dummy_pt_objects.py 78.3 KB
Newer Older
1
# This file is autogenerated by the command `make fix-copies`, do not edit.
2
from ..file_utils import requires_backends
3
4
5
6


class PyTorchBenchmark:
    def __init__(self, *args, **kwargs):
7
        requires_backends(self, ["torch"])
8
9
10
11


class PyTorchBenchmarkArguments:
    def __init__(self, *args, **kwargs):
12
        requires_backends(self, ["torch"])
13
14
15
16


class DataCollator:
    def __init__(self, *args, **kwargs):
17
        requires_backends(self, ["torch"])
18
19
20
21


class DataCollatorForLanguageModeling:
    def __init__(self, *args, **kwargs):
22
        requires_backends(self, ["torch"])
23
24
25

    @classmethod
    def from_pretrained(self, *args, **kwargs):
26
        requires_backends(self, ["torch"])
27
28
29
30


class DataCollatorForPermutationLanguageModeling:
    def __init__(self, *args, **kwargs):
31
        requires_backends(self, ["torch"])
32
33
34

    @classmethod
    def from_pretrained(self, *args, **kwargs):
35
        requires_backends(self, ["torch"])
36
37


38
39
class DataCollatorForSeq2Seq:
    def __init__(self, *args, **kwargs):
40
        requires_backends(self, ["torch"])
41
42


43
44
class DataCollatorForSOP:
    def __init__(self, *args, **kwargs):
45
        requires_backends(self, ["torch"])
46
47


48
49
class DataCollatorForTokenClassification:
    def __init__(self, *args, **kwargs):
50
        requires_backends(self, ["torch"])
51
52
53

    @classmethod
    def from_pretrained(self, *args, **kwargs):
54
        requires_backends(self, ["torch"])
55
56


57
58
class DataCollatorForWholeWordMask:
    def __init__(self, *args, **kwargs):
59
        requires_backends(self, ["torch"])
60
61


62
63
class DataCollatorWithPadding:
    def __init__(self, *args, **kwargs):
64
        requires_backends(self, ["torch"])
65
66
67


def default_data_collator(*args, **kwargs):
68
    requires_backends(default_data_collator, ["torch"])
69
70
71
72


class GlueDataset:
    def __init__(self, *args, **kwargs):
73
        requires_backends(self, ["torch"])
74
75
76
77


class GlueDataTrainingArguments:
    def __init__(self, *args, **kwargs):
78
        requires_backends(self, ["torch"])
79
80
81
82


class LineByLineTextDataset:
    def __init__(self, *args, **kwargs):
83
        requires_backends(self, ["torch"])
84
85


86
87
class LineByLineWithRefDataset:
    def __init__(self, *args, **kwargs):
88
        requires_backends(self, ["torch"])
89
90


91
92
class LineByLineWithSOPTextDataset:
    def __init__(self, *args, **kwargs):
93
        requires_backends(self, ["torch"])
94
95
96
97


class SquadDataset:
    def __init__(self, *args, **kwargs):
98
        requires_backends(self, ["torch"])
99
100
101
102


class SquadDataTrainingArguments:
    def __init__(self, *args, **kwargs):
103
        requires_backends(self, ["torch"])
104
105
106
107


class TextDataset:
    def __init__(self, *args, **kwargs):
108
        requires_backends(self, ["torch"])
109
110
111
112


class TextDatasetForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
113
        requires_backends(self, ["torch"])
114
115


116
117
class BeamScorer:
    def __init__(self, *args, **kwargs):
118
        requires_backends(self, ["torch"])
119
120
121
122


class BeamSearchScorer:
    def __init__(self, *args, **kwargs):
123
        requires_backends(self, ["torch"])
124
125


126
127
class ForcedBOSTokenLogitsProcessor:
    def __init__(self, *args, **kwargs):
128
        requires_backends(self, ["torch"])
129
130
131
132


class ForcedEOSTokenLogitsProcessor:
    def __init__(self, *args, **kwargs):
133
        requires_backends(self, ["torch"])
134
135


136
137
class HammingDiversityLogitsProcessor:
    def __init__(self, *args, **kwargs):
138
        requires_backends(self, ["torch"])
139
140


141
142
class InfNanRemoveLogitsProcessor:
    def __init__(self, *args, **kwargs):
143
        requires_backends(self, ["torch"])
144
145


146
147
class LogitsProcessor:
    def __init__(self, *args, **kwargs):
148
        requires_backends(self, ["torch"])
149
150
151
152


class LogitsProcessorList:
    def __init__(self, *args, **kwargs):
153
        requires_backends(self, ["torch"])
154
155
156
157


class LogitsWarper:
    def __init__(self, *args, **kwargs):
158
        requires_backends(self, ["torch"])
159
160
161
162


class MinLengthLogitsProcessor:
    def __init__(self, *args, **kwargs):
163
        requires_backends(self, ["torch"])
164
165
166
167


class NoBadWordsLogitsProcessor:
    def __init__(self, *args, **kwargs):
168
        requires_backends(self, ["torch"])
169
170
171
172


class NoRepeatNGramLogitsProcessor:
    def __init__(self, *args, **kwargs):
173
        requires_backends(self, ["torch"])
174
175


176
177
class PrefixConstrainedLogitsProcessor:
    def __init__(self, *args, **kwargs):
178
        requires_backends(self, ["torch"])
179
180


181
182
class RepetitionPenaltyLogitsProcessor:
    def __init__(self, *args, **kwargs):
183
        requires_backends(self, ["torch"])
184
185
186
187


class TemperatureLogitsWarper:
    def __init__(self, *args, **kwargs):
188
        requires_backends(self, ["torch"])
189
190
191
192


class TopKLogitsWarper:
    def __init__(self, *args, **kwargs):
193
        requires_backends(self, ["torch"])
194
195
196
197


class TopPLogitsWarper:
    def __init__(self, *args, **kwargs):
198
        requires_backends(self, ["torch"])
199
200


201
202
class MaxLengthCriteria:
    def __init__(self, *args, **kwargs):
203
        requires_backends(self, ["torch"])
204
205
206
207


class MaxTimeCriteria:
    def __init__(self, *args, **kwargs):
208
        requires_backends(self, ["torch"])
209
210
211
212


class StoppingCriteria:
    def __init__(self, *args, **kwargs):
213
        requires_backends(self, ["torch"])
214
215
216
217


class StoppingCriteriaList:
    def __init__(self, *args, **kwargs):
218
        requires_backends(self, ["torch"])
219
220


221
def top_k_top_p_filtering(*args, **kwargs):
222
    requires_backends(top_k_top_p_filtering, ["torch"])
223
224


Sylvain Gugger's avatar
Sylvain Gugger committed
225
226
class Conv1D:
    def __init__(self, *args, **kwargs):
227
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
228
229
230
231


class PreTrainedModel:
    def __init__(self, *args, **kwargs):
232
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
233
234
235

    @classmethod
    def from_pretrained(self, *args, **kwargs):
236
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
237
238
239


def apply_chunking_to_forward(*args, **kwargs):
240
    requires_backends(apply_chunking_to_forward, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
241
242
243


def prune_layer(*args, **kwargs):
244
    requires_backends(prune_layer, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
245
246


247
248
249
250
251
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AlbertForMaskedLM:
    def __init__(self, *args, **kwargs):
252
        requires_backends(self, ["torch"])
253
254
255

    @classmethod
    def from_pretrained(self, *args, **kwargs):
256
        requires_backends(self, ["torch"])
257
258
259
260


class AlbertForMultipleChoice:
    def __init__(self, *args, **kwargs):
261
        requires_backends(self, ["torch"])
262
263
264

    @classmethod
    def from_pretrained(self, *args, **kwargs):
265
        requires_backends(self, ["torch"])
266
267
268
269


class AlbertForPreTraining:
    def __init__(self, *args, **kwargs):
270
        requires_backends(self, ["torch"])
271
272
273
274


class AlbertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
275
        requires_backends(self, ["torch"])
276
277
278

    @classmethod
    def from_pretrained(self, *args, **kwargs):
279
        requires_backends(self, ["torch"])
280
281
282
283


class AlbertForSequenceClassification:
    def __init__(self, *args, **kwargs):
284
        requires_backends(self, ["torch"])
285
286
287

    @classmethod
    def from_pretrained(self, *args, **kwargs):
288
        requires_backends(self, ["torch"])
289
290
291
292


class AlbertForTokenClassification:
    def __init__(self, *args, **kwargs):
293
        requires_backends(self, ["torch"])
294
295
296

    @classmethod
    def from_pretrained(self, *args, **kwargs):
297
        requires_backends(self, ["torch"])
298
299
300
301


class AlbertModel:
    def __init__(self, *args, **kwargs):
302
        requires_backends(self, ["torch"])
303
304
305

    @classmethod
    def from_pretrained(self, *args, **kwargs):
306
        requires_backends(self, ["torch"])
307
308
309
310


class AlbertPreTrainedModel:
    def __init__(self, *args, **kwargs):
311
        requires_backends(self, ["torch"])
312
313
314

