classmethod
422
423
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
424
425
426
427
428
429
430


class AutoModelForImageClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
431
432
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
433
434
435
436


class AutoModelForMaskedLM:
    def __init__(self, *args, **kwargs):
437
        requires_backends(self, ["torch"])
438
439

    @classmethod
440
441
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
442
443
444
445


class AutoModelForMultipleChoice:
    def __init__(self, *args, **kwargs):
446
        requires_backends(self, ["torch"])
447
448

    @classmethod
449
450
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
451
452


453
454
class AutoModelForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
455
        requires_backends(self, ["torch"])
456
457

    @classmethod
458
459
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
460
461


462
463
class AutoModelForPreTraining:
    def __init__(self, *args, **kwargs):
464
        requires_backends(self, ["torch"])
465
466

    @classmethod
467
468
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
469
470
471
472


class AutoModelForQuestionAnswering:
    def __init__(self, *args, **kwargs):
473
        requires_backends(self, ["torch"])
474
475

    @classmethod
476
477
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
478
479
480
481


class AutoModelForSeq2SeqLM:
    def __init__(self, *args, **kwargs):
482
        requires_backends(self, ["torch"])
483
484

    @classmethod
485
486
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
487
488
489
490


class AutoModelForSequenceClassification:
    def __init__(self, *args, **kwargs):
491
        requires_backends(self, ["torch"])
492
493

    @classmethod
494
495
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
496
497
498
499


class AutoModelForTableQuestionAnswering:
    def __init__(self, *args, **kwargs):
500
        requires_backends(self, ["torch"])
501
502

    @classmethod
503
504
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
505
506
507
508


class AutoModelForTokenClassification:
    def __init__(self, *args, **kwargs):
509
        requires_backends(self, ["torch"])
510
511

    @classmethod
512
513
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
514
515
516
517


class AutoModelWithLMHead:
    def __init__(self, *args, **kwargs):
518
        requires_backends(self, ["torch"])
519
520

    @classmethod
521
522
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
523
524
525
526
527


BART_PRETRAINED_MODEL_ARCHIVE_LIST = None


528
529
class BartForCausalLM:
    def __init__(self, *args, **kwargs):
530
        requires_backends(self, ["torch"])
531

532
533
534
535
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

536

537
538
class BartForConditionalGeneration:
    def __init__(self, *args, **kwargs):
539
        requires_backends(self, ["torch"])
540
541

    @classmethod
542
543
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
544
545
546
547


class BartForQuestionAnswering:
    def __init__(self, *args, **kwargs):
548
        requires_backends(self, ["torch"])
549
550

    @classmethod
551
552
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
553
554
555
556


class BartForSequenceClassification:
    def __init__(self, *args, **kwargs):
557
        requires_backends(self, ["torch"])
558
559

    @classmethod
560
561
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
562
563
564
565


class BartModel:
    def __init__(self, *args, **kwargs):
566
        requires_backends(self, ["torch"])
567
568

    @classmethod
569
570
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
571
572


573
574
class BartPretrainedModel:
    def __init__(self, *args, **kwargs):
575
        requires_backends(self, ["torch"])
576
577

    @classmethod
578
579
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
580
581


582
583
class PretrainedBartModel:
    def __init__(self, *args, **kwargs):
584
        requires_backends(self, ["torch"])
585
586

    @classmethod
587
588
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
589
590


NielsRogge's avatar
NielsRogge committed
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BeitForImageClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BeitForMaskedImageModeling:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class BeitModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class BeitPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


626
627
628
629
630
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BertForMaskedLM:
    def __init__(self, *args, **kwargs):
631
        requires_backends(self, ["torch"])
632
633

    @classmethod
634
635
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
636
637
638
639


class BertForMultipleChoice:
    def __init__(self, *args, **kwargs):
640
        requires_backends(self, ["torch"])
641
642

    @classmethod
643
644
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
645
646
647
648


class BertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
649
        requires_backends(self, ["torch"])
650
651
652
653


class BertForPreTraining:
    def __init__(self, *args, **kwargs):
654
        requires_backends(self, ["torch"])
655
656
657
658


class BertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
659
        requires_backends(self, ["torch"])
660
661

    @classmethod
662
663
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
664
665
666
667


class BertForSequenceClassification:
    def __init__(self, *args, **kwargs):
668
        requires_backends(self, ["torch"])
669
670

    @classmethod
671
672
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
673
674
675
676


class BertForTokenClassification:
    def __init__(self, *args, **kwargs):
677
        requires_backends(self, ["torch"])
678
679

    @classmethod
680
681
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
682
683
684
685


class BertLayer:
    def __init__(self, *args, **kwargs):
686
        requires_backends(self, ["torch"])
687
688
689
690


class BertLMHeadModel:
    def __init__(self, *args, **kwargs):
691
        requires_backends(self, ["torch"])
692
693

    @classmethod
694
695
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
696
697
698
699


class BertModel:
    def __init__(self, *args, **kwargs):
700
        requires_backends(self, ["torch"])
701
702

    @classmethod
703
704
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
705
706
707
708


class BertPreTrainedModel:
    def __init__(self, *args, **kwargs):
709
        requires_backends(self, ["torch"])
710
711

    @classmethod
712
713
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
714
715
716


def load_tf_weights_in_bert(*args, **kwargs):
717
    requires_backends(load_tf_weights_in_bert, ["torch"])
718
719
720
721


class BertGenerationDecoder:
    def __init__(self, *args, **kwargs):
722
        requires_backends(self, ["torch"])
723
724
725
726


class BertGenerationEncoder:
    def __init__(self, *args, **kwargs):
727
        requires_backends(self, ["torch"])
728
729


730
731
732
733
734
735
736
737
738
class BertGenerationPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


739
def load_tf_weights_in_bert_generation(*args, **kwargs):
740
    requires_backends(load_tf_weights_in_bert_generation, ["torch"])
741
742


Vasudev Gupta's avatar
Vasudev Gupta committed
743
744
745
746
747
BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BigBirdForCausalLM:
    def __init__(self, *args, **kwargs):
748
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
749

750
751
752
753
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Vasudev Gupta's avatar
Vasudev Gupta committed
754
755
756

class BigBirdForMaskedLM:
    def __init__(self, *args, **kwargs):
757
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
758
759

    @classmethod
760
761
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
762
763
764
765


class BigBirdForMultipleChoice:
    def __init__(self, *args, **kwargs):
766
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
767
768

    @classmethod
769
770
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
771
772
773
774


class BigBirdForPreTraining:
    def __init__(self, *args, **kwargs):
775
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
776
777
778
779


class BigBirdForQuestionAnswering:
    def __init__(self, *args, **kwargs):
780
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
781
782

    @classmethod
783
784
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
785
786
787
788


class BigBirdForSequenceClassification:
    def __init__(self, *args, **kwargs):
789
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
790
791

    @classmethod
792
793
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
794
795
796
797


class BigBirdForTokenClassification:
    def __init__(self, *args, **kwargs):
798
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
799
800

    @classmethod
801
802
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
803
804
805
806


class BigBirdLayer:
    def __init__(self, *args, **kwargs):
807
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
808
809
810
811


class BigBirdModel:
    def __init__(self, *args, **kwargs):
812
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
813
814

    @classmethod
815
816
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
817
818
819
820


class BigBirdPreTrainedModel:
    def __init__(self, *args, **kwargs):
821
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
822
823

    @classmethod
824
825
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
826
827
828


def load_tf_weights_in_big_bird(*args, **kwargs):
829
    requires_backends(load_tf_weights_in_big_bird, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
830
831


