"tests/vscode:/vscode.git/clone" did not exist on "f497f564bb76697edab09184a252fc1b1a326d1e"
dummy_pt_objects.py 95.5 KB
Newer Older
1
# This file is autogenerated by the command `make fix-copies`, do not edit.
2
from ..file_utils import requires_backends
3
4
5
6


class PyTorchBenchmark:
    def __init__(self, *args, **kwargs):
7
        requires_backends(self, ["torch"])
8
9
10
11


class PyTorchBenchmarkArguments:
    def __init__(self, *args, **kwargs):
12
        requires_backends(self, ["torch"])
13
14
15
16


class GlueDataset:
    def __init__(self, *args, **kwargs):
17
        requires_backends(self, ["torch"])
18
19
20
21


class GlueDataTrainingArguments:
    def __init__(self, *args, **kwargs):
22
        requires_backends(self, ["torch"])
23
24
25
26


class LineByLineTextDataset:
    def __init__(self, *args, **kwargs):
27
        requires_backends(self, ["torch"])
28
29


30
31
class LineByLineWithRefDataset:
    def __init__(self, *args, **kwargs):
32
        requires_backends(self, ["torch"])
33
34


35
36
class LineByLineWithSOPTextDataset:
    def __init__(self, *args, **kwargs):
37
        requires_backends(self, ["torch"])
38
39
40
41


class SquadDataset:
    def __init__(self, *args, **kwargs):
42
        requires_backends(self, ["torch"])
43
44
45
46


class SquadDataTrainingArguments:
    def __init__(self, *args, **kwargs):
47
        requires_backends(self, ["torch"])
48
49
50
51


class TextDataset:
    def __init__(self, *args, **kwargs):
52
        requires_backends(self, ["torch"])
53
54
55
56


class TextDatasetForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
57
        requires_backends(self, ["torch"])
58
59


60
61
class BeamScorer:
    def __init__(self, *args, **kwargs):
62
        requires_backends(self, ["torch"])
63
64
65
66


class BeamSearchScorer:
    def __init__(self, *args, **kwargs):
67
        requires_backends(self, ["torch"])
68
69


70
71
class ForcedBOSTokenLogitsProcessor:
    def __init__(self, *args, **kwargs):
72
        requires_backends(self, ["torch"])
73

74
75
76
77
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

78
79
80

class ForcedEOSTokenLogitsProcessor:
    def __init__(self, *args, **kwargs):
81
        requires_backends(self, ["torch"])
82

83
84
85
86
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

87

88
89
class HammingDiversityLogitsProcessor:
    def __init__(self, *args, **kwargs):
90
        requires_backends(self, ["torch"])
91

92
93
94
95
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

96

97
98
class InfNanRemoveLogitsProcessor:
    def __init__(self, *args, **kwargs):
99
        requires_backends(self, ["torch"])
100

101
102
103
104
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

105

106
107
class LogitsProcessor:
    def __init__(self, *args, **kwargs):
108
        requires_backends(self, ["torch"])
109

110
111
112
113
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

114
115
116

class LogitsProcessorList:
    def __init__(self, *args, **kwargs):
117
        requires_backends(self, ["torch"])
118

119
120
121
122
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

123
124
125

class LogitsWarper:
    def __init__(self, *args, **kwargs):
126
        requires_backends(self, ["torch"])
127
128
129
130


class MinLengthLogitsProcessor:
    def __init__(self, *args, **kwargs):
131
        requires_backends(self, ["torch"])
132

133
134
135
136
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

137
138
139

class NoBadWordsLogitsProcessor:
    def __init__(self, *args, **kwargs):
140
        requires_backends(self, ["torch"])
141

142
143
144
145
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

146
147
148

class NoRepeatNGramLogitsProcessor:
    def __init__(self, *args, **kwargs):
149
        requires_backends(self, ["torch"])
150

151
152
153
154
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

155

156
157
class PrefixConstrainedLogitsProcessor:
    def __init__(self, *args, **kwargs):
158
        requires_backends(self, ["torch"])
159

160
161
162
163
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

164

165
166
class RepetitionPenaltyLogitsProcessor:
    def __init__(self, *args, **kwargs):
167
        requires_backends(self, ["torch"])
168

169
170
171
172
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

173
174
175

class TemperatureLogitsWarper:
    def __init__(self, *args, **kwargs):
176
        requires_backends(self, ["torch"])
177
178
179
180


class TopKLogitsWarper:
    def __init__(self, *args, **kwargs):
181
        requires_backends(self, ["torch"])
182
183
184
185


class TopPLogitsWarper:
    def __init__(self, *args, **kwargs):
186
        requires_backends(self, ["torch"])
187
188


189
190
class MaxLengthCriteria:
    def __init__(self, *args, **kwargs):
191
        requires_backends(self, ["torch"])
192
193
194
195


class MaxTimeCriteria:
    def __init__(self, *args, **kwargs):
196
        requires_backends(self, ["torch"])
197
198
199
200


class StoppingCriteria:
    def __init__(self, *args, **kwargs):
201
        requires_backends(self, ["torch"])
202
203
204
205


class StoppingCriteriaList:
    def __init__(self, *args, **kwargs):
206
        requires_backends(self, ["torch"])
207
208


209
def top_k_top_p_filtering(*args, **kwargs):
210
    requires_backends(top_k_top_p_filtering, ["torch"])
211
212


Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
class Conv1D:
    def __init__(self, *args, **kwargs):
215
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
216
217
218
219


class PreTrainedModel:
    def __init__(self, *args, **kwargs):
220
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
221
222

    @classmethod
223
224
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
225
226
227


def apply_chunking_to_forward(*args, **kwargs):
228
    requires_backends(apply_chunking_to_forward, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
229
230
231


def prune_layer(*args, **kwargs):
232
    requires_backends(prune_layer, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
233
234


235
236
237
238
239
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AlbertForMaskedLM:
    def __init__(self, *args, **kwargs):
240
        requires_backends(self, ["torch"])
241
242

    @classmethod
243
244
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
245
246
247
248


class AlbertForMultipleChoice:
    def __init__(self, *args, **kwargs):
249
        requires_backends(self, ["torch"])
250
251

    @classmethod
252
253
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
254
255
256
257


class AlbertForPreTraining:
    def __init__(self, *args, **kwargs):
258
        requires_backends(self, ["torch"])
259
260
261
262


class AlbertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
263
        requires_backends(self, ["torch"])
264
265

    @classmethod
266
267
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
268
269
270
271


class AlbertForSequenceClassification:
    def __init__(self, *args, **kwargs):
272
        requires_backends(self, ["torch"])
273
274

    @classmethod
275
276
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
277
278
279
280


class AlbertForTokenClassification:
    def __init__(self, *args, **kwargs):
281
        requires_backends(self, ["torch"])
282
283

    @classmethod
284
285
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
286
287
288
289


class AlbertModel:
    def __init__(self, *args, **kwargs):
290
        requires_backends(self, ["torch"])
291
292

    @classmethod
293
294
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
295
296
297
298


class AlbertPreTrainedModel:
    def __init__(self, *args, **kwargs):
299
        requires_backends(self, ["torch"])
300
301

    @classmethod
302
303
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
304
305
306


def load_tf_weights_in_albert(*args, **kwargs):
307
    requires_backends(load_tf_weights_in_albert, ["torch"])
308
309


310
311
312
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = None


313
314
315
MODEL_FOR_CAUSAL_LM_MAPPING = None


316
317
318
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None


319
320
321
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING = None


322
323
324
325
326
327
MODEL_FOR_MASKED_LM_MAPPING = None


MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None


328
329
330
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None


NielsRogge's avatar
NielsRogge committed
331
332
333
MODEL_FOR_OBJECT_DETECTION_MAPPING = None


334
335
336
337
338
339
340
341
342
343
344
345
MODEL_FOR_PRETRAINING_MAPPING = None


MODEL_FOR_QUESTION_ANSWERING_MAPPING = None


MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None


MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None


346
347
348
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None


349
350
351
352
353
354
355
356
357
358
359
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None


MODEL_MAPPING = None


MODEL_WITH_LM_HEAD_MAPPING = None


class AutoModel:
    def __init__(self, *args, **kwargs):
360
        requires_backends(self, ["torch"])
361
362

    @classmethod
363
364
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
365
366


367
368
369
370
371
372
373
374
375
class AutoModelForAudioClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


376
377
class AutoModelForCausalLM:
    def __init__(self, *args, **kwargs):
378
        requires_backends(self, ["torch"])
379
380

    @classmethod
381
382
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
383
384


385
386
387
388
389
390
391
392
393
class AutoModelForCTC:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


394
395
396
397
398
class AutoModelForImageClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
399
400
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
401
402


403
404
405
406
407
408
409
410
411
class AutoModelForImageSegmentation:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


412
413
class AutoModelForMaskedLM:
    def __init__(self, *args, **kwargs):
414
        requires_backends(self, ["torch"])
415
416

    @classmethod
417
418
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
419
420
421
422


class AutoModelForMultipleChoice:
    def __init__(self, *args, **kwargs):
423
        requires_backends(self, ["torch"])
424
425