    @classmethod
    def from_pretrained(self, *args, **kwargs):
315
        requires_backends(self, ["torch"])
316
317
318


def load_tf_weights_in_albert(*args, **kwargs):
319
    requires_backends(load_tf_weights_in_albert, ["torch"])
320
321
322
323
324


MODEL_FOR_CAUSAL_LM_MAPPING = None


325
326
327
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None


328
329
330
331
332
333
MODEL_FOR_MASKED_LM_MAPPING = None


MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None


334
335
336
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None


NielsRogge's avatar
NielsRogge committed
337
338
339
MODEL_FOR_OBJECT_DETECTION_MAPPING = None


340
341
342
343
344
345
346
347
348
349
350
351
MODEL_FOR_PRETRAINING_MAPPING = None


MODEL_FOR_QUESTION_ANSWERING_MAPPING = None


MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None


MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None


352
353
354
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None


355
356
357
358
359
360
361
362
363
364
365
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None


MODEL_MAPPING = None


MODEL_WITH_LM_HEAD_MAPPING = None


class AutoModel:
    def __init__(self, *args, **kwargs):
366
        requires_backends(self, ["torch"])
367
368
369

    @classmethod
    def from_pretrained(self, *args, **kwargs):
370
        requires_backends(self, ["torch"])
371
372
373
374


class AutoModelForCausalLM:
    def __init__(self, *args, **kwargs):
375
        requires_backends(self, ["torch"])
376
377
378

    @classmethod
    def from_pretrained(self, *args, **kwargs):
379
        requires_backends(self, ["torch"])
380
381
382
383
384
385
386
387
388


class AutoModelForImageClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])
389
390
391
392


class AutoModelForMaskedLM:
    def __init__(self, *args, **kwargs):
393
        requires_backends(self, ["torch"])
394
395
396

    @classmethod
    def from_pretrained(self, *args, **kwargs):
397
        requires_backends(self, ["torch"])
398
399
400
401


class AutoModelForMultipleChoice:
    def __init__(self, *args, **kwargs):
402
        requires_backends(self, ["torch"])
403
404
405

    @classmethod
    def from_pretrained(self, *args, **kwargs):
406
        requires_backends(self, ["torch"])
407
408


409
410
class AutoModelForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
411
        requires_backends(self, ["torch"])
412
413
414

    @classmethod
    def from_pretrained(self, *args, **kwargs):
415
        requires_backends(self, ["torch"])
416
417


418
419
class AutoModelForPreTraining:
    def __init__(self, *args, **kwargs):
420
        requires_backends(self, ["torch"])
421
422
423

    @classmethod
    def from_pretrained(self, *args, **kwargs):
424
        requires_backends(self, ["torch"])
425
426
427
428


class AutoModelForQuestionAnswering:
    def __init__(self, *args, **kwargs):
429
        requires_backends(self, ["torch"])
430
431
432

    @classmethod
    def from_pretrained(self, *args, **kwargs):
433
        requires_backends(self, ["torch"])
434
435
436
437


class AutoModelForSeq2SeqLM:
    def __init__(self, *args, **kwargs):
438
        requires_backends(self, ["torch"])
439
440
441

    @classmethod
    def from_pretrained(self, *args, **kwargs):
442
        requires_backends(self, ["torch"])
443
444
445
446


class AutoModelForSequenceClassification:
    def __init__(self, *args, **kwargs):
447
        requires_backends(self, ["torch"])
448
449
450

    @classmethod
    def from_pretrained(self, *args, **kwargs):
451
        requires_backends(self, ["torch"])
452
453
454
455


class AutoModelForTableQuestionAnswering:
    def __init__(self, *args, **kwargs):
456
        requires_backends(self, ["torch"])
457
458
459

    @classmethod
    def from_pretrained(self, *args, **kwargs):
460
        requires_backends(self, ["torch"])
461
462
463
464


class AutoModelForTokenClassification:
    def __init__(self, *args, **kwargs):
465
        requires_backends(self, ["torch"])
466
467
468

    @classmethod
    def from_pretrained(self, *args, **kwargs):
469
        requires_backends(self, ["torch"])
470
471
472
473


class AutoModelWithLMHead:
    def __init__(self, *args, **kwargs):
474
        requires_backends(self, ["torch"])
475
476
477

    @classmethod
    def from_pretrained(self, *args, **kwargs):
478
        requires_backends(self, ["torch"])
479
480
481
482
483


BART_PRETRAINED_MODEL_ARCHIVE_LIST = None


484
485
class BartForCausalLM:
    def __init__(self, *args, **kwargs):
486
        requires_backends(self, ["torch"])
487
488


489
490
class BartForConditionalGeneration:
    def __init__(self, *args, **kwargs):
491
        requires_backends(self, ["torch"])
492
493
494

    @classmethod
    def from_pretrained(self, *args, **kwargs):
495
        requires_backends(self, ["torch"])
496
497
498
499


class BartForQuestionAnswering:
    def __init__(self, *args, **kwargs):
500
        requires_backends(self, ["torch"])
501
502
503

    @classmethod
    def from_pretrained(self, *args, **kwargs):
504
        requires_backends(self, ["torch"])
505
506
507
508


class BartForSequenceClassification:
    def __init__(self, *args, **kwargs):
509
        requires_backends(self, ["torch"])
510
511
512

    @classmethod
    def from_pretrained(self, *args, **kwargs):
513
        requires_backends(self, ["torch"])
514
515
516
517


class BartModel:
    def __init__(self, *args, **kwargs):
518
        requires_backends(self, ["torch"])
519
520
521

    @classmethod
    def from_pretrained(self, *args, **kwargs):
522
        requires_backends(self, ["torch"])
523
524


525
526
class BartPretrainedModel:
    def __init__(self, *args, **kwargs):
527
        requires_backends(self, ["torch"])
528
529
530

    @classmethod
    def from_pretrained(self, *args, **kwargs):
531
        requires_backends(self, ["torch"])
532
533


534
535
class PretrainedBartModel:
    def __init__(self, *args, **kwargs):
536
        requires_backends(self, ["torch"])
537
538
539

    @classmethod
    def from_pretrained(self, *args, **kwargs):
540
        requires_backends(self, ["torch"])
541
542
543
544
545
546
547


BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BertForMaskedLM:
    def __init__(self, *args, **kwargs):
548
        requires_backends(self, ["torch"])
549
550
551

    @classmethod
    def from_pretrained(self, *args, **kwargs):
552
        requires_backends(self, ["torch"])
553
554
555
556


class BertForMultipleChoice:
    def __init__(self, *args, **kwargs):
557
        requires_backends(self, ["torch"])
558
559
560

    @classmethod
    def from_pretrained(self, *args, **kwargs):
561
        requires_backends(self, ["torch"])
562
563
564
565


class BertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
566
        requires_backends(self, ["torch"])
567
568
569
570


class BertForPreTraining:
    def __init__(self, *args, **kwargs):
571
        requires_backends(self, ["torch"])
572
573
574
575


class BertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
576
        requires_backends(self, ["torch"])
577
578
579

    @classmethod
    def from_pretrained(self, *args, **kwargs):
580
        requires_backends(self, ["torch"])
581
582
583
584


class BertForSequenceClassification:
    def __init__(self, *args, **kwargs):
585
        requires_backends(self, ["torch"])
586
587
588

    @classmethod
    def from_pretrained(self, *args, **kwargs):
589
        requires_backends(self, ["torch"])
590
591
592
593


class BertForTokenClassification:
    def __init__(self, *args, **kwargs):
594
        requires_backends(self, ["torch"])
595
596
597

    @classmethod
    def from_pretrained(self, *args, **kwargs):
598
        requires_backends(self, ["torch"])
599
600
601
602


class BertLayer:
    def __init__(self, *args, **kwargs):
603
        requires_backends(self, ["torch"])
604
605
606
607


class BertLMHeadModel:
    def __init__(self, *args, **kwargs):
608
        requires_backends(self, ["torch"])
609
610
611

    @classmethod
    def from_pretrained(self, *args, **kwargs):
612
        requires_backends(self, ["torch"])
613
614
615
616


class BertModel:
    def __init__(self, *args, **kwargs):
617
        requires_backends(self, ["torch"])
618
619
620

    @classmethod
    def from_pretrained(self, *args, **kwargs):
621
        requires_backends(self, ["torch"])
622
623
624
625


class BertPreTrainedModel:
    def __init__(self, *args, **kwargs):
626
        requires_backends(self, ["torch"])
627
628
629