Vasudev Gupta's avatar
Vasudev Gupta committed
832
833
834
835
836
837
838
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BigBirdPegasusForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

839
840
841
842
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Vasudev Gupta's avatar
Vasudev Gupta committed
843
844
845
846
847
848

class BigBirdPegasusForConditionalGeneration:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
849
850
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
851
852
853
854
855
856
857


class BigBirdPegasusForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
858
859
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
860
861
862
863
864
865
866


class BigBirdPegasusForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
867
868
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
869
870
871
872
873
874
875


class BigBirdPegasusModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
876
877
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
878
879


880
881
882
883
884
885
886
887
888
class BigBirdPegasusPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Sam Shleifer's avatar
Sam Shleifer committed
889
890
891
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = None


892
893
class BlenderbotForCausalLM:
    def __init__(self, *args, **kwargs):
894
        requires_backends(self, ["torch"])
895

896
897
898
899
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

900

Sam Shleifer's avatar
Sam Shleifer committed
901
902
class BlenderbotForConditionalGeneration:
    def __init__(self, *args, **kwargs):
903
        requires_backends(self, ["torch"])
Sam Shleifer's avatar
Sam Shleifer committed
904
905

    @classmethod
906
907
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sam Shleifer's avatar
Sam Shleifer committed
908
909


910
911
class BlenderbotModel:
    def __init__(self, *args, **kwargs):
912
        requires_backends(self, ["torch"])
913
914

    @classmethod
915
916
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
917
918


919
920
921
922
923
924
925
926
927
class BlenderbotPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


928
929
930
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = None


931
932
class BlenderbotSmallForCausalLM:
    def __init__(self, *args, **kwargs):
933
        requires_backends(self, ["torch"])
934

935
936
937
938
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

939

940
941
class BlenderbotSmallForConditionalGeneration:
    def __init__(self, *args, **kwargs):
942
        requires_backends(self, ["torch"])
943
944

    @classmethod
945
946
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
947
948
949
950


class BlenderbotSmallModel:
    def __init__(self, *args, **kwargs):
951
        requires_backends(self, ["torch"])
952
953

    @classmethod
954
955
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
956
957


958
959
960
961
962
963
964
965
966
class BlenderbotSmallPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


967
968
969
970
971
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CamembertForCausalLM:
    def __init__(self, *args, **kwargs):
972
        requires_backends(self, ["torch"])
973

974
975
976
977
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

978
979
980

class CamembertForMaskedLM:
    def __init__(self, *args, **kwargs):
981
        requires_backends(self, ["torch"])
982
983

    @classmethod
984
985
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
986
987
988
989


class CamembertForMultipleChoice:
    def __init__(self, *args, **kwargs):
990
        requires_backends(self, ["torch"])
991
992

    @classmethod
993
994
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
995
996
997
998


class CamembertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
999
        requires_backends(self, ["torch"])
1000
1001

    @classmethod
1002
1003
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1004
1005
1006
1007


class CamembertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1008
        requires_backends(self, ["torch"])
1009
1010

    @classmethod
1011
1012
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1013
1014
1015
1016


class CamembertForTokenClassification:
    def __init__(self, *args, **kwargs):
1017
        requires_backends(self, ["torch"])
1018
1019

    @classmethod
1020
1021
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1022
1023
1024
1025


class CamembertModel:
    def __init__(self, *args, **kwargs):
Suraj Patil's avatar
Suraj Patil committed
1026
1027
1028
        requires_backends(self, ["torch"])

    @classmethod
1029
1030
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1031
1032


NielsRogge's avatar
NielsRogge committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CanineForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CanineForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CanineForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CanineForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CanineLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CanineModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CaninePreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


def load_tf_weights_in_canine(*args, **kwargs):
    requires_backends(load_tf_weights_in_canine, ["torch"])


Suraj Patil's avatar
Suraj Patil committed
1099
1100
1101
1102
1103
1104
1105
1106
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CLIPModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1107
1108
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1109
1110
1111
1112
1113
1114
1115


class CLIPPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1116
1117
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1118
1119
1120
1121
1122
1123
1124


class CLIPTextModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1125
1126
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1127
1128
1129
1130


class CLIPVisionModel:
    def __init__(self, *args, **kwargs):
1131
        requires_backends(self, ["torch"])
1132
1133

    @classmethod
1134
1135
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1136
1137


abhishek thakur's avatar
abhishek thakur committed
1138
1139
1140
1141
1142
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ConvBertForMaskedLM:
    def __init__(self, *args, **kwargs):
1143
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1144
1145

    @classmethod
1146
1147
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1148
1149
1150
1151


class ConvBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1152
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1153
1154

    @classmethod
1155
1156
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1157
1158
1159
1160


class ConvBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1161
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1162
1163

    @classmethod
1164
1165
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1166
1167
1168
1169


class ConvBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1170
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1171
1172

    @classmethod
1173
1174
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1175
1176
1177
1178


class ConvBertForTokenClassification:
    def __init__(self, *args, **kwargs):
1179
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1180
1181

    @classmethod
1182
1183
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1184
1185
1186
1187


class ConvBertLayer:
    def __init__(self, *args, **kwargs):
1188
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1189
1190
1191
1192


class ConvBertModel:
    def __init__(self, *args, **kwargs):
1193
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1194
1195

    @classmethod
1196
1197
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1198
1199
1200
1201


class ConvBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
1202
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1203
1204

    @classmethod
1205
1206
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1207
1208
1209


def load_tf_weights_in_convbert(*args, **kwargs):
1210
    requires_backends(load_tf_weights_in_convbert, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1211
1212


1213
1214
1215
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None


1216
1217
class CTRLForSequenceClassification:
    def __init__(self, *args, **kwargs):
1218
        requires_backends(self, ["torch"])
1219
1220

    @classmethod
1221
1222
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1223
1224


1225
1226
class CTRLLMHeadModel:
    def __init__(self, *args, **kwargs):
1227
        requires_backends(self, ["torch"])
1228
1229

    @classmethod
1230
1231
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1232
1233
1234
1235


class CTRLModel:
    def __init__(self, *args, **kwargs):
1236
        requires_backends(self, ["torch"])
1237
1238

    @classmethod
1239
1240
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1241
1242
1243
1244


class CTRLPreTrainedModel:
    def __init__(self, *args, **kwargs):
1245
        requires_backends(self, ["torch"])
1246
1247

    @classmethod
1248
1249
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1250
1251
1252
1253
1254


DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


NielsRogge's avatar
NielsRogge committed
1255
1256
class DebertaForMaskedLM:
    def __init__(self, *args, **kwargs):
1257
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1258
1259

    @classmethod
1260
1261
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1262
1263
1264
1265


class DebertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1266
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1267
1268

    @classmethod
1269
1270
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1271
1272


1273
1274
class DebertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
1275
        requires_backends(self, ["torch"])
1276
1277

    @classmethod
1278
1279
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1280
1281


NielsRogge's avatar
NielsRogge committed
1282
1283
class DebertaForTokenClassification:
    def __init__(self, *args, **kwargs):
1284
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1285
1286

    @classmethod
1287
1288
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1289
1290


1291
1292
class DebertaModel:
    def __init__(self, *args, **kwargs):
1293
        requires_backends(self, ["torch"])
1294
1295

    @classmethod
1296
1297
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1298
1299
1300
1301


class DebertaPreTrainedModel:
    def __init__(self, *args, **kwargs):
1302
        requires_backends(self, ["torch"])
1303
1304

    @classmethod
1305
1306
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1307
1308