    @classmethod
426
427
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
428
429


430
431
class AutoModelForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
432
        requires_backends(self, ["torch"])
433
434

    @classmethod
435
436
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
437
438


439
440
441
442
443
444
445
446
447
class AutoModelForObjectDetection:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


448
449
class AutoModelForPreTraining:
    def __init__(self, *args, **kwargs):
450
        requires_backends(self, ["torch"])
451
452

    @classmethod
453
454
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
455
456
457
458


class AutoModelForQuestionAnswering:
    def __init__(self, *args, **kwargs):
459
        requires_backends(self, ["torch"])
460
461

    @classmethod
462
463
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
464
465
466
467


class AutoModelForSeq2SeqLM:
    def __init__(self, *args, **kwargs):
468
        requires_backends(self, ["torch"])
469
470

    @classmethod
471
472
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
473
474
475
476


class AutoModelForSequenceClassification:
    def __init__(self, *args, **kwargs):
477
        requires_backends(self, ["torch"])
478
479

    @classmethod
480
481
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
482
483


484
485
486
487
488
489
490
491
492
class AutoModelForSpeechSeq2Seq:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


493
494
class AutoModelForTableQuestionAnswering:
    def __init__(self, *args, **kwargs):
495
        requires_backends(self, ["torch"])
496
497

    @classmethod
498
499
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
500
501
502
503


class AutoModelForTokenClassification:
    def __init__(self, *args, **kwargs):
504
        requires_backends(self, ["torch"])
505
506

    @classmethod
507
508
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
509
510
511
512


class AutoModelWithLMHead:
    def __init__(self, *args, **kwargs):
513
        requires_backends(self, ["torch"])
514
515

    @classmethod
516
517
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
518
519
520
521
522


BART_PRETRAINED_MODEL_ARCHIVE_LIST = None


523
524
class BartForCausalLM:
    def __init__(self, *args, **kwargs):
525
        requires_backends(self, ["torch"])
526

527
528
529
530
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

531

532
533
class BartForConditionalGeneration:
    def __init__(self, *args, **kwargs):
534
        requires_backends(self, ["torch"])
535
536

    @classmethod
537
538
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
539
540
541
542


class BartForQuestionAnswering:
    def __init__(self, *args, **kwargs):
543
        requires_backends(self, ["torch"])
544
545

    @classmethod
546
547
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
548
549
550
551


class BartForSequenceClassification:
    def __init__(self, *args, **kwargs):
552
        requires_backends(self, ["torch"])
553
554

    @classmethod
555
556
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
557
558
559
560


class BartModel:
    def __init__(self, *args, **kwargs):
561
        requires_backends(self, ["torch"])
562
563

    @classmethod
564
565
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
566
567


568
569
class BartPretrainedModel:
    def __init__(self, *args, **kwargs):
570
        requires_backends(self, ["torch"])
571
572

    @classmethod
573
574
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
575
576


577
578
class PretrainedBartModel:
    def __init__(self, *args, **kwargs):
579
        requires_backends(self, ["torch"])
580
581

    @classmethod
582
583
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
584
585


NielsRogge's avatar
NielsRogge committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BeitForImageClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class BeitForMaskedImageModeling:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class BeitModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class BeitPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


621
622
623
624
625
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BertForMaskedLM:
    def __init__(self, *args, **kwargs):
626
        requires_backends(self, ["torch"])
627
628

    @classmethod
629
630
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
631
632
633
634


class BertForMultipleChoice:
    def __init__(self, *args, **kwargs):
635
        requires_backends(self, ["torch"])
636
637

    @classmethod
638
639
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
640
641
642
643


class BertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
644
        requires_backends(self, ["torch"])
645
646
647
648


class BertForPreTraining:
    def __init__(self, *args, **kwargs):
649
        requires_backends(self, ["torch"])
650
651
652
653


class BertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
654
        requires_backends(self, ["torch"])
655
656

    @classmethod
657
658
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
659
660
661
662


class BertForSequenceClassification:
    def __init__(self, *args, **kwargs):
663
        requires_backends(self, ["torch"])
664
665

    @classmethod
666
667
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
668
669
670
671


class BertForTokenClassification:
    def __init__(self, *args, **kwargs):
672
        requires_backends(self, ["torch"])
673
674

    @classmethod
675
676
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
677
678
679
680


class BertLayer:
    def __init__(self, *args, **kwargs):
681
        requires_backends(self, ["torch"])
682
683
684
685


class BertLMHeadModel:
    def __init__(self, *args, **kwargs):
686
        requires_backends(self, ["torch"])
687
688

    @classmethod
689
690
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
691
692
693
694


class BertModel:
    def __init__(self, *args, **kwargs):
695
        requires_backends(self, ["torch"])
696
697

    @classmethod
698
699
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
700
701
702
703


class BertPreTrainedModel:
    def __init__(self, *args, **kwargs):
704
        requires_backends(self, ["torch"])
705
706

    @classmethod
707
708
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
709
710
711


def load_tf_weights_in_bert(*args, **kwargs):
712
    requires_backends(load_tf_weights_in_bert, ["torch"])
713
714
715
716


class BertGenerationDecoder:
    def __init__(self, *args, **kwargs):
717
        requires_backends(self, ["torch"])
718
719
720
721


class BertGenerationEncoder:
    def __init__(self, *args, **kwargs):
722
        requires_backends(self, ["torch"])
723
724


725
726
727
728
729
730
731
732
733
class BertGenerationPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


734
def load_tf_weights_in_bert_generation(*args, **kwargs):
735
    requires_backends(load_tf_weights_in_bert_generation, ["torch"])
736
737


Vasudev Gupta's avatar
Vasudev Gupta committed
738
739
740
741
742
BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BigBirdForCausalLM:
    def __init__(self, *args, **kwargs):
743
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
744

745
746
747
748
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Vasudev Gupta's avatar
Vasudev Gupta committed
749
750
751

class BigBirdForMaskedLM:
    def __init__(self, *args, **kwargs):
752
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
753
754

    @classmethod
755
756
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
757
758
759
760


class BigBirdForMultipleChoice:
    def __init__(self, *args, **kwargs):
761
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
762
763

    @classmethod
764
765
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
766
767
768
769


class BigBirdForPreTraining:
    def __init__(self, *args, **kwargs):
770
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
771
772
773
774


class BigBirdForQuestionAnswering:
    def __init__(self, *args, **kwargs):
775
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
776
777

    @classmethod
778
779
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
780
781
782
783


class BigBirdForSequenceClassification:
    def __init__(self, *args, **kwargs):
784
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
785
786

    @classmethod
787
788
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
789
790
791
792


class BigBirdForTokenClassification:
    def __init__(self, *args, **kwargs):
793
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
794
795

    @classmethod
796
797
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
798
799
800
801


class BigBirdLayer:
    def __init__(self, *args, **kwargs):
802
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
803
804
805
806


class BigBirdModel:
    def __init__(self, *args, **kwargs):
807
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
808
809

    @classmethod
810
811
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
812
813
814
815


class BigBirdPreTrainedModel:
    def __init__(self, *args, **kwargs):
816
        requires_backends(self, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
817
818

    @classmethod
819
820
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
821
822
823


def load_tf_weights_in_big_bird(*args, **kwargs):
824
    requires_backends(load_tf_weights_in_big_bird, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
825
826


Vasudev Gupta's avatar
Vasudev Gupta committed
827
828
829
830
831
832
833
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class BigBirdPegasusForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

834
835
836
837
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Vasudev Gupta's avatar
Vasudev Gupta committed
838
839
840
841
842
843

class BigBirdPegasusForConditionalGeneration:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
844
845
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
846
847
848
849
850
851
852


class BigBirdPegasusForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
853
854
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
855
856
857
858
859
860
861


class BigBirdPegasusForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
862
863
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
864
865
866
867
868
869
870


class BigBirdPegasusModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
871
872
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Vasudev Gupta's avatar
Vasudev Gupta committed
873
874


875
876
877
878
879
880
881
882
883
class BigBirdPegasusPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Sam Shleifer's avatar
Sam Shleifer committed
884
885
886
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = None


887
888
class BlenderbotForCausalLM:
    def __init__(self, *args, **kwargs):
889
        requires_backends(self, ["torch"])
890

891
892
893
894
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

895

Sam Shleifer's avatar
Sam Shleifer committed
896
897
class BlenderbotForConditionalGeneration:
    def __init__(self, *args, **kwargs):
898
        requires_backends(self, ["torch"])
Sam Shleifer's avatar
Sam Shleifer committed
899
900

    @classmethod
901
902
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sam Shleifer's avatar
Sam Shleifer committed
903
904


905
906
class BlenderbotModel:
    def __init__(self, *args, **kwargs):
907
        requires_backends(self, ["torch"])
908
909

    @classmethod
910
911
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
912
913


914
915
916
917
918
919
920
921
922
class BlenderbotPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


923
924
925
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = None


926
927
class BlenderbotSmallForCausalLM:
    def __init__(self, *args, **kwargs):
928
        requires_backends(self, ["torch"])
929