    @classmethod
    def from_pretrained(self, *args, **kwargs):
630
        requires_backends(self, ["torch"])
631
632
633


def load_tf_weights_in_bert(*args, **kwargs):
634
    requires_backends(load_tf_weights_in_bert, ["torch"])
635
636
637
638


class BertGenerationDecoder:
    def __init__(self, *args, **kwargs):
639
        requires_backends(self, ["torch"])
640
641
642
643


class BertGenerationEncoder:
    def __init__(self, *args, **kwargs):
644
        requires_backends(self, ["torch"])
645
646
647


def load_tf_weights_in_bert_generation(*args, **kwargs):
648
    requires_backends(load_tf_weights_in_bert_generation, ["torch"])
649
650


Vasudev Gupta's avatar
Vasudev Gupta committed
651
652
653
654
655
BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BigBirdForCausalLM:
    def __init__(self, *args, **kwargs):
656
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
657
658
659
660


class BigBirdForMaskedLM:
    def __init__(self, *args, **kwargs):
661
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
662
663
664

    @classmethod
    def from_pretrained(self, *args, **kwargs):
665
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
666
667
668
669


class BigBirdForMultipleChoice:
    def __init__(self, *args, **kwargs):
670
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
671
672
673

    @classmethod
    def from_pretrained(self, *args, **kwargs):
674
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
675
676
677
678


class BigBirdForPreTraining:
    def __init__(self, *args, **kwargs):
679
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
680
681
682
683


class BigBirdForQuestionAnswering:
    def __init__(self, *args, **kwargs):
684
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
685
686
687

    @classmethod
    def from_pretrained(self, *args, **kwargs):
688
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
689
690
691
692


class BigBirdForSequenceClassification:
    def __init__(self, *args, **kwargs):
693
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
694
695
696

    @classmethod
    def from_pretrained(self, *args, **kwargs):
697
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
698
699
700
701


class BigBirdForTokenClassification:
    def __init__(self, *args, **kwargs):
702
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
703
704
705

    @classmethod
    def from_pretrained(self, *args, **kwargs):
706
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
707
708
709
710


class BigBirdLayer:
    def __init__(self, *args, **kwargs):
711
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
712
713
714
715


class BigBirdModel:
    def __init__(self, *args, **kwargs):
716
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
717
718
719

    @classmethod
    def from_pretrained(self, *args, **kwargs):
720
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
721
722
723
724


class BigBirdPreTrainedModel:
    def __init__(self, *args, **kwargs):
725
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
726
727
728

    @classmethod
    def from_pretrained(self, *args, **kwargs):
729
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
730
731
732


def load_tf_weights_in_big_bird(*args, **kwargs):
733
    requires_backends(load_tf_weights_in_big_bird, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
734
735


Vasudev Gupta's avatar
Vasudev Gupta committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BigBirdPegasusForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdPegasusForConditionalGeneration:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdPegasusForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdPegasusForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BigBirdPegasusModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


Sam Shleifer's avatar
Sam Shleifer committed
780
781
782
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = None


783
784
class BlenderbotForCausalLM:
    def __init__(self, *args, **kwargs):
785
        requires_backends(self, ["torch"])
786
787


Sam Shleifer's avatar
Sam Shleifer committed
788
789
class BlenderbotForConditionalGeneration:
    def __init__(self, *args, **kwargs):
790
        requires_backends(self, ["torch"])
Sam Shleifer's avatar
Sam Shleifer committed
791
792
793

    @classmethod
    def from_pretrained(self, *args, **kwargs):
794
        requires_backends(self, ["torch"])
Sam Shleifer's avatar
Sam Shleifer committed
795
796


797
798
class BlenderbotModel:
    def __init__(self, *args, **kwargs):
799
        requires_backends(self, ["torch"])
800
801
802

    @classmethod
    def from_pretrained(self, *args, **kwargs):
803
        requires_backends(self, ["torch"])
804
805


806
807
808
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = None


809
810
class BlenderbotSmallForCausalLM:
    def __init__(self, *args, **kwargs):
811
        requires_backends(self, ["torch"])
812
813


814
815
class BlenderbotSmallForConditionalGeneration:
    def __init__(self, *args, **kwargs):
816
        requires_backends(self, ["torch"])
817
818
819

    @classmethod
    def from_pretrained(self, *args, **kwargs):
820
        requires_backends(self, ["torch"])
821
822
823
824


class BlenderbotSmallModel:
    def __init__(self, *args, **kwargs):
825
        requires_backends(self, ["torch"])
826
827
828

    @classmethod
    def from_pretrained(self, *args, **kwargs):
829
        requires_backends(self, ["torch"])
830
831


832
833
834
835
836
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CamembertForCausalLM:
    def __init__(self, *args, **kwargs):
837
        requires_backends(self, ["torch"])
838
839
840
841


class CamembertForMaskedLM:
    def __init__(self, *args, **kwargs):
842
        requires_backends(self, ["torch"])
843
844
845

    @classmethod
    def from_pretrained(self, *args, **kwargs):
846
        requires_backends(self, ["torch"])
847
848
849
850


class CamembertForMultipleChoice:
    def __init__(self, *args, **kwargs):
851
        requires_backends(self, ["torch"])
852
853
854

    @classmethod
    def from_pretrained(self, *args, **kwargs):
855
        requires_backends(self, ["torch"])
856
857
858
859


class CamembertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
860
        requires_backends(self, ["torch"])
861
862
863

    @classmethod
    def from_pretrained(self, *args, **kwargs):
864
        requires_backends(self, ["torch"])
865
866
867
868


class CamembertForSequenceClassification:
    def __init__(self, *args, **kwargs):
869
        requires_backends(self, ["torch"])
870
871
872

    @classmethod
    def from_pretrained(self, *args, **kwargs):
873
        requires_backends(self, ["torch"])
874
875
876
877


class CamembertForTokenClassification:
    def __init__(self, *args, **kwargs):
878
        requires_backends(self, ["torch"])
879
880
881

    @classmethod
    def from_pretrained(self, *args, **kwargs):
882
        requires_backends(self, ["torch"])
883
884
885
886


class CamembertModel:
    def __init__(self, *args, **kwargs):
Suraj Patil's avatar
Suraj Patil committed
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CLIPModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPTextModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CLIPVisionModel:
    def __init__(self, *args, **kwargs):
926
        requires_backends(self, ["torch"])
927
928
929

    @classmethod
    def from_pretrained(self, *args, **kwargs):
930
        requires_backends(self, ["torch"])
931
932


abhishek thakur's avatar
abhishek thakur committed
933
934
935
936
937
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ConvBertForMaskedLM:
    def __init__(self, *args, **kwargs):
938
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
939
940
941

    @classmethod
    def from_pretrained(self, *args, **kwargs):
942
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
943
944
945
946


class ConvBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
947
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
948
949
950

    @classmethod
    def from_pretrained(self, *args, **kwargs):
951
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
952
953
954
955


class ConvBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
956
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
957
958
959

    @classmethod
    def from_pretrained(self, *args, **kwargs):
960
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
961
962
963
964


class ConvBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
965
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
966
967
968

    @classmethod
    def from_pretrained(self, *args, **kwargs):
969
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
970
971
972
973


class ConvBertForTokenClassification:
    def __init__(self, *args, **kwargs):
974
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
975
976
977

    @classmethod
    def from_pretrained(self, *args, **kwargs):
978
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
979
980
981
982


class ConvBertLayer:
    def __init__(self, *args, **kwargs):
983
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
984
985
986
987


class ConvBertModel:
    def __init__(self, *args, **kwargs):
988
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
989
990
991

    @classmethod
    def from_pretrained(self, *args, **kwargs):
992
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
993
994
995
996


class ConvBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
997
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
998
999
1000

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1001
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1002
1003
1004


def load_tf_weights_in_convbert(*args, **kwargs):
1005
    requires_backends(load_tf_weights_in_convbert, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1006
1007


1008
1009
1010
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None


1011
1012
class CTRLForSequenceClassification:
    def __init__(self, *args, **kwargs):
1013
        requires_backends(self, ["torch"])
1014
1015
1016

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1017
        requires_backends(self, ["torch"])
1018
1019


1020
1021
class CTRLLMHeadModel:
    def __init__(self, *args, **kwargs):
1022
        requires_backends(self, ["torch"])
1023
1024
1025

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1026
        requires_backends(self, ["torch"])
1027
1028
1029
1030


class CTRLModel:
    def __init__(self, *args, **kwargs):
1031
        requires_backends(self, ["torch"])
1032
1033
1034

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1035
        requires_backends(self, ["torch"])
1036
1037
1038
1039


class CTRLPreTrainedModel:
    def __init__(self, *args, **kwargs):
1040
        requires_backends(self, ["torch"])
1041
1042
1043

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1044
        requires_backends(self, ["torch"])
1045
1046
1047
1048
1049


DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


NielsRogge's avatar
NielsRogge committed
1050
1051
class DebertaForMaskedLM:
    def __init__(self, *args, **kwargs):
1052
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1053
1054
1055

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1056
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1057
1058
1059
1060


class DebertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1061
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1062
1063
1064

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1065
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1066
1067


1068
1069
class DebertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
1070
        requires_backends(self, ["torch"])
1071
1072
1073