1309
1310
1311
1312
1313
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DebertaV2ForMaskedLM:
    def __init__(self, *args, **kwargs):
1314
        requires_backends(self, ["torch"])
1315
1316

    @classmethod
1317
1318
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1319
1320
1321
1322


class DebertaV2ForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1323
        requires_backends(self, ["torch"])
1324
1325

    @classmethod
1326
1327
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1328
1329
1330
1331


class DebertaV2ForSequenceClassification:
    def __init__(self, *args, **kwargs):
1332
        requires_backends(self, ["torch"])
1333
1334

    @classmethod
1335
1336
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1337
1338
1339
1340


class DebertaV2ForTokenClassification:
    def __init__(self, *args, **kwargs):
1341
        requires_backends(self, ["torch"])
1342
1343

    @classmethod
1344
1345
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1346
1347
1348
1349


class DebertaV2Model:
    def __init__(self, *args, **kwargs):
1350
        requires_backends(self, ["torch"])
1351
1352

    @classmethod
1353
1354
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1355
1356
1357


class DebertaV2PreTrainedModel:
NielsRogge's avatar
NielsRogge committed
1358
1359
1360
1361
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1362
1363
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383


DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DeiTForImageClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTForImageClassificationWithTeacher:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1384
1385
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1386
1387
1388


class DeiTPreTrainedModel:
1389
    def __init__(self, *args, **kwargs):
1390
        requires_backends(self, ["torch"])
1391
1392

    @classmethod
1393
1394
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1395
1396


1397
1398
1399
1400
1401
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DistilBertForMaskedLM:
    def __init__(self, *args, **kwargs):
1402
        requires_backends(self, ["torch"])
1403
1404

    @classmethod
1405
1406
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1407
1408
1409
1410


class DistilBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1411
        requires_backends(self, ["torch"])
1412
1413

    @classmethod
1414
1415
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1416
1417
1418
1419


class DistilBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1420
        requires_backends(self, ["torch"])
1421
1422

    @classmethod
1423
1424
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1425
1426
1427
1428


class DistilBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1429
        requires_backends(self, ["torch"])
1430
1431

    @classmethod
1432
1433
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1434
1435
1436
1437


class DistilBertForTokenClassification:
    def __init__(self, *args, **kwargs):
1438
        requires_backends(self, ["torch"])
1439
1440

    @classmethod
1441
1442
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1443
1444
1445
1446


class DistilBertModel:
    def __init__(self, *args, **kwargs):
1447
        requires_backends(self, ["torch"])
1448
1449

    @classmethod
1450
1451
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1452
1453
1454
1455


class DistilBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
1456
        requires_backends(self, ["torch"])
1457
1458

    @classmethod
1459
1460
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1461
1462


Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1463
1464
1465
1466
1467
1468
1469
1470
1471
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None


DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None


DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None


1472
1473
class DPRContextEncoder:
    def __init__(self, *args, **kwargs):
1474
        requires_backends(self, ["torch"])
1475
1476
1477
1478


class DPRPretrainedContextEncoder:
    def __init__(self, *args, **kwargs):
1479
        requires_backends(self, ["torch"])
1480
1481
1482
1483


class DPRPretrainedQuestionEncoder:
    def __init__(self, *args, **kwargs):
1484
        requires_backends(self, ["torch"])
1485
1486
1487
1488


class DPRPretrainedReader:
    def __init__(self, *args, **kwargs):
1489
        requires_backends(self, ["torch"])
1490
1491
1492
1493


class DPRQuestionEncoder:
    def __init__(self, *args, **kwargs):
1494
        requires_backends(self, ["torch"])
1495
1496
1497
1498


class DPRReader:
    def __init__(self, *args, **kwargs):
1499
        requires_backends(self, ["torch"])
1500
1501
1502
1503
1504
1505
1506


ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ElectraForMaskedLM:
    def __init__(self, *args, **kwargs):
1507
        requires_backends(self, ["torch"])
1508
1509

    @classmethod
1510
1511
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1512
1513
1514
1515


class ElectraForMultipleChoice:
    def __init__(self, *args, **kwargs):
1516
        requires_backends(self, ["torch"])
1517
1518

    @classmethod
1519
1520
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1521
1522
1523
1524


class ElectraForPreTraining:
    def __init__(self, *args, **kwargs):
1525
        requires_backends(self, ["torch"])
1526
1527
1528
1529


class ElectraForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1530
        requires_backends(self, ["torch"])
1531
1532

    @classmethod
1533
1534
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1535
1536
1537
1538


class ElectraForSequenceClassification:
    def __init__(self, *args, **kwargs):
1539
        requires_backends(self, ["torch"])
1540
1541

    @classmethod
1542
1543
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1544
1545
1546
1547


class ElectraForTokenClassification:
    def __init__(self, *args, **kwargs):
1548
        requires_backends(self, ["torch"])
1549
1550

    @classmethod
1551
1552
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1553
1554
1555
1556


class ElectraModel:
    def __init__(self, *args, **kwargs):
1557
        requires_backends(self, ["torch"])
1558
1559

    @classmethod
1560
1561
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1562
1563
1564
1565


class ElectraPreTrainedModel:
    def __init__(self, *args, **kwargs):
1566
        requires_backends(self, ["torch"])
1567
1568

    @classmethod
1569
1570
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1571
1572
1573


def load_tf_weights_in_electra(*args, **kwargs):
1574
    requires_backends(load_tf_weights_in_electra, ["torch"])
1575
1576
1577
1578


class EncoderDecoderModel:
    def __init__(self, *args, **kwargs):
1579
        requires_backends(self, ["torch"])
1580
1581

    @classmethod
1582
1583
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1584
1585
1586
1587
1588
1589
1590


FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FlaubertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1591
        requires_backends(self, ["torch"])
1592
1593

    @classmethod
1594
1595
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1596
1597
1598
1599


class FlaubertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1600
        requires_backends(self, ["torch"])
1601
1602

    @classmethod
1603
1604
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1605
1606
1607
1608


class FlaubertForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
1609
        requires_backends(self, ["torch"])
1610
1611

    @classmethod
1612
1613
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1614
1615
1616
1617


class FlaubertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1618
        requires_backends(self, ["torch"])
1619
1620

    @classmethod
1621
1622
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1623
1624
1625
1626


class FlaubertForTokenClassification:
    def __init__(self, *args, **kwargs):
1627
        requires_backends(self, ["torch"])
1628
1629

    @classmethod
1630
1631
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1632
1633
1634
1635


class FlaubertModel:
    def __init__(self, *args, **kwargs):
1636
        requires_backends(self, ["torch"])
1637
1638

    @classmethod
1639
1640
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1641
1642
1643
1644


class FlaubertWithLMHeadModel:
    def __init__(self, *args, **kwargs):
1645
        requires_backends(self, ["torch"])
1646
1647

    @classmethod
1648
1649
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1650
1651
1652
1653


class FSMTForConditionalGeneration:
    def __init__(self, *args, **kwargs):
1654
        requires_backends(self, ["torch"])
1655
1656

    @classmethod
1657
1658
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1659
1660
1661
1662


class FSMTModel:
    def __init__(self, *args, **kwargs):
1663
        requires_backends(self, ["torch"])
1664
1665

    @classmethod
1666
1667
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1668
1669
1670
1671


class PretrainedFSMTModel:
    def __init__(self, *args, **kwargs):
1672
        requires_backends(self, ["torch"])
1673
1674

    @classmethod
1675
1676
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1677
1678
1679
1680
1681
1682
1683


FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FunnelBaseModel:
    def __init__(self, *args, **kwargs):
1684
        requires_backends(self, ["torch"])
1685
1686