930
931
932
933
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

934

935
936
class BlenderbotSmallForConditionalGeneration:
    def __init__(self, *args, **kwargs):
937
        requires_backends(self, ["torch"])
938
939

    @classmethod
940
941
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
942
943
944
945


class BlenderbotSmallModel:
    def __init__(self, *args, **kwargs):
946
        requires_backends(self, ["torch"])
947
948

    @classmethod
949
950
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
951
952


953
954
955
956
957
958
959
960
961
class BlenderbotSmallPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


962
963
964
965
966
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CamembertForCausalLM:
    def __init__(self, *args, **kwargs):
967
        requires_backends(self, ["torch"])
968

969
970
971
972
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

973
974
975

class CamembertForMaskedLM:
    def __init__(self, *args, **kwargs):
976
        requires_backends(self, ["torch"])
977
978

    @classmethod
979
980
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
981
982
983
984


class CamembertForMultipleChoice:
    def __init__(self, *args, **kwargs):
985
        requires_backends(self, ["torch"])
986
987

    @classmethod
988
989
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
990
991
992
993


class CamembertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
994
        requires_backends(self, ["torch"])
995
996

    @classmethod
997
998
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
999
1000
1001
1002


class CamembertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1003
        requires_backends(self, ["torch"])
1004
1005

    @classmethod
1006
1007
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1008
1009
1010
1011


class CamembertForTokenClassification:
    def __init__(self, *args, **kwargs):
1012
        requires_backends(self, ["torch"])
1013
1014

    @classmethod
1015
1016
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1017
1018
1019
1020


class CamembertModel:
    def __init__(self, *args, **kwargs):
Suraj Patil's avatar
Suraj Patil committed
1021
1022
1023
        requires_backends(self, ["torch"])

    @classmethod
1024
1025
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1026
1027


NielsRogge's avatar
NielsRogge committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CanineForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CanineForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CanineForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CanineForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CanineLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class CanineModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CaninePreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


def load_tf_weights_in_canine(*args, **kwargs):
    requires_backends(load_tf_weights_in_canine, ["torch"])


Suraj Patil's avatar
Suraj Patil committed
1094
1095
1096
1097
1098
1099
1100
1101
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None


class CLIPModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1102
1103
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1104
1105
1106
1107
1108
1109
1110


class CLIPPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1111
1112
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1113
1114
1115
1116
1117
1118
1119


class CLIPTextModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1120
1121
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1122
1123
1124
1125


class CLIPVisionModel:
    def __init__(self, *args, **kwargs):
1126
        requires_backends(self, ["torch"])
1127
1128

    @classmethod
1129
1130
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1131
1132


abhishek thakur's avatar
abhishek thakur committed
1133
1134
1135
1136
1137
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ConvBertForMaskedLM:
    def __init__(self, *args, **kwargs):
1138
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1139
1140

    @classmethod
1141
1142
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1143
1144
1145
1146


class ConvBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1147
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1148
1149

    @classmethod
1150
1151
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1152
1153
1154
1155


class ConvBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1156
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1157
1158

    @classmethod
1159
1160
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1161
1162
1163
1164


class ConvBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1165
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1166
1167

    @classmethod
1168
1169
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1170
1171
1172
1173


class ConvBertForTokenClassification:
    def __init__(self, *args, **kwargs):
1174
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1175
1176

    @classmethod
1177
1178
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1179
1180
1181
1182


class ConvBertLayer:
    def __init__(self, *args, **kwargs):
1183
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1184
1185
1186
1187


class ConvBertModel:
    def __init__(self, *args, **kwargs):
1188
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1189
1190

    @classmethod
1191
1192
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1193
1194
1195
1196


class ConvBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
1197
        requires_backends(self, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1198
1199

    @classmethod
1200
1201
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1202
1203
1204


def load_tf_weights_in_convbert(*args, **kwargs):
1205
    requires_backends(load_tf_weights_in_convbert, ["torch"])
abhishek thakur's avatar
abhishek thakur committed
1206
1207


1208
1209
1210
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None


1211
1212
class CTRLForSequenceClassification:
    def __init__(self, *args, **kwargs):
1213
        requires_backends(self, ["torch"])
1214
1215

    @classmethod
1216
1217
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1218
1219


1220
1221
class CTRLLMHeadModel:
    def __init__(self, *args, **kwargs):
1222
        requires_backends(self, ["torch"])
1223
1224

    @classmethod
1225
1226
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1227
1228
1229
1230


class CTRLModel:
    def __init__(self, *args, **kwargs):
1231
        requires_backends(self, ["torch"])
1232
1233

    @classmethod
1234
1235
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1236
1237
1238
1239


class CTRLPreTrainedModel:
    def __init__(self, *args, **kwargs):
1240
        requires_backends(self, ["torch"])
1241
1242

    @classmethod
1243
1244
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1245
1246
1247
1248
1249


DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


NielsRogge's avatar
NielsRogge committed
1250
1251
class DebertaForMaskedLM:
    def __init__(self, *args, **kwargs):
1252
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1253
1254

    @classmethod
1255
1256
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1257
1258
1259
1260


class DebertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1261
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1262
1263

    @classmethod
1264
1265
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1266
1267


1268
1269
class DebertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
1270
        requires_backends(self, ["torch"])
1271
1272

    @classmethod
1273
1274
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1275
1276


NielsRogge's avatar
NielsRogge committed
1277
1278
class DebertaForTokenClassification:
    def __init__(self, *args, **kwargs):
1279
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
1280
1281

    @classmethod
1282
1283
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1284
1285


1286
1287
class DebertaModel:
    def __init__(self, *args, **kwargs):
1288
        requires_backends(self, ["torch"])
1289
1290

    @classmethod
1291
1292
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1293
1294
1295
1296


class DebertaPreTrainedModel:
    def __init__(self, *args, **kwargs):
1297
        requires_backends(self, ["torch"])
1298
1299

    @classmethod
1300
1301
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1302
1303


1304
1305
1306
1307
1308
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DebertaV2ForMaskedLM:
    def __init__(self, *args, **kwargs):
1309
        requires_backends(self, ["torch"])
1310
1311

    @classmethod
1312
1313
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1314
1315
1316
1317


class DebertaV2ForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1318
        requires_backends(self, ["torch"])
1319
1320

    @classmethod
1321
1322
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1323
1324
1325
1326


class DebertaV2ForSequenceClassification:
    def __init__(self, *args, **kwargs):
1327
        requires_backends(self, ["torch"])
1328
1329

    @classmethod
1330
1331
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1332
1333
1334
1335


class DebertaV2ForTokenClassification:
    def __init__(self, *args, **kwargs):
1336
        requires_backends(self, ["torch"])
1337
1338

    @classmethod
1339
1340
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1341
1342
1343
1344


class DebertaV2Model:
    def __init__(self, *args, **kwargs):
1345
        requires_backends(self, ["torch"])
1346
1347

    @classmethod
1348
1349
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1350
1351
1352


class DebertaV2PreTrainedModel:
NielsRogge's avatar
NielsRogge committed
1353
1354
1355
1356
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1357
1358
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378


DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DeiTForImageClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTForImageClassificationWithTeacher:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class DeiTModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1379
1380
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
1381
1382
1383


class DeiTPreTrainedModel:
1384
    def __init__(self, *args, **kwargs):
1385
        requires_backends(self, ["torch"])
1386
1387

    @classmethod
1388
1389
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1390
1391


1392
1393
1394
1395
1396
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class DistilBertForMaskedLM:
    def __init__(self, *args, **kwargs):
1397
        requires_backends(self, ["torch"])
1398
1399

    @classmethod
1400
1401
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1402
1403
1404
1405


class DistilBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1406
        requires_backends(self, ["torch"])
1407
1408

    @classmethod
1409
1410
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1411
1412
1413
1414


class DistilBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1415
        requires_backends(self, ["torch"])
1416
1417

    @classmethod
1418
1419
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1420
1421
1422
1423


class DistilBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1424
        requires_backends(self, ["torch"])
1425
1426

    @classmethod
1427
1428
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1429
1430
1431
1432


class DistilBertForTokenClassification:
    def __init__(self, *args, **kwargs):
1433
        requires_backends(self, ["torch"])
1434
1435

    @classmethod
1436
1437
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1438
1439
1440
1441


class DistilBertModel:
    def __init__(self, *args, **kwargs):
1442
        requires_backends(self, ["torch"])
1443
1444

    @classmethod
1445
1446
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1447
1448
1449
1450


class DistilBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
1451
        requires_backends(self, ["torch"])
1452
1453

    @classmethod
1454
1455
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1456
1457


Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1458
1459
1460
1461
1462
1463
1464
1465
1466
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None


DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None


DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None


1467
1468
class DPRContextEncoder:
    def __init__(self, *args, **kwargs):
1469
        requires_backends(self, ["torch"])
1470
1471
1472
1473


class DPRPretrainedContextEncoder:
    def __init__(self, *args, **kwargs):
1474
        requires_backends(self, ["torch"])
1475
1476