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1074
        requires_backends(self, ["torch"])
1075
1076


NielsRogge's avatar
NielsRogge committed
1077
1078
class DebertaForTokenClassification:
    def __init__(self, *args, **kwargs):
1079
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1080
1081
1082

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1083
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1084
1085


1086
1087
class DebertaModel:
    def __init__(self, *args, **kwargs):
1088
        requires_backends(self, ["torch"])
1089
1090
1091

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1092
        requires_backends(self, ["torch"])
1093
1094
1095
1096


class DebertaPreTrainedModel:
    def __init__(self, *args, **kwargs):
1097
        requires_backends(self, ["torch"])
1098
1099
1100

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1101
        requires_backends(self, ["torch"])
1102
1103


1104
1105
1106
1107
1108
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DebertaV2ForMaskedLM:
    def __init__(self, *args, **kwargs):
1109
        requires_backends(self, ["torch"])
1110
1111
1112

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1113
        requires_backends(self, ["torch"])
1114
1115
1116
1117


class DebertaV2ForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1118
        requires_backends(self, ["torch"])
1119
1120
1121

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1122
        requires_backends(self, ["torch"])
1123
1124
1125
1126


class DebertaV2ForSequenceClassification:
    def __init__(self, *args, **kwargs):
1127
        requires_backends(self, ["torch"])
1128
1129
1130

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1131
        requires_backends(self, ["torch"])
1132
1133
1134
1135


class DebertaV2ForTokenClassification:
    def __init__(self, *args, **kwargs):
1136
        requires_backends(self, ["torch"])
1137
1138
1139

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1140
        requires_backends(self, ["torch"])
1141
1142
1143
1144


class DebertaV2Model:
    def __init__(self, *args, **kwargs):
1145
        requires_backends(self, ["torch"])
1146
1147
1148

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1149
        requires_backends(self, ["torch"])
1150
1151
1152


class DebertaV2PreTrainedModel:
NielsRogge's avatar
NielsRogge committed
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DeiTForImageClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTForImageClassificationWithTeacher:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTPreTrainedModel:
1184
    def __init__(self, *args, **kwargs):
1185
        requires_backends(self, ["torch"])
1186
1187
1188

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1189
        requires_backends(self, ["torch"])
1190
1191


1192
1193
1194
1195
1196
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DistilBertForMaskedLM:
    def __init__(self, *args, **kwargs):
1197
        requires_backends(self, ["torch"])
1198
1199
1200

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1201
        requires_backends(self, ["torch"])
1202
1203
1204
1205


class DistilBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1206
        requires_backends(self, ["torch"])
1207
1208
1209

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1210
        requires_backends(self, ["torch"])
1211
1212
1213
1214


class DistilBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1215
        requires_backends(self, ["torch"])
1216
1217
1218

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1219
        requires_backends(self, ["torch"])
1220
1221
1222
1223


class DistilBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1224
        requires_backends(self, ["torch"])
1225
1226
1227

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1228
        requires_backends(self, ["torch"])
1229
1230
1231
1232


class DistilBertForTokenClassification:
    def __init__(self, *args, **kwargs):
1233
        requires_backends(self, ["torch"])
1234
1235
1236

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1237
        requires_backends(self, ["torch"])
1238
1239
1240
1241


class DistilBertModel:
    def __init__(self, *args, **kwargs):
1242
        requires_backends(self, ["torch"])
1243
1244
1245

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1246
        requires_backends(self, ["torch"])
1247
1248
1249
1250


class DistilBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
1251
        requires_backends(self, ["torch"])
1252
1253
1254

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1255
        requires_backends(self, ["torch"])
1256
1257


Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1258
1259
1260
1261
1262
1263
1264
1265
1266
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None


DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None


DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None


1267
1268
class DPRContextEncoder:
    def __init__(self, *args, **kwargs):
1269
        requires_backends(self, ["torch"])
1270
1271
1272
1273


class DPRPretrainedContextEncoder:
    def __init__(self, *args, **kwargs):
1274
        requires_backends(self, ["torch"])
1275
1276
1277
1278


class DPRPretrainedQuestionEncoder:
    def __init__(self, *args, **kwargs):
1279
        requires_backends(self, ["torch"])
1280
1281
1282
1283


class DPRPretrainedReader:
    def __init__(self, *args, **kwargs):
1284
        requires_backends(self, ["torch"])
1285
1286
1287
1288


class DPRQuestionEncoder:
    def __init__(self, *args, **kwargs):
1289
        requires_backends(self, ["torch"])
1290
1291
1292
1293


class DPRReader:
    def __init__(self, *args, **kwargs):
1294
        requires_backends(self, ["torch"])
1295
1296
1297
1298
1299
1300
1301


ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ElectraForMaskedLM:
    def __init__(self, *args, **kwargs):
1302
        requires_backends(self, ["torch"])
1303
1304
1305

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1306
        requires_backends(self, ["torch"])
1307
1308
1309
1310


class ElectraForMultipleChoice:
    def __init__(self, *args, **kwargs):
1311
        requires_backends(self, ["torch"])
1312
1313
1314

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1315
        requires_backends(self, ["torch"])
1316
1317
1318
1319


class ElectraForPreTraining:
    def __init__(self, *args, **kwargs):
1320
        requires_backends(self, ["torch"])
1321
1322
1323
1324


class ElectraForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1325
        requires_backends(self, ["torch"])
1326
1327
1328

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1329
        requires_backends(self, ["torch"])
1330
1331
1332
1333


class ElectraForSequenceClassification:
    def __init__(self, *args, **kwargs):
1334
        requires_backends(self, ["torch"])
1335
1336
1337

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1338
        requires_backends(self, ["torch"])
1339
1340
1341
1342


class ElectraForTokenClassification:
    def __init__(self, *args, **kwargs):
1343
        requires_backends(self, ["torch"])
1344
1345
1346

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1347
        requires_backends(self, ["torch"])
1348
1349
1350
1351


class ElectraModel:
    def __init__(self, *args, **kwargs):
1352
        requires_backends(self, ["torch"])
1353
1354
1355

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1356
        requires_backends(self, ["torch"])
1357
1358
1359
1360


class ElectraPreTrainedModel:
    def __init__(self, *args, **kwargs):
1361
        requires_backends(self, ["torch"])
1362
1363
1364

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1365
        requires_backends(self, ["torch"])
1366
1367
1368


def load_tf_weights_in_electra(*args, **kwargs):
1369
    requires_backends(load_tf_weights_in_electra, ["torch"])
1370
1371
1372
1373


class EncoderDecoderModel:
    def __init__(self, *args, **kwargs):
1374
        requires_backends(self, ["torch"])
1375
1376
1377

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1378
        requires_backends(self, ["torch"])
1379
1380
1381
1382
1383
1384
1385


FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FlaubertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1386
        requires_backends(self, ["torch"])
1387
1388
1389

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1390
        requires_backends(self, ["torch"])
1391
1392
1393
1394


class FlaubertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1395
        requires_backends(self, ["torch"])
1396
1397
1398

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1399
        requires_backends(self, ["torch"])
1400
1401
1402
1403


class FlaubertForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
1404
        requires_backends(self, ["torch"])
1405
1406
1407

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1408
        requires_backends(self, ["torch"])
1409
1410
1411
1412


class FlaubertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1413
        requires_backends(self, ["torch"])
1414
1415
1416

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1417
        requires_backends(self, ["torch"])
1418
1419
1420
1421


class FlaubertForTokenClassification:
    def __init__(self, *args, **kwargs):
1422
        requires_backends(self, ["torch"])
1423
1424
1425

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1426
        requires_backends(self, ["torch"])
1427
1428
1429
1430


class FlaubertModel:
    def __init__(self, *args, **kwargs):
1431
        requires_backends(self, ["torch"])
1432
1433
1434

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1435
        requires_backends(self, ["torch"])
1436
1437
1438
1439


class FlaubertWithLMHeadModel:
    def __init__(self, *args, **kwargs):
1440
        requires_backends(self, ["torch"])
1441
1442
1443

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1444
        requires_backends(self, ["torch"])
1445
1446
1447
1448


class FSMTForConditionalGeneration:
    def __init__(self, *args, **kwargs):
1449
        requires_backends(self, ["torch"])
1450
1451
1452

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1453
        requires_backends(self, ["torch"])
1454
1455
1456
1457


class FSMTModel:
    def __init__(self, *args, **kwargs):
1458
        requires_backends(self, ["torch"])
1459
1460
1461

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1462
        requires_backends(self, ["torch"])
1463
1464
1465
1466


class PretrainedFSMTModel:
    def __init__(self, *args, **kwargs):
1467
        requires_backends(self, ["torch"])
1468
1469
1470

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1471
        requires_backends(self, ["torch"])
1472
1473
1474
1475
1476
1477
1478


FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FunnelBaseModel:
    def __init__(self, *args, **kwargs):
1479
        requires_backends(self, ["torch"])
1480
1481
1482