    @classmethod
1687
1688
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1689
1690
1691
1692


class FunnelForMaskedLM:
    def __init__(self, *args, **kwargs):
1693
        requires_backends(self, ["torch"])
1694
1695

    @classmethod
1696
1697
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1698
1699
1700
1701


class FunnelForMultipleChoice:
    def __init__(self, *args, **kwargs):
1702
        requires_backends(self, ["torch"])
1703
1704

    @classmethod
1705
1706
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1707
1708
1709
1710


class FunnelForPreTraining:
    def __init__(self, *args, **kwargs):
1711
        requires_backends(self, ["torch"])
1712
1713
1714
1715


class FunnelForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1716
        requires_backends(self, ["torch"])
1717
1718

    @classmethod
1719
1720
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1721
1722
1723
1724


class FunnelForSequenceClassification:
    def __init__(self, *args, **kwargs):
1725
        requires_backends(self, ["torch"])
1726
1727

    @classmethod
1728
1729
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1730
1731
1732
1733


class FunnelForTokenClassification:
    def __init__(self, *args, **kwargs):
1734
        requires_backends(self, ["torch"])
1735
1736

    @classmethod
1737
1738
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1739
1740
1741
1742


class FunnelModel:
    def __init__(self, *args, **kwargs):
1743
        requires_backends(self, ["torch"])
1744
1745

    @classmethod
1746
1747
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1748
1749


1750
1751
1752
1753
1754
1755
1756
1757
1758
class FunnelPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1759
def load_tf_weights_in_funnel(*args, **kwargs):
1760
    requires_backends(load_tf_weights_in_funnel, ["torch"])
1761
1762
1763
1764
1765
1766
1767


GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPT2DoubleHeadsModel:
    def __init__(self, *args, **kwargs):
1768
        requires_backends(self, ["torch"])
1769
1770

    @classmethod
1771
1772
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1773
1774


Lysandre's avatar
Lysandre committed
1775
1776
class GPT2ForSequenceClassification:
    def __init__(self, *args, **kwargs):
1777
        requires_backends(self, ["torch"])
Lysandre's avatar
Lysandre committed
1778
1779

    @classmethod
1780
1781
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Lysandre's avatar
Lysandre committed
1782
1783


1784
1785
class GPT2LMHeadModel:
    def __init__(self, *args, **kwargs):
1786
        requires_backends(self, ["torch"])
1787
1788

    @classmethod
1789
1790
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1791
1792
1793
1794


class GPT2Model:
    def __init__(self, *args, **kwargs):
1795
        requires_backends(self, ["torch"])
1796
1797

    @classmethod
1798
1799
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1800
1801
1802
1803


class GPT2PreTrainedModel:
    def __init__(self, *args, **kwargs):
1804
        requires_backends(self, ["torch"])
1805
1806

    @classmethod
1807
1808
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1809
1810
1811


def load_tf_weights_in_gpt2(*args, **kwargs):
1812
    requires_backends(load_tf_weights_in_gpt2, ["torch"])
1813
1814


Suraj Patil's avatar
Suraj Patil committed
1815
1816
1817
1818
1819
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPTNeoForCausalLM:
    def __init__(self, *args, **kwargs):
1820
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1821

1822
1823
1824
1825
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Suraj Patil's avatar
Suraj Patil committed
1826

1827
1828
1829
1830
1831
class GPTNeoForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1832
1833
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1834
1835


Suraj Patil's avatar
Suraj Patil committed
1836
1837
class GPTNeoModel:
    def __init__(self, *args, **kwargs):
1838
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1839
1840

    @classmethod
1841
1842
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1843
1844
1845
1846


class GPTNeoPreTrainedModel:
    def __init__(self, *args, **kwargs):
1847
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1848
1849

    @classmethod
1850
1851
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1852
1853
1854


def load_tf_weights_in_gpt_neo(*args, **kwargs):
1855
    requires_backends(load_tf_weights_in_gpt_neo, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1856
1857


Patrick von Platen's avatar
Patrick von Platen committed
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class HubertForCTC:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class HubertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class HubertPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Sehoon Kim's avatar
Sehoon Kim committed
1884
1885
1886
1887
1888
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class IBertForMaskedLM:
    def __init__(self, *args, **kwargs):
1889
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1890
1891

    @classmethod
1892
1893
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1894
1895
1896
1897


class IBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1898
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1899
1900

    @classmethod
1901
1902
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1903
1904
1905
1906


class IBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1907
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1908
1909

    @classmethod
1910
1911
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1912
1913
1914
1915


class IBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1916
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1917
1918

    @classmethod
1919
1920
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1921
1922
1923
1924


class IBertForTokenClassification:
    def __init__(self, *args, **kwargs):
1925
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1926
1927

    @classmethod
1928
1929
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1930
1931
1932
1933


class IBertModel:
    def __init__(self, *args, **kwargs):
1934
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1935
1936

    @classmethod
1937
1938
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1939
1940


1941
1942
class IBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
1943
        requires_backends(self, ["torch"])
1944
1945

    @classmethod
1946
1947
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1948
1949


1950
1951
1952
1953
1954
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LayoutLMForMaskedLM:
    def __init__(self, *args, **kwargs):
1955
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1956
1957

    @classmethod
1958
1959
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1960
1961
1962
1963


class LayoutLMForSequenceClassification:
    def __init__(self, *args, **kwargs):
1964
        requires_backends(self, ["torch"])
1965
1966

    @classmethod
1967
1968
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1969
1970
1971
1972


class LayoutLMForTokenClassification:
    def __init__(self, *args, **kwargs):
1973
        requires_backends(self, ["torch"])
1974
1975

    @classmethod
1976
1977
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1978
1979
1980
1981


class LayoutLMModel:
    def __init__(self, *args, **kwargs):
1982
        requires_backends(self, ["torch"])
1983
1984

    @classmethod
1985
1986
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1987
1988


1989
1990
1991
1992
1993
1994
1995
1996
1997
class LayoutLMPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Patrick von Platen's avatar
Patrick von Platen committed
1998
1999
2000
2001
2002
LED_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LEDForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2003
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2004
2005

    @classmethod
2006
2007
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2008
2009
2010
2011


class LEDForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2012
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2013
2014

    @classmethod
2015
2016
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2017
2018
2019
2020


class LEDForSequenceClassification:
    def __init__(self, *args, **kwargs):
2021
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2022
2023

    @classmethod
2024
2025
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2026
2027
2028
2029


class LEDModel:
    def __init__(self, *args, **kwargs):
2030
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2031
2032

    @classmethod
2033
2034
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2035
2036


2037
2038
2039
2040
2041
2042
2043
2044
2045
class LEDPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2046
2047
2048
2049
2050
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LongformerForMaskedLM:
    def __init__(self, *args, **kwargs):
2051
        requires_backends(self, ["torch"])
2052
2053

    @classmethod
2054
2055
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2056
2057
2058
2059


class LongformerForMultipleChoice:
    def __init__(self, *args, **kwargs):
2060
        requires_backends(self, ["torch"])
2061
2062

    @classmethod
2063
2064
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2065
2066
2067
2068


class LongformerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2069
        requires_backends(self, ["torch"])
2070
2071

    @classmethod
2072
2073
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2074
2075
2076
2077


class LongformerForSequenceClassification:
    def __init__(self, *args, **kwargs):
2078
        requires_backends(self, ["torch"])
2079
2080

    @classmethod
2081
2082
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2083
2084
2085
2086


class LongformerForTokenClassification:
    def __init__(self, *args, **kwargs):
2087
        requires_backends(self, ["torch"])
2088
2089