1477
1478
1479
1480
1481
1482
1483
1484
1485
class DPRPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1486
1487
class DPRPretrainedQuestionEncoder:
    def __init__(self, *args, **kwargs):
1488
        requires_backends(self, ["torch"])
1489
1490
1491
1492


class DPRPretrainedReader:
    def __init__(self, *args, **kwargs):
1493
        requires_backends(self, ["torch"])
1494
1495
1496
1497


class DPRQuestionEncoder:
    def __init__(self, *args, **kwargs):
1498
        requires_backends(self, ["torch"])
1499
1500
1501
1502


class DPRReader:
    def __init__(self, *args, **kwargs):
1503
        requires_backends(self, ["torch"])
1504
1505
1506
1507
1508
1509
1510


ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ElectraForMaskedLM:
    def __init__(self, *args, **kwargs):
1511
        requires_backends(self, ["torch"])
1512
1513

    @classmethod
1514
1515
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1516
1517
1518
1519


class ElectraForMultipleChoice:
    def __init__(self, *args, **kwargs):
1520
        requires_backends(self, ["torch"])
1521
1522

    @classmethod
1523
1524
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1525
1526
1527
1528


class ElectraForPreTraining:
    def __init__(self, *args, **kwargs):
1529
        requires_backends(self, ["torch"])
1530
1531
1532
1533


class ElectraForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1534
        requires_backends(self, ["torch"])
1535
1536

    @classmethod
1537
1538
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1539
1540
1541
1542


class ElectraForSequenceClassification:
    def __init__(self, *args, **kwargs):
1543
        requires_backends(self, ["torch"])
1544
1545

    @classmethod
1546
1547
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1548
1549
1550
1551


class ElectraForTokenClassification:
    def __init__(self, *args, **kwargs):
1552
        requires_backends(self, ["torch"])
1553
1554

    @classmethod
1555
1556
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1557
1558
1559
1560


class ElectraModel:
    def __init__(self, *args, **kwargs):
1561
        requires_backends(self, ["torch"])
1562
1563

    @classmethod
1564
1565
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1566
1567
1568
1569


class ElectraPreTrainedModel:
    def __init__(self, *args, **kwargs):
1570
        requires_backends(self, ["torch"])
1571
1572

    @classmethod
1573
1574
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1575
1576
1577


def load_tf_weights_in_electra(*args, **kwargs):
1578
    requires_backends(load_tf_weights_in_electra, ["torch"])
1579
1580
1581
1582


class EncoderDecoderModel:
    def __init__(self, *args, **kwargs):
1583
        requires_backends(self, ["torch"])
1584
1585

    @classmethod
1586
1587
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1588
1589
1590
1591
1592
1593
1594


FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FlaubertForMultipleChoice:
    def __init__(self, *args, **kwargs):
1595
        requires_backends(self, ["torch"])
1596
1597

    @classmethod
1598
1599
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1600
1601
1602
1603


class FlaubertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1604
        requires_backends(self, ["torch"])
1605
1606

    @classmethod
1607
1608
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1609
1610
1611
1612


class FlaubertForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
1613
        requires_backends(self, ["torch"])
1614
1615

    @classmethod
1616
1617
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1618
1619
1620
1621


class FlaubertForSequenceClassification:
    def __init__(self, *args, **kwargs):
1622
        requires_backends(self, ["torch"])
1623
1624

    @classmethod
1625
1626
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1627
1628
1629
1630


class FlaubertForTokenClassification:
    def __init__(self, *args, **kwargs):
1631
        requires_backends(self, ["torch"])
1632
1633

    @classmethod
1634
1635
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1636
1637
1638
1639


class FlaubertModel:
    def __init__(self, *args, **kwargs):
1640
        requires_backends(self, ["torch"])
1641
1642

    @classmethod
1643
1644
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1645
1646
1647
1648


class FlaubertWithLMHeadModel:
    def __init__(self, *args, **kwargs):
1649
        requires_backends(self, ["torch"])
1650
1651

    @classmethod
1652
1653
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1654
1655


Gunjan Chhablani's avatar
Gunjan Chhablani committed
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
FNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FNetForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class FNetForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class FNetForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class FNetForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class FNetForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class FNetLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class FNetModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class FNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1737
1738
class FSMTForConditionalGeneration:
    def __init__(self, *args, **kwargs):
1739
        requires_backends(self, ["torch"])
1740
1741

    @classmethod
1742
1743
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1744
1745
1746
1747


class FSMTModel:
    def __init__(self, *args, **kwargs):
1748
        requires_backends(self, ["torch"])
1749
1750

    @classmethod
1751
1752
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1753
1754
1755
1756


class PretrainedFSMTModel:
    def __init__(self, *args, **kwargs):
1757
        requires_backends(self, ["torch"])
1758
1759

    @classmethod
1760
1761
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1762
1763
1764
1765
1766
1767
1768


FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class FunnelBaseModel:
    def __init__(self, *args, **kwargs):
1769
        requires_backends(self, ["torch"])
1770
1771

    @classmethod
1772
1773
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1774
1775
1776
1777


class FunnelForMaskedLM:
    def __init__(self, *args, **kwargs):
1778
        requires_backends(self, ["torch"])
1779
1780

    @classmethod
1781
1782
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1783
1784
1785
1786


class FunnelForMultipleChoice:
    def __init__(self, *args, **kwargs):
1787
        requires_backends(self, ["torch"])
1788
1789

    @classmethod
1790
1791
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1792
1793
1794
1795


class FunnelForPreTraining:
    def __init__(self, *args, **kwargs):
1796
        requires_backends(self, ["torch"])
1797
1798
1799
1800


class FunnelForQuestionAnswering:
    def __init__(self, *args, **kwargs):
1801
        requires_backends(self, ["torch"])
1802
1803

    @classmethod
1804
1805
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1806
1807
1808
1809


class FunnelForSequenceClassification:
    def __init__(self, *args, **kwargs):
1810
        requires_backends(self, ["torch"])
1811
1812

    @classmethod
1813
1814
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1815
1816
1817
1818


class FunnelForTokenClassification:
    def __init__(self, *args, **kwargs):
1819
        requires_backends(self, ["torch"])
1820
1821

    @classmethod
1822
1823
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1824
1825
1826
1827


class FunnelModel:
    def __init__(self, *args, **kwargs):
1828
        requires_backends(self, ["torch"])
1829
1830

    @classmethod
1831
1832
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1833
1834


1835
1836
1837
1838
1839
1840
1841
1842
1843
class FunnelPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1844
def load_tf_weights_in_funnel(*args, **kwargs):
1845
    requires_backends(load_tf_weights_in_funnel, ["torch"])
1846
1847
1848
1849
1850
1851
1852


GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPT2DoubleHeadsModel:
    def __init__(self, *args, **kwargs):
1853
        requires_backends(self, ["torch"])
1854
1855

    @classmethod
1856
1857
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1858
1859


Lysandre's avatar
Lysandre committed
1860
1861
class GPT2ForSequenceClassification:
    def __init__(self, *args, **kwargs):
1862
        requires_backends(self, ["torch"])
Lysandre's avatar
Lysandre committed
1863
1864

    @classmethod
1865
1866
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Lysandre's avatar
Lysandre committed
1867
1868


1869
1870
1871
1872
1873
1874
1875
1876
1877
class GPT2ForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1878
1879
class GPT2LMHeadModel:
    def __init__(self, *args, **kwargs):
1880
        requires_backends(self, ["torch"])
1881
1882

    @classmethod
1883
1884
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1885
1886
1887
1888


class GPT2Model:
    def __init__(self, *args, **kwargs):
1889
        requires_backends(self, ["torch"])
1890
1891

    @classmethod
1892
1893
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1894
1895
1896
1897


class GPT2PreTrainedModel:
    def __init__(self, *args, **kwargs):
1898
        requires_backends(self, ["torch"])
1899
1900

    @classmethod
1901
1902
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1903
1904
1905


def load_tf_weights_in_gpt2(*args, **kwargs):
1906
    requires_backends(load_tf_weights_in_gpt2, ["torch"])
1907
1908


Suraj Patil's avatar
Suraj Patil committed
1909
1910
1911
1912
1913
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPTNeoForCausalLM:
    def __init__(self, *args, **kwargs):
1914
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1915

1916
1917
1918
1919
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Suraj Patil's avatar
Suraj Patil committed
1920

1921
1922
1923
1924
1925
class GPTNeoForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1926
1927
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1928
1929


Suraj Patil's avatar
Suraj Patil committed
1930
1931
class GPTNeoModel:
    def __init__(self, *args, **kwargs):
1932
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1933
1934

    @classmethod
1935
1936
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1937
1938
1939
1940


class GPTNeoPreTrainedModel:
    def __init__(self, *args, **kwargs):
1941
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1942
1943

    @classmethod
1944
1945
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1946
1947
1948


def load_tf_weights_in_gpt_neo(*args, **kwargs):
1949
    requires_backends(load_tf_weights_in_gpt_neo, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
1950
1951


Stella Biderman's avatar
Stella Biderman committed
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = None


class GPTJForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class GPTJForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class GPTJModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class GPTJPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Patrick von Platen's avatar
Patrick von Platen committed
1991
1992
1993
1994
1995
1996
1997
1998
HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class HubertForCTC:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