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1483
        requires_backends(self, ["torch"])
1484
1485
1486
1487


class FunnelForMaskedLM:
    def __init__(self, *args, **kwargs):
1488
        requires_backends(self, ["torch"])
1489
1490
1491

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1492
        requires_backends(self, ["torch"])
1493
1494
1495
1496


class FunnelForMultipleChoice:
    def __init__(self, *args, **kwargs):
1497
        requires_backends(self, ["torch"])
1498
1499
1500

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1501
        requires_backends(self, ["torch"])
1502
1503
1504
1505


class FunnelForPreTraining:
    def __init__(self, *args, **kwargs):
1506
        requires_backends(self, ["torch"])
1507
1508
1509
1510


class FunnelForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1511
        requires_backends(self, ["torch"])
1512
1513
1514

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1515
        requires_backends(self, ["torch"])
1516
1517
1518
1519


class FunnelForSequenceClassification:
    def __init__(self, *args, **kwargs):
1520
        requires_backends(self, ["torch"])
1521
1522
1523

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1524
        requires_backends(self, ["torch"])
1525
1526
1527
1528


class FunnelForTokenClassification:
    def __init__(self, *args, **kwargs):
1529
        requires_backends(self, ["torch"])
1530
1531
1532

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1533
        requires_backends(self, ["torch"])
1534
1535
1536
1537


class FunnelModel:
    def __init__(self, *args, **kwargs):
1538
        requires_backends(self, ["torch"])
1539
1540
1541

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1542
        requires_backends(self, ["torch"])
1543
1544
1545


def load_tf_weights_in_funnel(*args, **kwargs):
1546
    requires_backends(load_tf_weights_in_funnel, ["torch"])
1547
1548
1549
1550
1551
1552
1553


GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPT2DoubleHeadsModel:
    def __init__(self, *args, **kwargs):
1554
        requires_backends(self, ["torch"])
1555
1556
1557

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1558
        requires_backends(self, ["torch"])
1559
1560


Lysandre's avatar
Lysandre committed
1561
1562
class GPT2ForSequenceClassification:
    def __init__(self, *args, **kwargs):
1563
        requires_backends(self, ["torch"])
Lysandre's avatar
Lysandre committed
1564
1565
1566

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1567
        requires_backends(self, ["torch"])
Lysandre's avatar
Lysandre committed
1568
1569


1570
1571
class GPT2LMHeadModel:
    def __init__(self, *args, **kwargs):
1572
        requires_backends(self, ["torch"])
1573
1574
1575

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1576
        requires_backends(self, ["torch"])
1577
1578
1579
1580


class GPT2Model:
    def __init__(self, *args, **kwargs):
1581
        requires_backends(self, ["torch"])
1582
1583
1584

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1585
        requires_backends(self, ["torch"])
1586
1587
1588
1589


class GPT2PreTrainedModel:
    def __init__(self, *args, **kwargs):
1590
        requires_backends(self, ["torch"])
1591
1592
1593

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1594
        requires_backends(self, ["torch"])
1595
1596
1597


def load_tf_weights_in_gpt2(*args, **kwargs):
1598
    requires_backends(load_tf_weights_in_gpt2, ["torch"])
1599
1600


Suraj Patil's avatar
Suraj Patil committed
1601
1602
1603
1604
1605
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPTNeoForCausalLM:
    def __init__(self, *args, **kwargs):
1606
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1607
1608


1609
1610
1611
1612
1613
1614
1615
1616
1617
class GPTNeoForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


Suraj Patil's avatar
Suraj Patil committed
1618
1619
class GPTNeoModel:
    def __init__(self, *args, **kwargs):
1620
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1621
1622
1623

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1624
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1625
1626
1627
1628


class GPTNeoPreTrainedModel:
    def __init__(self, *args, **kwargs):
1629
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1630
1631
1632

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1633
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1634
1635
1636


def load_tf_weights_in_gpt_neo(*args, **kwargs):
1637
    requires_backends(load_tf_weights_in_gpt_neo, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1638
1639


Sehoon Kim's avatar
Sehoon Kim committed
1640
1641
1642
1643
1644
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class IBertForMaskedLM:
    def __init__(self, *args, **kwargs):
1645
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1646
1647
1648

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1649
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1650
1651
1652
1653


class IBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1654
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1655
1656
1657

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1658
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1659
1660
1661
1662


class IBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1663
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1664
1665
1666

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1667
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1668
1669
1670
1671


class IBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1672
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1673
1674
1675

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1676
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1677
1678
1679
1680


class IBertForTokenClassification:
    def __init__(self, *args, **kwargs):
1681
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1682
1683
1684

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1685
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1686
1687
1688
1689


class IBertModel:
    def __init__(self, *args, **kwargs):
1690
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1691
1692
1693

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1694
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
1695
1696


1697
1698
class IBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
1699
        requires_backends(self, ["torch"])
1700
1701
1702

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1703
        requires_backends(self, ["torch"])
1704
1705


1706
1707
1708
1709
1710
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LayoutLMForMaskedLM:
    def __init__(self, *args, **kwargs):
1711
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1712
1713
1714

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1715
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1716
1717
1718
1719


class LayoutLMForSequenceClassification:
    def __init__(self, *args, **kwargs):
1720
        requires_backends(self, ["torch"])
1721
1722
1723

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1724
        requires_backends(self, ["torch"])
1725
1726
1727
1728


class LayoutLMForTokenClassification:
    def __init__(self, *args, **kwargs):
1729
        requires_backends(self, ["torch"])
1730
1731
1732

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1733
        requires_backends(self, ["torch"])
1734
1735
1736
1737


class LayoutLMModel:
    def __init__(self, *args, **kwargs):
1738
        requires_backends(self, ["torch"])
1739
1740
1741

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1742
        requires_backends(self, ["torch"])
1743
1744


Patrick von Platen's avatar
Patrick von Platen committed
1745
1746
1747
1748
1749
LED_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LEDForConditionalGeneration:
    def __init__(self, *args, **kwargs):
1750
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1751
1752
1753

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1754
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1755
1756
1757
1758


class LEDForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1759
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1760
1761
1762

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1763
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1764
1765
1766
1767


class LEDForSequenceClassification:
    def __init__(self, *args, **kwargs):
1768
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1769
1770
1771

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1772
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1773
1774
1775
1776


class LEDModel:
    def __init__(self, *args, **kwargs):
1777
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1778
1779
1780

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1781
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
1782
1783


1784
1785
1786
1787
1788
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LongformerForMaskedLM:
    def __init__(self, *args, **kwargs):
1789
        requires_backends(self, ["torch"])
1790
1791
1792

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1793
        requires_backends(self, ["torch"])
1794
1795
1796
1797


class LongformerForMultipleChoice:
    def __init__(self, *args, **kwargs):
1798
        requires_backends(self, ["torch"])
1799
1800
1801

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1802
        requires_backends(self, ["torch"])
1803
1804
1805
1806


class LongformerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1807
        requires_backends(self, ["torch"])
1808
1809
1810

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1811
        requires_backends(self, ["torch"])
1812
1813
1814
1815


class LongformerForSequenceClassification:
    def __init__(self, *args, **kwargs):
1816
        requires_backends(self, ["torch"])
1817
1818
1819

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1820
        requires_backends(self, ["torch"])
1821
1822
1823
1824


class LongformerForTokenClassification:
    def __init__(self, *args, **kwargs):
1825
        requires_backends(self, ["torch"])
1826
1827
1828

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1829
        requires_backends(self, ["torch"])
1830
1831
1832
1833


class LongformerModel:
    def __init__(self, *args, **kwargs):
1834
        requires_backends(self, ["torch"])
1835
1836
1837

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1838
        requires_backends(self, ["torch"])
1839
1840
1841
1842


class LongformerSelfAttention:
    def __init__(self, *args, **kwargs):
1843
        requires_backends(self, ["torch"])
1844
1845


NielsRogge's avatar
NielsRogge committed
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LukeForEntityClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForEntityPairClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForEntitySpanClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukePreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


1882
1883
class LxmertEncoder:
    def __init__(self, *args, **kwargs):
1884
        requires_backends(self, ["torch"])
1885
1886
1887
1888


class LxmertForPreTraining:
    def __init__(self, *args, **kwargs):
1889
        requires_backends(self, ["torch"])
1890
1891
1892
1893


class LxmertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1894
        requires_backends(self, ["torch"])
1895
1896
1897

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1898
        requires_backends(self, ["torch"])
1899
1900
1901
1902


class LxmertModel:
    def __init__(self, *args, **kwargs):
1903
        requires_backends(self, ["torch"])
1904
1905
1906

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1907
        requires_backends(self, ["torch"])
1908
1909
1910
1911


class LxmertPreTrainedModel:
    def __init__(self, *args, **kwargs):
1912
        requires_backends(self, ["torch"])
1913
1914
1915