    @classmethod
2090
2091
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2092
2093
2094
2095


class LongformerModel:
    def __init__(self, *args, **kwargs):
2096
        requires_backends(self, ["torch"])
2097
2098

    @classmethod
2099
2100
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2101
2102


2103
2104
2105
2106
2107
2108
2109
2110
2111
class LongformerPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2112
2113
class LongformerSelfAttention:
    def __init__(self, *args, **kwargs):
2114
        requires_backends(self, ["torch"])
2115
2116


NielsRogge's avatar
NielsRogge committed
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LukeForEntityClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForEntityPairClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForEntitySpanClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2140
2141
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
2142
2143
2144
2145
2146
2147
2148


class LukePreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2149
2150
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
2151
2152


2153
2154
class LxmertEncoder:
    def __init__(self, *args, **kwargs):
2155
        requires_backends(self, ["torch"])
2156
2157
2158
2159


class LxmertForPreTraining:
    def __init__(self, *args, **kwargs):
2160
        requires_backends(self, ["torch"])
2161
2162
2163
2164


class LxmertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2165
        requires_backends(self, ["torch"])
2166
2167

    @classmethod
2168
2169
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2170
2171
2172
2173


class LxmertModel:
    def __init__(self, *args, **kwargs):
2174
        requires_backends(self, ["torch"])
2175
2176

    @classmethod
2177
2178
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2179
2180
2181
2182


class LxmertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2183
        requires_backends(self, ["torch"])
2184
2185

    @classmethod
2186
2187
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2188
2189
2190
2191


class LxmertVisualFeatureEncoder:
    def __init__(self, *args, **kwargs):
2192
        requires_backends(self, ["torch"])
2193
2194
2195
2196


class LxmertXLayer:
    def __init__(self, *args, **kwargs):
2197
        requires_backends(self, ["torch"])
2198
2199


Suraj Patil's avatar
Suraj Patil committed
2200
2201
2202
2203
2204
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST = None


class M2M100ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2205
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2206
2207

    @classmethod
2208
2209
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2210
2211
2212
2213


class M2M100Model:
    def __init__(self, *args, **kwargs):
2214
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2215
2216

    @classmethod
2217
2218
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2219
2220


2221
2222
2223
2224
2225
2226
2227
2228
2229
class M2M100PreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2230
2231
class MarianForCausalLM:
    def __init__(self, *args, **kwargs):
2232
        requires_backends(self, ["torch"])
2233

2234
2235
2236
2237
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

2238

2239
2240
class MarianModel:
    def __init__(self, *args, **kwargs):
2241
        requires_backends(self, ["torch"])
2242
2243

    @classmethod
2244
2245
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2246
2247


2248
2249
class MarianMTModel:
    def __init__(self, *args, **kwargs):
2250
        requires_backends(self, ["torch"])
2251
2252

    @classmethod
2253
2254
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2255
2256


2257
2258
class MBartForCausalLM:
    def __init__(self, *args, **kwargs):
2259
        requires_backends(self, ["torch"])
2260

2261
2262
2263
2264
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

2265

2266
2267
class MBartForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2268
        requires_backends(self, ["torch"])
2269
2270

    @classmethod
2271
2272
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2273
2274


2275
2276
class MBartForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2277
        requires_backends(self, ["torch"])
2278
2279

    @classmethod
2280
2281
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2282
2283
2284
2285


class MBartForSequenceClassification:
    def __init__(self, *args, **kwargs):
2286
        requires_backends(self, ["torch"])
2287
2288

    @classmethod
2289
2290
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2291
2292


2293
2294
class MBartModel:
    def __init__(self, *args, **kwargs):
2295
        requires_backends(self, ["torch"])
2296
2297

    @classmethod
2298
2299
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2300
2301


2302
2303
2304
2305
2306
2307
2308
2309
2310
class MBartPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2311
2312
2313
2314
2315
2316
2317
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MegatronBertForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

2318
2319
2320
2321
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

2322
2323
2324
2325
2326
2327

class MegatronBertForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2328
2329
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2330
2331
2332
2333
2334
2335
2336


class MegatronBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2337
2338
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355


class MegatronBertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2356
2357
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2358
2359
2360
2361
2362
2363
2364


class MegatronBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2365
2366
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2367
2368
2369
2370
2371
2372
2373


class MegatronBertForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2374
2375
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2376
2377
2378
2379
2380
2381
2382


class MegatronBertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2383
2384
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2385
2386


2387
2388
2389
2390
2391
2392
2393
2394
2395
class MegatronBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2396
2397
class MMBTForClassification:
    def __init__(self, *args, **kwargs):
2398
        requires_backends(self, ["torch"])
2399
2400
2401
2402


class MMBTModel:
    def __init__(self, *args, **kwargs):
2403
        requires_backends(self, ["torch"])
2404
2405

    @classmethod
2406
2407
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2408
2409
2410
2411


class ModalEmbeddings:
    def __init__(self, *args, **kwargs):
2412
        requires_backends(self, ["torch"])
2413
2414
2415
2416
2417
2418
2419


MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MobileBertForMaskedLM:
    def __init__(self, *args, **kwargs):
2420
        requires_backends(self, ["torch"])
2421
2422

    @classmethod
2423
2424
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2425
2426
2427
2428


class MobileBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
2429
        requires_backends(self, ["torch"])
2430
2431

    @classmethod
2432
2433
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2434
2435
2436
2437


class MobileBertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
2438
        requires_backends(self, ["torch"])
2439
2440
2441
2442


class MobileBertForPreTraining:
    def __init__(self, *args, **kwargs):
2443
        requires_backends(self, ["torch"])
2444
2445
2446
2447


class MobileBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2448
        requires_backends(self, ["torch"])
2449
2450

    @classmethod
2451
2452
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2453
2454
2455
2456


class MobileBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
2457
        requires_backends(self, ["torch"])
2458
2459

    @classmethod
2460
2461
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2462
2463
2464
2465


class MobileBertForTokenClassification:
    def __init__(self, *args, **kwargs):
2466
        requires_backends(self, ["torch"])
2467
2468

    @classmethod
2469
2470
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2471
2472
2473
2474


class MobileBertLayer:
    def __init__(self, *args, **kwargs):
2475
        requires_backends(self, ["torch"])
2476
2477
2478
2479


class MobileBertModel:
    def __init__(self, *args, **kwargs):
2480
        requires_backends(self, ["torch"])
2481
2482

    @classmethod
2483
2484
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2485
2486
2487
2488


class MobileBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2489
        requires_backends(self, ["torch"])
2490
2491

    @classmethod
2492
2493
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2494
2495
2496


def load_tf_weights_in_mobilebert(*args, **kwargs):
2497
    requires_backends(load_tf_weights_in_mobilebert, ["torch"])
2498
2499


StillKeepTry's avatar
StillKeepTry committed
2500
2501
2502
2503
2504
MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MPNetForMaskedLM:
    def __init__(self, *args, **kwargs):
2505
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2506
2507

    @classmethod
2508
2509
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2510
2511
2512
2513


class MPNetForMultipleChoice:
    def __init__(self, *args, **kwargs):
2514
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2515
2516

    @classmethod
2517
2518
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2519
2520
2521
2522


class MPNetForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2523
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2524
2525

    @classmethod
2526
2527
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2528
2529
2530
2531


class MPNetForSequenceClassification:
    def __init__(self, *args, **kwargs):
2532
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2533
2534

    @classmethod
2535
2536
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2537
2538
2539
2540


class MPNetForTokenClassification:
    def __init__(self, *args, **kwargs):
2541
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2542
2543