1999
2000
2001
2002
2003
2004
2005
2006
2007
class HubertForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Patrick von Platen's avatar
Patrick von Platen committed
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
class HubertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class HubertPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Sehoon Kim's avatar
Sehoon Kim committed
2026
2027
2028
2029
2030
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class IBertForMaskedLM:
    def __init__(self, *args, **kwargs):
2031
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2032
2033

    @classmethod
2034
2035
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2036
2037
2038
2039


class IBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
2040
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2041
2042

    @classmethod
2043
2044
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2045
2046
2047
2048


class IBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2049
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2050
2051

    @classmethod
2052
2053
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2054
2055
2056
2057


class IBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
2058
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2059
2060

    @classmethod
2061
2062
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2063
2064
2065
2066


class IBertForTokenClassification:
    def __init__(self, *args, **kwargs):
2067
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2068
2069

    @classmethod
2070
2071
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2072
2073
2074
2075


class IBertModel:
    def __init__(self, *args, **kwargs):
2076
        requires_backends(self, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2077
2078

    @classmethod
2079
2080
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sehoon Kim's avatar
Sehoon Kim committed
2081
2082


2083
2084
class IBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2085
        requires_backends(self, ["torch"])
2086
2087

    @classmethod
2088
2089
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2090
2091


2092
2093
2094
2095
2096
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LayoutLMForMaskedLM:
    def __init__(self, *args, **kwargs):
2097
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
2098
2099

    @classmethod
2100
2101
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
2102
2103
2104
2105


class LayoutLMForSequenceClassification:
    def __init__(self, *args, **kwargs):
2106
        requires_backends(self, ["torch"])
2107
2108

    @classmethod
2109
2110
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2111
2112
2113
2114


class LayoutLMForTokenClassification:
    def __init__(self, *args, **kwargs):
2115
        requires_backends(self, ["torch"])
2116
2117

    @classmethod
2118
2119
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2120
2121
2122
2123


class LayoutLMModel:
    def __init__(self, *args, **kwargs):
2124
        requires_backends(self, ["torch"])
2125
2126

    @classmethod
2127
2128
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2129
2130


2131
2132
2133
2134
2135
2136
2137
2138
2139
class LayoutLMPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LayoutLMv2ForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class LayoutLMv2ForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class LayoutLMv2ForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class LayoutLMv2Model:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class LayoutLMv2PreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Patrick von Platen's avatar
Patrick von Platen committed
2188
2189
2190
2191
2192
LED_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LEDForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2193
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2194
2195

    @classmethod
2196
2197
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2198
2199
2200
2201


class LEDForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2202
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2203
2204

    @classmethod
2205
2206
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2207
2208
2209
2210


class LEDForSequenceClassification:
    def __init__(self, *args, **kwargs):
2211
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2212
2213

    @classmethod
2214
2215
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2216
2217
2218
2219


class LEDModel:
    def __init__(self, *args, **kwargs):
2220
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2221
2222

    @classmethod
2223
2224
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2225
2226


2227
2228
2229
2230
2231
2232
2233
2234
2235
class LEDPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2236
2237
2238
2239
2240
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LongformerForMaskedLM:
    def __init__(self, *args, **kwargs):
2241
        requires_backends(self, ["torch"])
2242
2243

    @classmethod
2244
2245
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2246
2247
2248
2249


class LongformerForMultipleChoice:
    def __init__(self, *args, **kwargs):
2250
        requires_backends(self, ["torch"])
2251
2252

    @classmethod
2253
2254
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2255
2256
2257
2258


class LongformerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2259
        requires_backends(self, ["torch"])
2260
2261

    @classmethod
2262
2263
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2264
2265
2266
2267


class LongformerForSequenceClassification:
    def __init__(self, *args, **kwargs):
2268
        requires_backends(self, ["torch"])
2269
2270

    @classmethod
2271
2272
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2273
2274
2275
2276


class LongformerForTokenClassification:
    def __init__(self, *args, **kwargs):
2277
        requires_backends(self, ["torch"])
2278
2279

    @classmethod
2280
2281
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2282
2283
2284
2285


class LongformerModel:
    def __init__(self, *args, **kwargs):
2286
        requires_backends(self, ["torch"])
2287
2288

    @classmethod
2289
2290
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2291
2292


2293
2294
2295
2296
2297
2298
2299
2300
2301
class LongformerPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2302
2303
class LongformerSelfAttention:
    def __init__(self, *args, **kwargs):
2304
        requires_backends(self, ["torch"])
2305
2306


NielsRogge's avatar
NielsRogge committed
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = None


class LukeForEntityClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForEntityPairClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeForEntitySpanClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class LukeModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2330
2331
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
2332
2333
2334
2335
2336
2337
2338


class LukePreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2339
2340
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
2341
2342


2343
2344
class LxmertEncoder:
    def __init__(self, *args, **kwargs):
2345
        requires_backends(self, ["torch"])
2346
2347
2348
2349


class LxmertForPreTraining:
    def __init__(self, *args, **kwargs):
2350
        requires_backends(self, ["torch"])
2351
2352
2353
2354


class LxmertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2355
        requires_backends(self, ["torch"])
2356
2357

    @classmethod
2358
2359
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2360
2361
2362
2363


class LxmertModel:
    def __init__(self, *args, **kwargs):
2364
        requires_backends(self, ["torch"])
2365
2366

    @classmethod
2367
2368
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2369
2370
2371
2372


class LxmertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2373
        requires_backends(self, ["torch"])
2374
2375

    @classmethod
2376
2377
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2378
2379
2380
2381


class LxmertVisualFeatureEncoder:
    def __init__(self, *args, **kwargs):
2382
        requires_backends(self, ["torch"])
2383
2384
2385
2386


class LxmertXLayer:
    def __init__(self, *args, **kwargs):
2387
        requires_backends(self, ["torch"])
2388
2389


Suraj Patil's avatar
Suraj Patil committed
2390
2391
2392
2393
2394
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST = None


class M2M100ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2395
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2396
2397

    @classmethod
2398
2399
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2400
2401
2402
2403


class M2M100Model:
    def __init__(self, *args, **kwargs):
2404
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2405
2406

    @classmethod
2407
2408
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
2409
2410


2411
2412
2413
2414
2415
2416
2417
2418
2419
class M2M100PreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2420
2421
class MarianForCausalLM:
    def __init__(self, *args, **kwargs):
2422
        requires_backends(self, ["torch"])
2423

2424
2425
2426
2427
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

2428

2429
2430
class MarianModel:
    def __init__(self, *args, **kwargs):
2431
        requires_backends(self, ["torch"])
2432
2433

    @classmethod
2434
2435
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2436
2437


2438
2439
class MarianMTModel:
    def __init__(self, *args, **kwargs):
2440
        requires_backends(self, ["torch"])
2441
2442

    @classmethod
2443
2444
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2445
2446


2447
2448
class MBartForCausalLM:
    def __init__(self, *args, **kwargs):
2449
        requires_backends(self, ["torch"])
2450

2451
2452
2453
2454
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

2455

2456
2457
class MBartForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2458
        requires_backends(self, ["torch"])
2459
2460

    @classmethod
2461
2462
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2463
2464


2465
2466
class MBartForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2467
        requires_backends(self, ["torch"])
2468
2469

    @classmethod
2470
2471
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2472
2473
2474
2475


class MBartForSequenceClassification:
    def __init__(self, *args, **kwargs):
2476
        requires_backends(self, ["torch"])
2477
2478

    @classmethod
2479
2480
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2481
2482


2483
2484
class MBartModel:
    def __init__(self, *args, **kwargs):
2485
        requires_backends(self, ["torch"])
2486
2487

    @classmethod
2488
2489
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2490
2491


2492
2493
2494
2495
2496
2497
2498
2499
2500
class MBartPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2501
2502
2503
2504
2505
2506
2507
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MegatronBertForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

2508
2509
2510
2511
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

2512
2513
2514
2515
2516
2517

class MegatronBertForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2518
2519
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2520
2521
2522
2523
2524
2525
2526


class MegatronBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2527
2528
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545


class MegatronBertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class MegatronBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2546
2547
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2548
2549
2550
2551
2552
2553
2554


class MegatronBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2555
2556
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2557
2558
2559
2560
2561
2562
2563


class MegatronBertForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2564
2565
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2566
2567
2568
2569
2570
2571
2572


class MegatronBertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
2573
2574
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2575
2576


2577
2578
2579
2580
2581
2582
2583
2584
2585
class MegatronBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2586
2587
class MMBTForClassification:
    def __init__(self, *args, **kwargs):
2588
        requires_backends(self, ["torch"])
2589
2590
2591
2592


class MMBTModel:
    def __init__(self, *args, **kwargs):
2593
        requires_backends(self, ["torch"])
2594
2595

    @classmethod
2596
2597
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2598
2599
2600
2601


class ModalEmbeddings:
    def __init__(self, *args, **kwargs):
2602
        requires_backends(self, ["torch"])
2603
2604
2605
2606
2607
2608
2609


MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MobileBertForMaskedLM:
    def __init__(self, *args, **kwargs):
2610
        requires_backends(self, ["torch"])
2611
2612

    @classmethod
2613
2614
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2615
2616
2617
2618


class MobileBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
2619
        requires_backends(self, ["torch"])
2620
2621

    @classmethod
2622
2623
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2624
2625
2626
2627


class MobileBertForNextSentencePrediction:
    def __init__(self, *args, **kwargs):
2628
        requires_backends(self, ["torch"])
2629
2630
2631
2632


class MobileBertForPreTraining:
    def __init__(self, *args, **kwargs):
2633
        requires_backends(self, ["torch"])
2634
2635
2636
2637


class MobileBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2638
        requires_backends(self, ["torch"])
2639
2640

    @classmethod
2641
2642
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2643
2644
2645
2646


class MobileBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
2647
        requires_backends(self, ["torch"])
2648
2649

    @classmethod
2650
2651
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2652
2653
2654
2655


class MobileBertForTokenClassification:
    def __init__(self, *args, **kwargs):
2656
        requires_backends(self, ["torch"])
2657
2658

    @classmethod
2659
2660
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2661
2662
2663
2664


class MobileBertLayer:
    def __init__(self, *args, **kwargs):
2665
        requires_backends(self, ["torch"])
2666
2667
2668
2669


class MobileBertModel:
    def __init__(self, *args, **kwargs):
2670
        requires_backends(self, ["torch"])
2671
2672

    @classmethod
2673
2674
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2675
2676
2677
2678


class MobileBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
2679
        requires_backends(self, ["torch"])
2680
2681

    @classmethod
2682
2683
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2684
2685
2686


def load_tf_weights_in_mobilebert(*args, **kwargs):
2687
    requires_backends(load_tf_weights_in_mobilebert, ["torch"])
2688
2689


StillKeepTry's avatar
StillKeepTry committed
2690
2691
2692
2693
2694
MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class MPNetForMaskedLM:
    def __init__(self, *args, **kwargs):
2695
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2696
2697

    @classmethod
2698
2699
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2700
2701
2702
2703


class MPNetForMultipleChoice:
    def __init__(self, *args, **kwargs):
2704
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2705
2706

    @classmethod
2707
2708
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2709
2710
2711
2712


class MPNetForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2713
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2714
2715

    @classmethod
2716
2717
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2718
2719
2720
2721


class MPNetForSequenceClassification:
    def __init__(self, *args, **kwargs):
2722
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2723
2724

    @classmethod
2725
2726
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2727
2728
2729
2730


class MPNetForTokenClassification:
    def __init__(self, *args, **kwargs):
2731
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2732
2733

    @classmethod
2734
2735
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2736
2737
2738
2739


class MPNetLayer:
    def __init__(self, *args, **kwargs):
2740
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2741
2742
2743
2744


class MPNetModel:
    def __init__(self, *args, **kwargs):
2745
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2746
2747

    @classmethod
2748
2749
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2750
2751
2752
2753


class MPNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
2754
        requires_backends(self, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2755
2756

    @classmethod
2757
2758
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
StillKeepTry's avatar
StillKeepTry committed
2759
2760


2761
2762
class MT5EncoderModel:
    def __init__(self, *args, **kwargs):
2763
        requires_backends(self, ["torch"])
2764
2765

    @classmethod
2766
2767
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2768
2769


Patrick von Platen's avatar
Patrick von Platen committed
2770
2771
class MT5ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2772
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2773
2774

    @classmethod
2775
2776
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2777
2778
2779
2780


class MT5Model:
    def __init__(self, *args, **kwargs):
2781
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2782
2783

    @classmethod
2784
2785
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
2786
2787


2788
2789
2790
2791
2792
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class OpenAIGPTDoubleHeadsModel:
    def __init__(self, *args, **kwargs):
2793
        requires_backends(self, ["torch"])
2794
2795

    @classmethod
2796
2797
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2798
2799


2800
2801
class OpenAIGPTForSequenceClassification:
    def __init__(self, *args, **kwargs):
2802
        requires_backends(self, ["torch"])
2803
2804

    @classmethod
2805
2806
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2807
2808


2809
2810
class OpenAIGPTLMHeadModel:
    def __init__(self, *args, **kwargs):
2811
        requires_backends(self, ["torch"])
2812
2813

    @classmethod
2814
2815
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2816
2817
2818
2819


class OpenAIGPTModel:
    def __init__(self, *args, **kwargs):
2820
        requires_backends(self, ["torch"])
2821
2822

    @classmethod
2823
2824
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2825
2826
2827
2828


class OpenAIGPTPreTrainedModel:
    def __init__(self, *args, **kwargs):
2829
        requires_backends(self, ["torch"])
2830
2831

    @classmethod
2832
2833
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2834
2835
2836


def load_tf_weights_in_openai_gpt(*args, **kwargs):
2837
    requires_backends(load_tf_weights_in_openai_gpt, ["torch"])
2838
2839


2840
2841
class PegasusForCausalLM:
    def __init__(self, *args, **kwargs):
2842
        requires_backends(self, ["torch"])
2843

2844
2845
2846
2847
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

2848

2849
2850
class PegasusForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2851
        requires_backends(self, ["torch"])
2852
2853

    @classmethod
2854
2855
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2856
2857


2858
2859
class PegasusModel:
    def __init__(self, *args, **kwargs):
2860
        requires_backends(self, ["torch"])
2861
2862

    @classmethod
2863
2864
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2865
2866


2867
2868
2869
2870
2871
2872
2873
2874
2875
class PegasusPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Weizhen's avatar
Weizhen committed
2876
2877
2878
2879
2880
PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ProphetNetDecoder:
    def __init__(self, *args, **kwargs):
2881
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2882
2883
2884
2885


class ProphetNetEncoder:
    def __init__(self, *args, **kwargs):
2886
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2887
2888
2889
2890


class ProphetNetForCausalLM:
    def __init__(self, *args, **kwargs):
2891
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2892

2893
2894
2895
2896
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Weizhen's avatar
Weizhen committed
2897
2898
2899

class ProphetNetForConditionalGeneration:
    def __init__(self, *args, **kwargs):
2900
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2901
2902

    @classmethod
2903
2904
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
2905
2906
2907
2908


class ProphetNetModel:
    def __init__(self, *args, **kwargs):
2909
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2910
2911

    @classmethod
2912
2913
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
2914
2915
2916
2917


class ProphetNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
2918
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
2919
2920

    @classmethod
2921
2922
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
2923
2924


2925
2926
class RagModel:
    def __init__(self, *args, **kwargs):
2927
        requires_backends(self, ["torch"])
2928
2929

    @classmethod
2930
2931
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2932
2933


2934
2935
2936
2937
2938
2939
2940
2941
2942
class RagPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


2943
2944
class RagSequenceForGeneration:
    def __init__(self, *args, **kwargs):
2945
        requires_backends(self, ["torch"])
2946
2947
2948
2949


class RagTokenForGeneration:
    def __init__(self, *args, **kwargs):
2950
        requires_backends(self, ["torch"])
2951
2952
2953
2954
2955
2956
2957


REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ReformerAttention:
    def __init__(self, *args, **kwargs):
2958
        requires_backends(self, ["torch"])
2959
2960
2961
2962


class ReformerForMaskedLM:
    def __init__(self, *args, **kwargs):
2963
        requires_backends(self, ["torch"])
2964
2965

    @classmethod
2966
2967
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2968
2969
2970
2971


class ReformerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
2972
        requires_backends(self, ["torch"])
2973
2974

    @classmethod
2975
2976
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2977
2978
2979
2980


class ReformerForSequenceClassification:
    def __init__(self, *args, **kwargs):
2981
        requires_backends(self, ["torch"])
2982
2983

    @classmethod
2984
2985
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
2986
2987
2988
2989


class ReformerLayer:
    def __init__(self, *args, **kwargs):
2990
        requires_backends(self, ["torch"])
2991
2992
2993
2994


class ReformerModel:
    def __init__(self, *args, **kwargs):
2995
        requires_backends(self, ["torch"])
2996
2997

    @classmethod
2998
2999
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3000
3001
3002
3003


class ReformerModelWithLMHead:
    def __init__(self, *args, **kwargs):
3004
        requires_backends(self, ["torch"])
3005
3006

    @classmethod
3007
3008
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3009
3010


3011
3012
3013
3014
3015
3016
3017
3018
3019
class ReformerPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RemBertForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RemBertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class RemBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


def load_tf_weights_in_rembert(*args, **kwargs):
    requires_backends(load_tf_weights_in_rembert, ["torch"])


3104
3105
3106
3107
3108
RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RetriBertModel:
    def __init__(self, *args, **kwargs):
3109
        requires_backends(self, ["torch"])
3110
3111

    @classmethod
3112
3113
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3114
3115
3116
3117


class RetriBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
3118
        requires_backends(self, ["torch"])
3119
3120

    @classmethod
3121
3122
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3123
3124
3125
3126
3127
3128
3129


ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RobertaForCausalLM:
    def __init__(self, *args, **kwargs):
3130
        requires_backends(self, ["torch"])
3131

3132
3133
3134
3135
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

3136
3137
3138

class RobertaForMaskedLM:
    def __init__(self, *args, **kwargs):
3139
        requires_backends(self, ["torch"])
3140
3141

    @classmethod
3142
3143
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3144
3145
3146
3147


class RobertaForMultipleChoice:
    def __init__(self, *args, **kwargs):
3148
        requires_backends(self, ["torch"])
3149
3150

    @classmethod
3151
3152
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3153
3154
3155
3156


class RobertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3157
        requires_backends(self, ["torch"])
3158
3159

    @classmethod
3160
3161
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3162
3163
3164
3165


class RobertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
3166
        requires_backends(self, ["torch"])
3167
3168

    @classmethod
3169
3170
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3171
3172
3173
3174


class RobertaForTokenClassification:
    def __init__(self, *args, **kwargs):
3175
        requires_backends(self, ["torch"])
3176
3177

    @classmethod
3178
3179
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3180
3181
3182
3183


class RobertaModel:
    def __init__(self, *args, **kwargs):
3184
        requires_backends(self, ["torch"])
3185
3186

    @classmethod
3187
3188
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3189
3190


3191
3192
3193
3194
3195
3196
3197
3198
3199
class RobertaPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


3200
3201
3202
3203
3204
3205
3206
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class RoFormerForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

3207
3208
3209
3210
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

3211
3212
3213
3214
3215
3216

class RoFormerForMaskedLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3217
3218
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3219
3220
3221
3222
3223
3224
3225


class RoFormerForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3226
3227
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3228
3229
3230
3231
3232
3233
3234


class RoFormerForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3235
3236
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3237
3238
3239
3240
3241
3242
3243


class RoFormerForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3244
3245
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3246
3247
3248
3249
3250
3251
3252


class RoFormerForTokenClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3253
3254
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266


class RoFormerLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class RoFormerModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3267
3268
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3269
3270
3271
3272
3273
3274
3275


class RoFormerPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3276
3277
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3278
3279
3280
3281
3282
3283


def load_tf_weights_in_roformer(*args, **kwargs):
    requires_backends(load_tf_weights_in_roformer, ["torch"])


3284
3285
3286
3287
3288
3289
3290
3291
3292
class SpeechEncoderDecoderModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Suraj Patil's avatar
Suraj Patil committed
3293
3294
3295
3296
3297
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class Speech2TextForConditionalGeneration:
    def __init__(self, *args, **kwargs):
3298
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
3299
3300

    @classmethod
3301
3302
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
3303
3304
3305
3306


class Speech2TextModel:
    def __init__(self, *args, **kwargs):
3307
        requires_backends(self, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
3308
3309

    @classmethod
3310
3311
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Suraj Patil's avatar
Suraj Patil committed
3312
3313


3314
3315
3316
3317
3318
3319
3320
3321
3322
class Speech2TextPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
class Speech2Text2ForCausalLM:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class Speech2Text2PreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Ori Ram's avatar
Ori Ram committed
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SplinterForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class SplinterLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class SplinterModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class SplinterPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Sylvain Gugger's avatar
Sylvain Gugger committed
3376
3377
3378
3379
3380
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class SqueezeBertForMaskedLM:
    def __init__(self, *args, **kwargs):
3381
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3382
3383

    @classmethod
3384
3385
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3386
3387
3388
3389


class SqueezeBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
3390
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3391
3392

    @classmethod
3393
3394
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3395
3396
3397
3398


class SqueezeBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3399
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3400
3401

    @classmethod
3402
3403
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3404
3405
3406
3407


class SqueezeBertForSequenceClassification:
    def __init__(self, *args, **kwargs):
3408
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3409
3410

    @classmethod
3411
3412
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3413
3414
3415
3416


class SqueezeBertForTokenClassification:
    def __init__(self, *args, **kwargs):
3417
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3418
3419

    @classmethod
3420
3421
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3422
3423
3424
3425


class SqueezeBertModel:
    def __init__(self, *args, **kwargs):
3426
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3427
3428

    @classmethod
3429
3430
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3431
3432
3433
3434


class SqueezeBertModule:
    def __init__(self, *args, **kwargs):
3435
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3436
3437
3438
3439


class SqueezeBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
3440
        requires_backends(self, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3441
3442

    @classmethod
3443
3444
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
3445
3446


3447
3448
3449
T5_PRETRAINED_MODEL_ARCHIVE_LIST = None


3450
3451
class T5EncoderModel:
    def __init__(self, *args, **kwargs):
3452
        requires_backends(self, ["torch"])
3453
3454

    @classmethod
3455
3456
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3457
3458


3459
3460
class T5ForConditionalGeneration:
    def __init__(self, *args, **kwargs):
3461
        requires_backends(self, ["torch"])
3462
3463

    @classmethod
3464
3465
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3466
3467
3468
3469


class T5Model:
    def __init__(self, *args, **kwargs):
3470
        requires_backends(self, ["torch"])
3471
3472

    @classmethod
3473
3474
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3475
3476
3477
3478


class T5PreTrainedModel:
    def __init__(self, *args, **kwargs):
3479
        requires_backends(self, ["torch"])
3480
3481

    @classmethod
3482
3483
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3484
3485
3486


def load_tf_weights_in_t5(*args, **kwargs):
3487
    requires_backends(load_tf_weights_in_t5, ["torch"])
3488
3489


NielsRogge's avatar
NielsRogge committed
3490
3491
3492
3493
3494
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = None


class TapasForMaskedLM:
    def __init__(self, *args, **kwargs):
3495
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
3496
3497

    @classmethod
3498
3499
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
3500
3501
3502
3503


class TapasForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3504
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
3505
3506

    @classmethod
3507
3508
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
3509
3510
3511
3512


class TapasForSequenceClassification:
    def __init__(self, *args, **kwargs):
3513
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
3514
3515

    @classmethod
3516
3517
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
3518
3519
3520
3521


class TapasModel:
    def __init__(self, *args, **kwargs):
3522
        requires_backends(self, ["torch"])
NielsRogge's avatar
NielsRogge committed
3523
3524

    @classmethod
3525
3526
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
NielsRogge's avatar
NielsRogge committed
3527
3528


3529
3530
3531
3532
3533
3534
3535
3536
3537
class TapasPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


3538
3539
3540
3541
def load_tf_weights_in_tapas(*args, **kwargs):
    requires_backends(load_tf_weights_in_tapas, ["torch"])


3542
3543
3544
3545
3546
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None


class AdaptiveEmbedding:
    def __init__(self, *args, **kwargs):
3547
        requires_backends(self, ["torch"])
3548
3549


sandip's avatar
sandip committed
3550
3551
class TransfoXLForSequenceClassification:
    def __init__(self, *args, **kwargs):
3552
        requires_backends(self, ["torch"])
sandip's avatar
sandip committed
3553
3554

    @classmethod
3555
3556
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
sandip's avatar
sandip committed
3557
3558


3559
3560
class TransfoXLLMHeadModel:
    def __init__(self, *args, **kwargs):
3561
        requires_backends(self, ["torch"])
3562
3563

    @classmethod
3564
3565
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3566
3567
3568
3569


class TransfoXLModel:
    def __init__(self, *args, **kwargs):
3570
        requires_backends(self, ["torch"])
3571
3572

    @classmethod
3573
3574
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3575
3576
3577
3578


class TransfoXLPreTrainedModel:
    def __init__(self, *args, **kwargs):
3579
        requires_backends(self, ["torch"])
3580
3581

    @classmethod
3582
3583
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3584
3585
3586


def load_tf_weights_in_transfo_xl(*args, **kwargs):
3587
    requires_backends(load_tf_weights_in_transfo_xl, ["torch"])
3588
3589


Gunjan Chhablani's avatar
Gunjan Chhablani committed
3590
3591
3592
3593
3594
3595
3596
3597
VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class VisualBertForMultipleChoice:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3598
3599
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Gunjan Chhablani's avatar
Gunjan Chhablani committed
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611


class VisualBertForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertForQuestionAnswering:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3612
3613
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Gunjan Chhablani's avatar
Gunjan Chhablani committed
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635


class VisualBertForRegionToPhraseAlignment:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertForVisualReasoning:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertLayer:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])


class VisualBertModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3636
3637
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Gunjan Chhablani's avatar
Gunjan Chhablani committed
3638
3639
3640
3641
3642
3643
3644


class VisualBertPreTrainedModel:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
3645
3646
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Gunjan Chhablani's avatar
Gunjan Chhablani committed
3647
3648


3649
3650
3651
3652
3653
VIT_PRETRAINED_MODEL_ARCHIVE_LIST = None


class ViTForImageClassification:
    def __init__(self, *args, **kwargs):
3654
        requires_backends(self, ["torch"])
3655
3656
3657
3658


class ViTModel:
    def __init__(self, *args, **kwargs):
3659
        requires_backends(self, ["torch"])
3660
3661