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1916
        requires_backends(self, ["torch"])
1917
1918
1919
1920


class LxmertVisualFeatureEncoder:
    def __init__(self, *args, **kwargs):
1921
        requires_backends(self, ["torch"])
1922
1923
1924
1925


class LxmertXLayer:
    def __init__(self, *args, **kwargs):
1926
        requires_backends(self, ["torch"])
1927
1928


Suraj Patil's avatar
Suraj Patil committed
1929
1930
1931
1932
1933
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST = None


class M2M100ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
1934
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1935
1936
1937

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1938
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1939
1940
1941
1942


class M2M100Model:
    def __init__(self, *args, **kwargs):
1943
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1944
1945
1946

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1947
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1948
1949


1950
1951
class MarianForCausalLM:
    def __init__(self, *args, **kwargs):
1952
        requires_backends(self, ["torch"])
1953
1954


1955
1956
class MarianModel:
    def __init__(self, *args, **kwargs):
1957
        requires_backends(self, ["torch"])
1958
1959
1960

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1961
        requires_backends(self, ["torch"])
1962
1963


1964
1965
class MarianMTModel:
    def __init__(self, *args, **kwargs):
1966
        requires_backends(self, ["torch"])
1967
1968
1969

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1970
        requires_backends(self, ["torch"])
1971
1972


1973
1974
class MBartForCausalLM:
    def __init__(self, *args, **kwargs):
1975
        requires_backends(self, ["torch"])
1976
1977


1978
1979
class MBartForConditionalGeneration:
    def __init__(self, *args, **kwargs):
1980
        requires_backends(self, ["torch"])
1981
1982
1983

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1984
        requires_backends(self, ["torch"])
1985
1986


1987
1988
class MBartForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1989
        requires_backends(self, ["torch"])
1990
1991
1992

    @classmethod
    def from_pretrained(self, *args, **kwargs):
1993
        requires_backends(self, ["torch"])
1994
1995
1996
1997


class MBartForSequenceClassification:
    def __init__(self, *args, **kwargs):
1998
        requires_backends(self, ["torch"])
1999
2000
2001

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2002
        requires_backends(self, ["torch"])
2003
2004


2005
2006
class MBartModel:
    def __init__(self, *args, **kwargs):
2007
        requires_backends(self, ["torch"])
2008
2009
2010

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2011
        requires_backends(self, ["torch"])
2012
2013


2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MegatronBertForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


2086
2087
class MMBTForClassification:
    def __init__(self, *args, **kwargs):
2088
        requires_backends(self, ["torch"])
2089
2090
2091
2092


class MMBTModel:
    def __init__(self, *args, **kwargs):
2093
        requires_backends(self, ["torch"])
2094
2095
2096

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2097
        requires_backends(self, ["torch"])
2098
2099
2100
2101


class ModalEmbeddings:
    def __init__(self, *args, **kwargs):
2102
        requires_backends(self, ["torch"])
2103
2104
2105
2106
2107
2108
2109


MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MobileBertForMaskedLM:
    def __init__(self, *args, **kwargs):
2110
        requires_backends(self, ["torch"])
2111
2112
2113

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2114
        requires_backends(self, ["torch"])
2115
2116
2117
2118


class MobileBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
2119
        requires_backends(self, ["torch"])
2120
2121
2122

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2123
        requires_backends(self, ["torch"])
2124
2125
2126
2127


class MobileBertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
2128
        requires_backends(self, ["torch"])
2129
2130
2131
2132


class MobileBertForPreTraining:
    def __init__(self, *args, **kwargs):
2133
        requires_backends(self, ["torch"])
2134
2135
2136
2137


class MobileBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2138
        requires_backends(self, ["torch"])
2139
2140
2141

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2142
        requires_backends(self, ["torch"])
2143
2144
2145
2146


class MobileBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
2147
        requires_backends(self, ["torch"])
2148
2149
2150

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2151
        requires_backends(self, ["torch"])
2152
2153
2154
2155


class MobileBertForTokenClassification:
    def __init__(self, *args, **kwargs):
2156
        requires_backends(self, ["torch"])
2157
2158
2159

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2160
        requires_backends(self, ["torch"])
2161
2162
2163
2164


class MobileBertLayer:
    def __init__(self, *args, **kwargs):
2165
        requires_backends(self, ["torch"])
2166
2167
2168
2169


class MobileBertModel:
    def __init__(self, *args, **kwargs):
2170
        requires_backends(self, ["torch"])
2171
2172
2173

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2174
        requires_backends(self, ["torch"])
2175
2176
2177
2178


class MobileBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2179
        requires_backends(self, ["torch"])
2180
2181
2182

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2183
        requires_backends(self, ["torch"])
2184
2185
2186


def load_tf_weights_in_mobilebert(*args, **kwargs):
2187
    requires_backends(load_tf_weights_in_mobilebert, ["torch"])
2188
2189


StillKeepTry's avatar
StillKeepTry committed
2190
2191
2192
2193
2194
MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MPNetForMaskedLM:
    def __init__(self, *args, **kwargs):
2195
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2196
2197
2198

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2199
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2200
2201
2202
2203


class MPNetForMultipleChoice:
    def __init__(self, *args, **kwargs):
2204
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2205
2206
2207

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2208
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2209
2210
2211
2212


class MPNetForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2213
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2214
2215
2216

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2217
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2218
2219
2220
2221


class MPNetForSequenceClassification:
    def __init__(self, *args, **kwargs):
2222
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2223
2224
2225

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2226
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2227
2228
2229
2230


class MPNetForTokenClassification:
    def __init__(self, *args, **kwargs):
2231
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2232
2233
2234

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2235
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2236
2237
2238
2239


class MPNetLayer:
    def __init__(self, *args, **kwargs):
2240
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2241
2242
2243
2244


class MPNetModel:
    def __init__(self, *args, **kwargs):
2245
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2246
2247
2248

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2249
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2250
2251
2252
2253


class MPNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
2254
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2255
2256
2257

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2258
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2259
2260


2261
2262
class MT5EncoderModel:
    def __init__(self, *args, **kwargs):
2263
        requires_backends(self, ["torch"])
2264
2265
2266

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2267
        requires_backends(self, ["torch"])
2268
2269


Patrick von Platen's avatar
Patrick von Platen committed
2270
2271
class MT5ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2272
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2273
2274
2275

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2276
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2277
2278
2279
2280


class MT5Model:
    def __init__(self, *args, **kwargs):
2281
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2282
2283
2284

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2285
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2286
2287


2288
2289
2290
2291
2292
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class OpenAIGPTDoubleHeadsModel:
    def __init__(self, *args, **kwargs):
2293
        requires_backends(self, ["torch"])
2294
2295
2296

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2297
        requires_backends(self, ["torch"])
2298
2299


2300
2301
class OpenAIGPTForSequenceClassification:
    def __init__(self, *args, **kwargs):
2302
        requires_backends(self, ["torch"])
2303
2304
2305

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2306
        requires_backends(self, ["torch"])
2307
2308


2309
2310
class OpenAIGPTLMHeadModel:
    def __init__(self, *args, **kwargs):
2311
        requires_backends(self, ["torch"])
2312
2313
2314

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2315
        requires_backends(self, ["torch"])
2316
2317
2318
2319


class OpenAIGPTModel:
    def __init__(self, *args, **kwargs):
2320
        requires_backends(self, ["torch"])
2321
2322
2323

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2324
        requires_backends(self, ["torch"])
2325
2326
2327
2328


class OpenAIGPTPreTrainedModel:
    def __init__(self, *args, **kwargs):
2329
        requires_backends(self, ["torch"])
2330
2331
2332

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2333
        requires_backends(self, ["torch"])
2334
2335
2336


def load_tf_weights_in_openai_gpt(*args, **kwargs):
2337
    requires_backends(load_tf_weights_in_openai_gpt, ["torch"])
2338
2339


2340
2341
class PegasusForCausalLM:
    def __init__(self, *args, **kwargs):
2342
        requires_backends(self, ["torch"])
2343
2344


2345
2346
class PegasusForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2347
        requires_backends(self, ["torch"])
2348
2349
2350

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2351
        requires_backends(self, ["torch"])
2352
2353


2354
2355
class PegasusModel:
    def __init__(self, *args, **kwargs):
2356
        requires_backends(self, ["torch"])
2357
2358
2359

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2360
        requires_backends(self, ["torch"])
2361
2362


Weizhen's avatar
Weizhen committed
2363
2364
2365
2366
2367
PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ProphetNetDecoder:
    def __init__(self, *args, **kwargs):
2368
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2369
2370
2371
2372


class ProphetNetEncoder:
    def __init__(self, *args, **kwargs):
2373
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2374
2375
2376
2377


class ProphetNetForCausalLM:
    def __init__(self, *args, **kwargs):
2378
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2379
2380
2381
2382


class ProphetNetForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2383
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2384
2385
2386

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2387
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2388
2389
2390
2391


class ProphetNetModel:
    def __init__(self, *args, **kwargs):
2392
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2393
2394
2395