    @classmethod
2544
2545
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2546
2547
2548
2549


class MPNetLayer:
    def __init__(self, *args, **kwargs):
2550
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2551
2552
2553
2554


class MPNetModel:
    def __init__(self, *args, **kwargs):
2555
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2556
2557

    @classmethod
2558
2559
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2560
2561
2562
2563


class MPNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
2564
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2565
2566

    @classmethod
2567
2568
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2569
2570


2571
2572
class MT5EncoderModel:
    def __init__(self, *args, **kwargs):
2573
        requires_backends(self, ["torch"])
2574
2575

    @classmethod
2576
2577
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2578
2579


Patrick von Platen's avatar
Patrick von Platen committed
2580
2581
class MT5ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2582
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2583
2584

    @classmethod
2585
2586
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2587
2588
2589
2590


class MT5Model:
    def __init__(self, *args, **kwargs):
2591
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2592
2593

    @classmethod
2594
2595
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2596
2597


2598
2599
2600
2601
2602
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class OpenAIGPTDoubleHeadsModel:
    def __init__(self, *args, **kwargs):
2603
        requires_backends(self, ["torch"])
2604
2605

    @classmethod
2606
2607
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2608
2609


2610
2611
class OpenAIGPTForSequenceClassification:
    def __init__(self, *args, **kwargs):
2612
        requires_backends(self, ["torch"])
2613
2614

    @classmethod
2615
2616
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2617
2618


2619
2620
class OpenAIGPTLMHeadModel:
    def __init__(self, *args, **kwargs):
2621
        requires_backends(self, ["torch"])
2622
2623

    @classmethod
2624
2625
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2626
2627
2628
2629


class OpenAIGPTModel:
    def __init__(self, *args, **kwargs):
2630
        requires_backends(self, ["torch"])
2631
2632

    @classmethod
2633
2634
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2635
2636
2637
2638


class OpenAIGPTPreTrainedModel:
    def __init__(self, *args, **kwargs):
2639
        requires_backends(self, ["torch"])
2640
2641

    @classmethod
2642
2643
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2644
2645
2646


def load_tf_weights_in_openai_gpt(*args, **kwargs):
2647
    requires_backends(load_tf_weights_in_openai_gpt, ["torch"])
2648
2649


2650
2651
class PegasusForCausalLM:
    def __init__(self, *args, **kwargs):
2652
        requires_backends(self, ["torch"])
2653

2654
2655
2656
2657
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

2658

2659
2660
class PegasusForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2661
        requires_backends(self, ["torch"])
2662
2663

    @classmethod
2664
2665
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2666
2667


2668
2669
class PegasusModel:
    def __init__(self, *args, **kwargs):
2670
        requires_backends(self, ["torch"])
2671
2672

    @classmethod
2673
2674
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2675
2676


2677
2678
2679
2680
2681
2682
2683
2684
2685
class PegasusPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Weizhen's avatar
Weizhen committed
2686
2687
2688
2689
2690
PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ProphetNetDecoder:
    def __init__(self, *args, **kwargs):
2691
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2692
2693
2694
2695


class ProphetNetEncoder:
    def __init__(self, *args, **kwargs):
2696
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2697
2698
2699
2700


class ProphetNetForCausalLM:
    def __init__(self, *args, **kwargs):
2701
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2702

2703
2704
2705
2706
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Weizhen's avatar
Weizhen committed
2707
2708
2709

class ProphetNetForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2710
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2711
2712

    @classmethod
2713
2714
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
2715
2716
2717
2718


class ProphetNetModel:
    def __init__(self, *args, **kwargs):
2719
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2720
2721

    @classmethod
2722
2723
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
2724
2725
2726
2727


class ProphetNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
2728
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2729
2730

    @classmethod
2731
2732
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
2733
2734


2735
2736
class RagModel:
    def __init__(self, *args, **kwargs):
2737
        requires_backends(self, ["torch"])
2738
2739

    @classmethod
2740
2741
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2742
2743


2744
2745
2746
2747
2748
2749
2750
2751
2752
class RagPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2753
2754
class RagSequenceForGeneration:
    def __init__(self, *args, **kwargs):
2755
        requires_backends(self, ["torch"])
2756
2757
2758
2759


class RagTokenForGeneration:
    def __init__(self, *args, **kwargs):
2760
        requires_backends(self, ["torch"])
2761
2762
2763
2764
2765
2766
2767


REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ReformerAttention:
    def __init__(self, *args, **kwargs):
2768
        requires_backends(self, ["torch"])
2769
2770
2771
2772


class ReformerForMaskedLM:
    def __init__(self, *args, **kwargs):
2773
        requires_backends(self, ["torch"])
2774
2775

    @classmethod
2776
2777
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2778
2779
2780
2781


class ReformerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2782
        requires_backends(self, ["torch"])
2783
2784

    @classmethod
2785
2786
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2787
2788
2789
2790


class ReformerForSequenceClassification:
    def __init__(self, *args, **kwargs):
2791
        requires_backends(self, ["torch"])
2792
2793

    @classmethod
2794
2795
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2796
2797
2798
2799


class ReformerLayer:
    def __init__(self, *args, **kwargs):
2800
        requires_backends(self, ["torch"])
2801
2802
2803
2804


class ReformerModel:
    def __init__(self, *args, **kwargs):
2805
        requires_backends(self, ["torch"])
2806
2807

    @classmethod
2808
2809
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2810
2811
2812
2813


class ReformerModelWithLMHead:
    def __init__(self, *args, **kwargs):
2814
        requires_backends(self, ["torch"])
2815
2816

    @classmethod
2817
2818
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2819
2820


2821
2822
2823
2824
2825
2826
2827
2828
2829
class ReformerPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RemBertForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RemBertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


def load_tf_weights_in_rembert(*args, **kwargs):
    requires_backends(load_tf_weights_in_rembert, ["torch"])


2914
2915
2916
2917
2918
RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RetriBertModel:
    def __init__(self, *args, **kwargs):
2919
        requires_backends(self, ["torch"])
2920
2921

    @classmethod
2922
2923
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2924
2925
2926
2927


class RetriBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2928
        requires_backends(self, ["torch"])
2929
2930

    @classmethod
2931
2932
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2933
2934
2935
2936
2937
2938
2939


ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RobertaForCausalLM:
    def __init__(self, *args, **kwargs):
2940
        requires_backends(self, ["torch"])
2941

2942
2943
2944
2945
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

2946
2947
2948

class RobertaForMaskedLM:
    def __init__(self, *args, **kwargs):
2949
        requires_backends(self, ["torch"])
2950
2951

    @classmethod
2952
2953
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2954
2955
2956
2957


class RobertaForMultipleChoice:
    def __init__(self, *args, **kwargs):
2958
        requires_backends(self, ["torch"])
2959
2960

    @classmethod
2961
2962
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2963
2964
2965
2966


class RobertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2967
        requires_backends(self, ["torch"])
2968
2969

    @classmethod
2970
2971
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2972
2973
2974
2975


class RobertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
2976
        requires_backends(self, ["torch"])
2977
2978

    @classmethod
2979
2980
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2981
2982
2983
2984


class RobertaForTokenClassification:
    def __init__(self, *args, **kwargs):
2985
        requires_backends(self, ["torch"])
2986
2987

    @classmethod
2988
2989
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2990
2991
2992
2993


class RobertaModel:
    def __init__(self, *args, **kwargs):
2994
        requires_backends(self, ["torch"])
2995
2996

    @classmethod
2997
2998
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2999
3000


3001
3002
3003
3004
3005
3006
3007
3008
3009
class RobertaPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