    @classmethod
3662
3663
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3664
3665
3666
3667


class ViTPreTrainedModel:
    def __init__(self, *args, **kwargs):
3668
        requires_backends(self, ["torch"])
3669
3670

    @classmethod
3671
3672
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3673
3674


Patrick von Platen's avatar
Patrick von Platen committed
3675
3676
3677
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None


3678
3679
class Wav2Vec2ForCTC:
    def __init__(self, *args, **kwargs):
3680
        requires_backends(self, ["torch"])
3681
3682


Patrick von Platen's avatar
Patrick von Platen committed
3683
3684
class Wav2Vec2ForMaskedLM:
    def __init__(self, *args, **kwargs):
3685
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3686
3687

    @classmethod
3688
3689
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3690
3691


Anton Lozhkov's avatar
Anton Lozhkov committed
3692
3693
3694
class Wav2Vec2ForPreTraining:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])
3695
3696
3697
3698
3699
3700
3701
3702
3703


class Wav2Vec2ForSequenceClassification:
    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Anton Lozhkov's avatar
Anton Lozhkov committed
3704
3705


Patrick von Platen's avatar
Patrick von Platen committed
3706
3707
class Wav2Vec2Model:
    def __init__(self, *args, **kwargs):
3708
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3709
3710

    @classmethod
3711
3712
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3713
3714
3715
3716


class Wav2Vec2PreTrainedModel:
    def __init__(self, *args, **kwargs):
3717
        requires_backends(self, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3718
3719

    @classmethod
3720
3721
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Patrick von Platen's avatar
Patrick von Platen committed
3722
3723


3724
3725
3726
3727
3728
XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMForMultipleChoice:
    def __init__(self, *args, **kwargs):
3729
        requires_backends(self, ["torch"])
3730
3731

    @classmethod
3732
3733
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3734
3735
3736
3737


class XLMForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3738
        requires_backends(self, ["torch"])
3739
3740

    @classmethod
3741
3742
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3743
3744
3745
3746


class XLMForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
3747
        requires_backends(self, ["torch"])
3748
3749

    @classmethod
3750
3751
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3752
3753
3754
3755


class XLMForSequenceClassification:
    def __init__(self, *args, **kwargs):
3756
        requires_backends(self, ["torch"])
3757
3758

    @classmethod
3759
3760
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3761
3762
3763
3764


class XLMForTokenClassification:
    def __init__(self, *args, **kwargs):
3765
        requires_backends(self, ["torch"])
3766
3767

    @classmethod
3768
3769
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3770
3771
3772
3773


class XLMModel:
    def __init__(self, *args, **kwargs):
3774
        requires_backends(self, ["torch"])
3775
3776

    @classmethod
3777
3778
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3779
3780
3781
3782


class XLMPreTrainedModel:
    def __init__(self, *args, **kwargs):
3783
        requires_backends(self, ["torch"])
3784
3785

    @classmethod
3786
3787
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3788
3789
3790
3791


class XLMWithLMHeadModel:
    def __init__(self, *args, **kwargs):
3792
        requires_backends(self, ["torch"])
3793
3794

    @classmethod
3795
3796
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3797
3798


Weizhen's avatar
Weizhen committed
3799
3800
3801
3802
3803
XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMProphetNetDecoder:
    def __init__(self, *args, **kwargs):
3804
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3805
3806
3807
3808


class XLMProphetNetEncoder:
    def __init__(self, *args, **kwargs):
3809
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3810
3811
3812
3813


class XLMProphetNetForCausalLM:
    def __init__(self, *args, **kwargs):
3814
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3815

3816
3817
3818
3819
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

Weizhen's avatar
Weizhen committed
3820
3821
3822

class XLMProphetNetForConditionalGeneration:
    def __init__(self, *args, **kwargs):
3823
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3824
3825

    @classmethod
3826
3827
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
3828
3829
3830
3831


class XLMProphetNetModel:
    def __init__(self, *args, **kwargs):
3832
        requires_backends(self, ["torch"])
Weizhen's avatar
Weizhen committed
3833
3834

    @classmethod
3835
3836
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Weizhen's avatar
Weizhen committed
3837
3838


3839
3840
3841
3842
3843
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLMRobertaForCausalLM:
    def __init__(self, *args, **kwargs):
3844
        requires_backends(self, ["torch"])
3845

3846
3847
3848
3849
    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

3850
3851
3852

class XLMRobertaForMaskedLM:
    def __init__(self, *args, **kwargs):
3853
        requires_backends(self, ["torch"])
3854
3855

    @classmethod
3856
3857
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3858
3859
3860
3861


class XLMRobertaForMultipleChoice:
    def __init__(self, *args, **kwargs):
3862
        requires_backends(self, ["torch"])
3863
3864

    @classmethod
3865
3866
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3867
3868
3869
3870


class XLMRobertaForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3871
        requires_backends(self, ["torch"])
3872
3873

    @classmethod
3874
3875
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3876
3877
3878
3879


class XLMRobertaForSequenceClassification:
    def __init__(self, *args, **kwargs):
3880
        requires_backends(self, ["torch"])
3881
3882

    @classmethod
3883
3884
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3885
3886
3887
3888


class XLMRobertaForTokenClassification:
    def __init__(self, *args, **kwargs):
3889
        requires_backends(self, ["torch"])
3890
3891

    @classmethod
3892
3893
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3894
3895
3896
3897


class XLMRobertaModel:
    def __init__(self, *args, **kwargs):
3898
        requires_backends(self, ["torch"])
3899
3900

    @classmethod
3901
3902
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3903
3904
3905
3906
3907
3908
3909


XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None


class XLNetForMultipleChoice:
    def __init__(self, *args, **kwargs):
3910
        requires_backends(self, ["torch"])
3911
3912

    @classmethod
3913
3914
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3915
3916
3917
3918


class XLNetForQuestionAnswering:
    def __init__(self, *args, **kwargs):
3919
        requires_backends(self, ["torch"])
3920
3921

    @classmethod
3922
3923
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3924
3925
3926
3927


class XLNetForQuestionAnsweringSimple:
    def __init__(self, *args, **kwargs):
3928
        requires_backends(self, ["torch"])
3929
3930

    @classmethod
3931
3932
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3933
3934
3935
3936


class XLNetForSequenceClassification:
    def __init__(self, *args, **kwargs):
3937
        requires_backends(self, ["torch"])
3938
3939

    @classmethod
3940
3941
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3942
3943
3944
3945


class XLNetForTokenClassification:
    def __init__(self, *args, **kwargs):
3946
        requires_backends(self, ["torch"])
3947
3948

    @classmethod
3949
3950
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3951
3952
3953
3954


class XLNetLMHeadModel:
    def __init__(self, *args, **kwargs):
3955
        requires_backends(self, ["torch"])
3956
3957

    @classmethod
3958
3959
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3960
3961
3962
3963


class XLNetModel:
    def __init__(self, *args, **kwargs):
3964
        requires_backends(self, ["torch"])
3965
3966

    @classmethod
3967
3968
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3969
3970
3971
3972


class XLNetPreTrainedModel:
    def __init__(self, *args, **kwargs):
3973
        requires_backends(self, ["torch"])
3974
3975

    @classmethod
3976
3977
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
3978
3979
3980


def load_tf_weights_in_xlnet(*args, **kwargs):
3981
    requires_backends(load_tf_weights_in_xlnet, ["torch"])
3982
3983
3984
3985


class Adafactor:
    def __init__(self, *args, **kwargs):
3986
        requires_backends(self, ["torch"])
3987
3988
3989
3990


class AdamW:
    def __init__(self, *args, **kwargs):
3991
        requires_backends(self, ["torch"])
3992
3993
3994


def get_constant_schedule(*args, **kwargs):
3995
    requires_backends(get_constant_schedule, ["torch"])
3996
3997
3998


def get_constant_schedule_with_warmup(*args, **kwargs):
3999
    requires_backends(get_constant_schedule_with_warmup, ["torch"])
4000
4001
4002


def get_cosine_schedule_with_warmup(*args, **kwargs):
4003
    requires_backends(get_cosine_schedule_with_warmup, ["torch"])
4004
4005
4006


def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs):
4007
    requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"])
4008
4009
4010


def get_linear_schedule_with_warmup(*args, **kwargs):
4011
    requires_backends(get_linear_schedule_with_warmup, ["torch"])
4012
4013
4014


def get_polynomial_decay_schedule_with_warmup(*args, **kwargs):
4015
    requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"])
4016
4017


Sylvain Gugger's avatar
Sylvain Gugger committed
4018
def get_scheduler(*args, **kwargs):
4019
    requires_backends(get_scheduler, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
4020
4021


4022
4023
class Trainer:
    def __init__(self, *args, **kwargs):
4024
        requires_backends(self, ["torch"])
4025
4026
4027


def torch_distributed_zero_first(*args, **kwargs):
4028
    requires_backends(torch_distributed_zero_first, ["torch"])
Sylvain Gugger's avatar
Sylvain Gugger committed
4029
4030
4031
4032


class Seq2SeqTrainer:
    def __init__(self, *args, **kwargs):
4033
        requires_backends(self, ["torch"])