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2396
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2397
2398
2399
2400


class ProphetNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
2401
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2402
2403
2404

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2405
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2406
2407


2408
2409
class RagModel:
    def __init__(self, *args, **kwargs):
2410
        requires_backends(self, ["torch"])
2411
2412
2413

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2414
        requires_backends(self, ["torch"])
2415
2416
2417
2418


class RagSequenceForGeneration:
    def __init__(self, *args, **kwargs):
2419
        requires_backends(self, ["torch"])
2420
2421
2422
2423


class RagTokenForGeneration:
    def __init__(self, *args, **kwargs):
2424
        requires_backends(self, ["torch"])
2425
2426
2427
2428
2429
2430
2431


REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ReformerAttention:
    def __init__(self, *args, **kwargs):
2432
        requires_backends(self, ["torch"])
2433
2434
2435
2436


class ReformerForMaskedLM:
    def __init__(self, *args, **kwargs):
2437
        requires_backends(self, ["torch"])
2438
2439
2440

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2441
        requires_backends(self, ["torch"])
2442
2443
2444
2445


class ReformerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2446
        requires_backends(self, ["torch"])
2447
2448
2449

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2450
        requires_backends(self, ["torch"])
2451
2452
2453
2454


class ReformerForSequenceClassification:
    def __init__(self, *args, **kwargs):
2455
        requires_backends(self, ["torch"])
2456
2457
2458

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2459
        requires_backends(self, ["torch"])
2460
2461
2462
2463


class ReformerLayer:
    def __init__(self, *args, **kwargs):
2464
        requires_backends(self, ["torch"])
2465
2466
2467
2468


class ReformerModel:
    def __init__(self, *args, **kwargs):
2469
        requires_backends(self, ["torch"])
2470
2471
2472

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2473
        requires_backends(self, ["torch"])
2474
2475
2476
2477


class ReformerModelWithLMHead:
    def __init__(self, *args, **kwargs):
2478
        requires_backends(self, ["torch"])
2479
2480
2481

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2482
        requires_backends(self, ["torch"])
2483
2484
2485
2486
2487
2488
2489


RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RetriBertModel:
    def __init__(self, *args, **kwargs):
2490
        requires_backends(self, ["torch"])
2491
2492
2493

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2494
        requires_backends(self, ["torch"])
2495
2496
2497
2498


class RetriBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2499
        requires_backends(self, ["torch"])
2500
2501
2502

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2503
        requires_backends(self, ["torch"])
2504
2505
2506
2507
2508
2509
2510


ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RobertaForCausalLM:
    def __init__(self, *args, **kwargs):
2511
        requires_backends(self, ["torch"])
2512
2513
2514
2515


class RobertaForMaskedLM:
    def __init__(self, *args, **kwargs):
2516
        requires_backends(self, ["torch"])
2517
2518
2519

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2520
        requires_backends(self, ["torch"])
2521
2522
2523
2524


class RobertaForMultipleChoice:
    def __init__(self, *args, **kwargs):
2525
        requires_backends(self, ["torch"])
2526
2527
2528

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2529
        requires_backends(self, ["torch"])
2530
2531
2532
2533


class RobertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2534
        requires_backends(self, ["torch"])
2535
2536
2537

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2538
        requires_backends(self, ["torch"])
2539
2540
2541
2542


class RobertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
2543
        requires_backends(self, ["torch"])
2544
2545
2546

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2547
        requires_backends(self, ["torch"])
2548
2549
2550
2551


class RobertaForTokenClassification:
    def __init__(self, *args, **kwargs):
2552
        requires_backends(self, ["torch"])
2553
2554
2555

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2556
        requires_backends(self, ["torch"])
2557
2558
2559
2560


class RobertaModel:
    def __init__(self, *args, **kwargs):
2561
        requires_backends(self, ["torch"])
2562
2563
2564

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2565
        requires_backends(self, ["torch"])
2566
2567


2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RoFormerForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


def load_tf_weights_in_roformer(*args, **kwargs):
    requires_backends(load_tf_weights_in_roformer, ["torch"])


Suraj Patil's avatar
Suraj Patil committed
2648
2649
2650
2651
2652
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Speech2TextForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2653
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2654
2655
2656

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2657
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2658
2659
2660
2661


class Speech2TextModel:
    def __init__(self, *args, **kwargs):
2662
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2663
2664
2665

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2666
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2667
2668


Sylvain Gugger's avatar
Sylvain Gugger committed
2669
2670
2671
2672
2673
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SqueezeBertForMaskedLM:
    def __init__(self, *args, **kwargs):
2674
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2675
2676
2677

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2678
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2679
2680
2681
2682


class SqueezeBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
2683
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2684
2685
2686

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2687
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2688
2689
2690
2691


class SqueezeBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2692
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2693
2694
2695

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2696
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2697
2698
2699
2700


class SqueezeBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
2701
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2702
2703
2704

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2705
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2706
2707
2708
2709


class SqueezeBertForTokenClassification:
    def __init__(self, *args, **kwargs):
2710
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2711
2712
2713

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2714
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2715
2716
2717
2718


class SqueezeBertModel:
    def __init__(self, *args, **kwargs):
2719
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2720
2721
2722

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2723
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2724
2725
2726
2727


class SqueezeBertModule:
    def __init__(self, *args, **kwargs):
2728
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2729
2730
2731
2732


class SqueezeBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2733
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2734
2735
2736

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2737
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
2738
2739


2740
2741
2742
T5_PRETRAINED_MODEL_ARCHIVE_LIST = None


2743
2744
class T5EncoderModel:
    def __init__(self, *args, **kwargs):
2745
        requires_backends(self, ["torch"])
2746
2747
2748

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2749
        requires_backends(self, ["torch"])
2750
2751


2752
2753
class T5ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2754
        requires_backends(self, ["torch"])
2755
2756
2757

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2758
        requires_backends(self, ["torch"])
2759
2760
2761
2762


class T5Model:
    def __init__(self, *args, **kwargs):
2763
        requires_backends(self, ["torch"])
2764
2765
2766

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2767
        requires_backends(self, ["torch"])
2768
2769
2770
2771


class T5PreTrainedModel:
    def __init__(self, *args, **kwargs):
2772
        requires_backends(self, ["torch"])
2773
2774
2775

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2776
        requires_backends(self, ["torch"])
2777
2778
2779


def load_tf_weights_in_t5(*args, **kwargs):
2780
    requires_backends(load_tf_weights_in_t5, ["torch"])
2781
2782


NielsRogge's avatar
NielsRogge committed
2783
2784
2785
2786
2787
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class TapasForMaskedLM:
    def __init__(self, *args, **kwargs):
2788
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2789
2790
2791

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2792
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2793
2794
2795
2796


class TapasForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2797
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2798
2799
2800

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2801
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2802
2803
2804
2805


class TapasForSequenceClassification:
    def __init__(self, *args, **kwargs):
2806
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2807
2808
2809

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2810
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2811
2812
2813
2814


class TapasModel:
    def __init__(self, *args, **kwargs):
2815
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2816
2817
2818

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2819
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2820
2821


2822
2823
2824
2825
2826
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AdaptiveEmbedding:
    def __init__(self, *args, **kwargs):
2827
        requires_backends(self, ["torch"])
2828
2829


sandip's avatar
sandip committed
2830
2831
class TransfoXLForSequenceClassification:
    def __init__(self, *args, **kwargs):
2832
        requires_backends(self, ["torch"])
sandip's avatar
sandip committed
2833
2834
2835

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2836
        requires_backends(self, ["torch"])
sandip's avatar
sandip committed
2837
2838


2839
2840
class TransfoXLLMHeadModel:
    def __init__(self, *args, **kwargs):
2841
        requires_backends(self, ["torch"])
2842
2843
2844

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2845
        requires_backends(self, ["torch"])
2846
2847
2848
2849


class TransfoXLModel:
    def __init__(self, *args, **kwargs):
2850
        requires_backends(self, ["torch"])
2851
2852
2853

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2854
        requires_backends(self, ["torch"])
2855
2856
2857
2858


class TransfoXLPreTrainedModel:
    def __init__(self, *args, **kwargs):
2859
        requires_backends(self, ["torch"])
2860
2861
2862

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2863
        requires_backends(self, ["torch"])
2864
2865
2866


def load_tf_weights_in_transfo_xl(*args, **kwargs):
2867
    requires_backends(load_tf_weights_in_transfo_xl, ["torch"])
2868
2869


Gunjan Chhablani's avatar
Gunjan Chhablani committed
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class VisualBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertForRegionToPhraseAlignment:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertForVisualReasoning:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(self, *args, **kwargs):
        requires_backends(self, ["torch"])


2929
2930
2931
2932
2933
VIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ViTForImageClassification:
    def __init__(self, *args, **kwargs):
2934
        requires_backends(self, ["torch"])
2935
2936
2937
2938


class ViTModel:
    def __init__(self, *args, **kwargs):
2939
        requires_backends(self, ["torch"])
2940
2941
2942