3010
3011
3012
3013
3014
3015
3016
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RoFormerForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

3017
3018
3019
3020
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

3021
3022
3023
3024
3025
3026

class RoFormerForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3027
3028
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3029
3030
3031
3032
3033
3034
3035


class RoFormerForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3036
3037
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3038
3039
3040
3041
3042
3043
3044


class RoFormerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3045
3046
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3047
3048
3049
3050
3051
3052
3053


class RoFormerForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3054
3055
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3056
3057
3058
3059
3060
3061
3062


class RoFormerForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3063
3064
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076


class RoFormerLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3077
3078
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3079
3080
3081
3082
3083
3084
3085


class RoFormerPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3086
3087
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3088
3089
3090
3091
3092
3093


def load_tf_weights_in_roformer(*args, **kwargs):
    requires_backends(load_tf_weights_in_roformer, ["torch"])


Suraj Patil's avatar
Suraj Patil committed
3094
3095
3096
3097
3098
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Speech2TextForConditionalGeneration:
    def __init__(self, *args, **kwargs):
3099
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
3100
3101

    @classmethod
3102
3103
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
3104
3105
3106
3107


class Speech2TextModel:
    def __init__(self, *args, **kwargs):
3108
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
3109
3110

    @classmethod
3111
3112
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
3113
3114


3115
3116
3117
3118
3119
3120
3121
3122
3123
class Speech2TextPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Ori Ram's avatar
Ori Ram committed
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SplinterForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class SplinterLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SplinterModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class SplinterPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Sylvain Gugger's avatar
Sylvain Gugger committed
3159
3160
3161
3162
3163
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SqueezeBertForMaskedLM:
    def __init__(self, *args, **kwargs):
3164
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3165
3166

    @classmethod
3167
3168
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3169
3170
3171
3172


class SqueezeBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
3173
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3174
3175

    @classmethod
3176
3177
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3178
3179
3180
3181


class SqueezeBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3182
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3183
3184

    @classmethod
3185
3186
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3187
3188
3189
3190


class SqueezeBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
3191
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3192
3193

    @classmethod
3194
3195
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3196
3197
3198
3199


class SqueezeBertForTokenClassification:
    def __init__(self, *args, **kwargs):
3200
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3201
3202

    @classmethod
3203
3204
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3205
3206
3207
3208


class SqueezeBertModel:
    def __init__(self, *args, **kwargs):
3209
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3210
3211

    @classmethod
3212
3213
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3214
3215
3216
3217


class SqueezeBertModule:
    def __init__(self, *args, **kwargs):
3218
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3219
3220
3221
3222


class SqueezeBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
3223
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3224
3225

    @classmethod
3226
3227
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3228
3229


3230
3231
3232
T5_PRETRAINED_MODEL_ARCHIVE_LIST = None


3233
3234
class T5EncoderModel:
    def __init__(self, *args, **kwargs):
3235
        requires_backends(self, ["torch"])
3236
3237

    @classmethod
3238
3239
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3240
3241


3242
3243
class T5ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
3244
        requires_backends(self, ["torch"])
3245
3246

    @classmethod
3247
3248
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3249
3250
3251
3252


class T5Model:
    def __init__(self, *args, **kwargs):
3253
        requires_backends(self, ["torch"])
3254
3255

    @classmethod
3256
3257
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3258
3259
3260
3261


class T5PreTrainedModel:
    def __init__(self, *args, **kwargs):
3262
        requires_backends(self, ["torch"])
3263
3264

    @classmethod
3265
3266
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3267
3268
3269


def load_tf_weights_in_t5(*args, **kwargs):
3270
    requires_backends(load_tf_weights_in_t5, ["torch"])
3271
3272


NielsRogge's avatar
NielsRogge committed
3273
3274
3275
3276
3277
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class TapasForMaskedLM:
    def __init__(self, *args, **kwargs):
3278
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
3279
3280

    @classmethod
3281
3282
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
3283
3284
3285
3286


class TapasForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3287
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
3288
3289

    @classmethod
3290
3291
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
3292
3293
3294
3295


class TapasForSequenceClassification:
    def __init__(self, *args, **kwargs):
3296
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
3297
3298

    @classmethod
3299
3300
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
3301
3302
3303
3304


class TapasModel:
    def __init__(self, *args, **kwargs):
3305
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
3306
3307

    @classmethod
3308
3309
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
3310
3311


3312
3313
3314
3315
3316
3317
3318
3319
3320
class TapasPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


3321
3322
3323
3324
3325
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AdaptiveEmbedding:
    def __init__(self, *args, **kwargs):
3326
        requires_backends(self, ["torch"])
3327
3328


sandip's avatar
sandip committed
3329
3330
class TransfoXLForSequenceClassification:
    def __init__(self, *args, **kwargs):
3331
        requires_backends(self, ["torch"])
sandip's avatar
sandip committed
3332
3333

    @classmethod
3334
3335
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
sandip's avatar
sandip committed
3336
3337


3338
3339
class TransfoXLLMHeadModel:
    def __init__(self, *args, **kwargs):
3340
        requires_backends(self, ["torch"])
3341
3342

    @classmethod
3343
3344
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3345
3346
3347
3348


class TransfoXLModel:
    def __init__(self, *args, **kwargs):
3349
        requires_backends(self, ["torch"])
3350
3351

    @classmethod
3352
3353
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3354
3355
3356
3357


class TransfoXLPreTrainedModel:
    def __init__(self, *args, **kwargs):
3358
        requires_backends(self, ["torch"])
3359
3360

    @classmethod
3361
3362
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3363
3364
3365


def load_tf_weights_in_transfo_xl(*args, **kwargs):
3366
    requires_backends(load_tf_weights_in_transfo_xl, ["torch"])
3367
3368


Gunjan Chhablani's avatar
Gunjan Chhablani committed
3369
3370
3371
3372
3373
3374
3375
3376
VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class VisualBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3377
3378
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Gunjan Chhablani's avatar
Gunjan Chhablani committed
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390


class VisualBertForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3391
3392
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Gunjan Chhablani's avatar
Gunjan Chhablani committed
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414


class VisualBertForRegionToPhraseAlignment:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertForVisualReasoning:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3415
3416
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Gunjan Chhablani's avatar
Gunjan Chhablani committed
3417
3418
3419
3420
3421
3422
3423


class VisualBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3424
3425
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Gunjan Chhablani's avatar
Gunjan Chhablani committed
3426
3427


3428
3429
3430
3431
3432
VIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ViTForImageClassification:
    def __init__(self, *args, **kwargs):
3433
        requires_backends(self, ["torch"])
3434
3435
3436
3437


class ViTModel:
    def __init__(self, *args, **kwargs):
3438
        requires_backends(self, ["torch"])
3439
3440

    @classmethod
3441
3442
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3443
3444
3445
3446


class ViTPreTrainedModel:
    def __init__(self, *args, **kwargs):
3447
        requires_backends(self, ["torch"])
3448
3449

    @classmethod
3450
3451
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3452
3453


Patrick von Platen's avatar
Patrick von Platen committed
3454
3455
3456
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None


3457
3458
class Wav2Vec2ForCTC:
    def __init__(self, *args, **kwargs):
3459
        requires_backends(self, ["torch"])
3460
3461


Patrick von Platen's avatar
Patrick von Platen committed
3462
3463
class Wav2Vec2ForMaskedLM:
    def __init__(self, *args, **kwargs):
3464
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3465
3466

    @classmethod
3467
3468
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3469
3470