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2943
        requires_backends(self, ["torch"])
2944
2945
2946
2947


class ViTPreTrainedModel:
    def __init__(self, *args, **kwargs):
2948
        requires_backends(self, ["torch"])
2949
2950
2951

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2952
        requires_backends(self, ["torch"])
2953
2954


Patrick von Platen's avatar
Patrick von Platen committed
2955
2956
2957
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None


2958
2959
class Wav2Vec2ForCTC:
    def __init__(self, *args, **kwargs):
2960
        requires_backends(self, ["torch"])
2961
2962


Patrick von Platen's avatar
Patrick von Platen committed
2963
2964
class Wav2Vec2ForMaskedLM:
    def __init__(self, *args, **kwargs):
2965
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2966
2967
2968

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2969
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2970
2971


Anton Lozhkov's avatar
Anton Lozhkov committed
2972
2973
2974
2975
2976
class Wav2Vec2ForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


Patrick von Platen's avatar
Patrick von Platen committed
2977
2978
class Wav2Vec2Model:
    def __init__(self, *args, **kwargs):
2979
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2980
2981
2982

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2983
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2984
2985
2986
2987


class Wav2Vec2PreTrainedModel:
    def __init__(self, *args, **kwargs):
2988
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2989
2990
2991

    @classmethod
    def from_pretrained(self, *args, **kwargs):
2992
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2993
2994


2995
2996
2997
2998
2999
XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMForMultipleChoice:
    def __init__(self, *args, **kwargs):
3000
        requires_backends(self, ["torch"])
3001
3002
3003

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3004
        requires_backends(self, ["torch"])
3005
3006
3007
3008


class XLMForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3009
        requires_backends(self, ["torch"])
3010
3011
3012

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3013
        requires_backends(self, ["torch"])
3014
3015
3016
3017


class XLMForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
3018
        requires_backends(self, ["torch"])
3019
3020
3021

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3022
        requires_backends(self, ["torch"])
3023
3024
3025
3026


class XLMForSequenceClassification:
    def __init__(self, *args, **kwargs):
3027
        requires_backends(self, ["torch"])
3028
3029
3030

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3031
        requires_backends(self, ["torch"])
3032
3033
3034
3035


class XLMForTokenClassification:
    def __init__(self, *args, **kwargs):
3036
        requires_backends(self, ["torch"])
3037
3038
3039

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3040
        requires_backends(self, ["torch"])
3041
3042
3043
3044


class XLMModel:
    def __init__(self, *args, **kwargs):
3045
        requires_backends(self, ["torch"])
3046
3047
3048

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3049
        requires_backends(self, ["torch"])
3050
3051
3052
3053


class XLMPreTrainedModel:
    def __init__(self, *args, **kwargs):
3054
        requires_backends(self, ["torch"])
3055
3056
3057

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3058
        requires_backends(self, ["torch"])
3059
3060
3061
3062


class XLMWithLMHeadModel:
    def __init__(self, *args, **kwargs):
3063
        requires_backends(self, ["torch"])
3064
3065
3066

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3067
        requires_backends(self, ["torch"])
3068
3069


Weizhen's avatar
Weizhen committed
3070
3071
3072
3073
3074
XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMProphetNetDecoder:
    def __init__(self, *args, **kwargs):
3075
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3076
3077
3078
3079


class XLMProphetNetEncoder:
    def __init__(self, *args, **kwargs):
3080
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3081
3082
3083
3084


class XLMProphetNetForCausalLM:
    def __init__(self, *args, **kwargs):
3085
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3086
3087
3088
3089


class XLMProphetNetForConditionalGeneration:
    def __init__(self, *args, **kwargs):
3090
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3091
3092
3093

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3094
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3095
3096
3097
3098


class XLMProphetNetModel:
    def __init__(self, *args, **kwargs):
3099
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3100
3101
3102

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3103
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3104
3105


3106
3107
3108
3109
3110
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMRobertaForCausalLM:
    def __init__(self, *args, **kwargs):
3111
        requires_backends(self, ["torch"])
3112
3113
3114
3115


class XLMRobertaForMaskedLM:
    def __init__(self, *args, **kwargs):
3116
        requires_backends(self, ["torch"])
3117
3118
3119

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3120
        requires_backends(self, ["torch"])
3121
3122
3123
3124


class XLMRobertaForMultipleChoice:
    def __init__(self, *args, **kwargs):
3125
        requires_backends(self, ["torch"])
3126
3127
3128

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3129
        requires_backends(self, ["torch"])
3130
3131
3132
3133


class XLMRobertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3134
        requires_backends(self, ["torch"])
3135
3136
3137

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3138
        requires_backends(self, ["torch"])
3139
3140
3141
3142


class XLMRobertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
3143
        requires_backends(self, ["torch"])
3144
3145
3146

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3147
        requires_backends(self, ["torch"])
3148
3149
3150
3151


class XLMRobertaForTokenClassification:
    def __init__(self, *args, **kwargs):
3152
        requires_backends(self, ["torch"])
3153
3154
3155

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3156
        requires_backends(self, ["torch"])
3157
3158
3159
3160


class XLMRobertaModel:
    def __init__(self, *args, **kwargs):
3161
        requires_backends(self, ["torch"])
3162
3163
3164

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3165
        requires_backends(self, ["torch"])
3166
3167
3168
3169
3170
3171
3172


XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLNetForMultipleChoice:
    def __init__(self, *args, **kwargs):
3173
        requires_backends(self, ["torch"])
3174
3175
3176

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3177
        requires_backends(self, ["torch"])
3178
3179
3180
3181


class XLNetForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3182
        requires_backends(self, ["torch"])
3183
3184
3185

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3186
        requires_backends(self, ["torch"])
3187
3188
3189
3190


class XLNetForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
3191
        requires_backends(self, ["torch"])
3192
3193
3194

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3195
        requires_backends(self, ["torch"])
3196
3197
3198
3199


class XLNetForSequenceClassification:
    def __init__(self, *args, **kwargs):
3200
        requires_backends(self, ["torch"])
3201
3202
3203

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3204
        requires_backends(self, ["torch"])
3205
3206
3207
3208


class XLNetForTokenClassification:
    def __init__(self, *args, **kwargs):
3209
        requires_backends(self, ["torch"])
3210
3211
3212

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3213
        requires_backends(self, ["torch"])
3214
3215
3216
3217


class XLNetLMHeadModel:
    def __init__(self, *args, **kwargs):
3218
        requires_backends(self, ["torch"])
3219
3220
3221

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3222
        requires_backends(self, ["torch"])
3223
3224
3225
3226


class XLNetModel:
    def __init__(self, *args, **kwargs):
3227
        requires_backends(self, ["torch"])
3228
3229
3230

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3231
        requires_backends(self, ["torch"])
3232
3233
3234
3235


class XLNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
3236
        requires_backends(self, ["torch"])
3237
3238
3239

    @classmethod
    def from_pretrained(self, *args, **kwargs):
3240
        requires_backends(self, ["torch"])
3241
3242
3243


def load_tf_weights_in_xlnet(*args, **kwargs):
3244
    requires_backends(load_tf_weights_in_xlnet, ["torch"])
3245
3246
3247
3248


class Adafactor:
    def __init__(self, *args, **kwargs):
3249
        requires_backends(self, ["torch"])
3250
3251
3252
3253


class AdamW:
    def __init__(self, *args, **kwargs):
3254
        requires_backends(self, ["torch"])
3255
3256
3257


def get_constant_schedule(*args, **kwargs):
3258
    requires_backends(get_constant_schedule, ["torch"])
3259
3260
3261


def get_constant_schedule_with_warmup(*args, **kwargs):
3262
    requires_backends(get_constant_schedule_with_warmup, ["torch"])
3263
3264
3265


def get_cosine_schedule_with_warmup(*args, **kwargs):
3266
    requires_backends(get_cosine_schedule_with_warmup, ["torch"])
3267
3268
3269


def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs):
3270
    requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"])
3271
3272
3273


def get_linear_schedule_with_warmup(*args, **kwargs):
3274
    requires_backends(get_linear_schedule_with_warmup, ["torch"])
3275
3276
3277


def get_polynomial_decay_schedule_with_warmup(*args, **kwargs):
3278
    requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"])
3279
3280


Sylvain Gugger's avatar
Sylvain Gugger committed
3281
def get_scheduler(*args, **kwargs):
3282
    requires_backends(get_scheduler, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3283
3284


3285
3286
class Trainer:
    def __init__(self, *args, **kwargs):
3287
        requires_backends(self, ["torch"])
3288
3289
3290


def torch_distributed_zero_first(*args, **kwargs):
3291
    requires_backends(torch_distributed_zero_first, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3292
3293
3294
3295


class Seq2SeqTrainer:
    def __init__(self, *args, **kwargs):
3296
        requires_backends(self, ["torch"])