Anton Lozhkov's avatar
Anton Lozhkov committed
3471
3472
3473
3474
3475
class Wav2Vec2ForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


Patrick von Platen's avatar
Patrick von Platen committed
3476
3477
class Wav2Vec2Model:
    def __init__(self, *args, **kwargs):
3478
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3479
3480

    @classmethod
3481
3482
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3483
3484
3485
3486


class Wav2Vec2PreTrainedModel:
    def __init__(self, *args, **kwargs):
3487
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3488
3489

    @classmethod
3490
3491
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3492
3493


3494
3495
3496
3497
3498
XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMForMultipleChoice:
    def __init__(self, *args, **kwargs):
3499
        requires_backends(self, ["torch"])
3500
3501

    @classmethod
3502
3503
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3504
3505
3506
3507


class XLMForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3508
        requires_backends(self, ["torch"])
3509
3510

    @classmethod
3511
3512
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3513
3514
3515
3516


class XLMForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
3517
        requires_backends(self, ["torch"])
3518
3519

    @classmethod
3520
3521
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3522
3523
3524
3525


class XLMForSequenceClassification:
    def __init__(self, *args, **kwargs):
3526
        requires_backends(self, ["torch"])
3527
3528

    @classmethod
3529
3530
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3531
3532
3533
3534


class XLMForTokenClassification:
    def __init__(self, *args, **kwargs):
3535
        requires_backends(self, ["torch"])
3536
3537

    @classmethod
3538
3539
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3540
3541
3542
3543


class XLMModel:
    def __init__(self, *args, **kwargs):
3544
        requires_backends(self, ["torch"])
3545
3546

    @classmethod
3547
3548
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3549
3550
3551
3552


class XLMPreTrainedModel:
    def __init__(self, *args, **kwargs):
3553
        requires_backends(self, ["torch"])
3554
3555

    @classmethod
3556
3557
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3558
3559
3560
3561


class XLMWithLMHeadModel:
    def __init__(self, *args, **kwargs):
3562
        requires_backends(self, ["torch"])
3563
3564

    @classmethod
3565
3566
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3567
3568


Weizhen's avatar
Weizhen committed
3569
3570
3571
3572
3573
XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMProphetNetDecoder:
    def __init__(self, *args, **kwargs):
3574
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3575
3576
3577
3578


class XLMProphetNetEncoder:
    def __init__(self, *args, **kwargs):
3579
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3580
3581
3582
3583


class XLMProphetNetForCausalLM:
    def __init__(self, *args, **kwargs):
3584
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3585

3586
3587
3588
3589
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Weizhen's avatar
Weizhen committed
3590
3591
3592

class XLMProphetNetForConditionalGeneration:
    def __init__(self, *args, **kwargs):
3593
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3594
3595

    @classmethod
3596
3597
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
3598
3599
3600
3601


class XLMProphetNetModel:
    def __init__(self, *args, **kwargs):
3602
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3603
3604

    @classmethod
3605
3606
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
3607
3608


3609
3610
3611
3612
3613
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMRobertaForCausalLM:
    def __init__(self, *args, **kwargs):
3614
        requires_backends(self, ["torch"])
3615

3616
3617
3618
3619
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

3620
3621
3622

class XLMRobertaForMaskedLM:
    def __init__(self, *args, **kwargs):
3623
        requires_backends(self, ["torch"])
3624
3625

    @classmethod
3626
3627
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3628
3629
3630
3631


class XLMRobertaForMultipleChoice:
    def __init__(self, *args, **kwargs):
3632
        requires_backends(self, ["torch"])
3633
3634

    @classmethod
3635
3636
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3637
3638
3639
3640


class XLMRobertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3641
        requires_backends(self, ["torch"])
3642
3643

    @classmethod
3644
3645
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3646
3647
3648
3649


class XLMRobertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
3650
        requires_backends(self, ["torch"])
3651
3652

    @classmethod
3653
3654
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3655
3656
3657
3658


class XLMRobertaForTokenClassification:
    def __init__(self, *args, **kwargs):
3659
        requires_backends(self, ["torch"])
3660
3661

    @classmethod
3662
3663
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3664
3665
3666
3667


class XLMRobertaModel:
    def __init__(self, *args, **kwargs):
3668
        requires_backends(self, ["torch"])
3669
3670

    @classmethod
3671
3672
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3673
3674
3675
3676
3677
3678
3679


XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLNetForMultipleChoice:
    def __init__(self, *args, **kwargs):
3680
        requires_backends(self, ["torch"])
3681
3682

    @classmethod
3683
3684
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3685
3686
3687
3688


class XLNetForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3689
        requires_backends(self, ["torch"])
3690
3691

    @classmethod
3692
3693
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3694
3695
3696
3697


class XLNetForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
3698
        requires_backends(self, ["torch"])
3699
3700

    @classmethod
3701
3702
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3703
3704
3705
3706


class XLNetForSequenceClassification:
    def __init__(self, *args, **kwargs):
3707
        requires_backends(self, ["torch"])
3708
3709

    @classmethod
3710
3711
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3712
3713
3714
3715


class XLNetForTokenClassification:
    def __init__(self, *args, **kwargs):
3716
        requires_backends(self, ["torch"])
3717
3718

    @classmethod
3719
3720
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3721
3722
3723
3724


class XLNetLMHeadModel:
    def __init__(self, *args, **kwargs):
3725
        requires_backends(self, ["torch"])
3726
3727

    @classmethod
3728
3729
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3730
3731
3732
3733


class XLNetModel:
    def __init__(self, *args, **kwargs):
3734
        requires_backends(self, ["torch"])
3735
3736

    @classmethod
3737
3738
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3739
3740
3741
3742


class XLNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
3743
        requires_backends(self, ["torch"])
3744
3745

    @classmethod
3746
3747
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3748
3749
3750


def load_tf_weights_in_xlnet(*args, **kwargs):
3751
    requires_backends(load_tf_weights_in_xlnet, ["torch"])
3752
3753
3754
3755


class Adafactor:
    def __init__(self, *args, **kwargs):
3756
        requires_backends(self, ["torch"])
3757
3758
3759
3760


class AdamW:
    def __init__(self, *args, **kwargs):
3761
        requires_backends(self, ["torch"])
3762
3763
3764


def get_constant_schedule(*args, **kwargs):
3765
    requires_backends(get_constant_schedule, ["torch"])
3766
3767
3768


def get_constant_schedule_with_warmup(*args, **kwargs):
3769
    requires_backends(get_constant_schedule_with_warmup, ["torch"])
3770
3771
3772


def get_cosine_schedule_with_warmup(*args, **kwargs):
3773
    requires_backends(get_cosine_schedule_with_warmup, ["torch"])
3774
3775
3776


def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs):
3777
    requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"])
3778
3779
3780


def get_linear_schedule_with_warmup(*args, **kwargs):
3781
    requires_backends(get_linear_schedule_with_warmup, ["torch"])
3782
3783
3784


def get_polynomial_decay_schedule_with_warmup(*args, **kwargs):
3785
    requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"])
3786
3787


Sylvain Gugger's avatar
Sylvain Gugger committed
3788
def get_scheduler(*args, **kwargs):
3789
    requires_backends(get_scheduler, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3790
3791


3792
3793
class Trainer:
    def __init__(self, *args, **kwargs):
3794
        requires_backends(self, ["torch"])
3795
3796
3797


def torch_distributed_zero_first(*args, **kwargs):
3798
    requires_backends(torch_distributed_zero_first, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3799
3800
3801
3802


class Seq2SeqTrainer:
    def __init__(self, *args, **kwargs):
3803
        requires_backends(self, ["torch"])