test_trainer.py 59.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import dataclasses
17
import gc
18
import os
19
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
20
import re
21
import tempfile
Julien Chaumond's avatar
Julien Chaumond committed
22
import unittest
23
from pathlib import Path
Julien Chaumond's avatar
Julien Chaumond committed
24

Sylvain Gugger's avatar
Sylvain Gugger committed
25
26
import numpy as np

Sylvain Gugger's avatar
Sylvain Gugger committed
27
28
from huggingface_hub import HfApi
from requests.exceptions import HTTPError
29
30
31
32
33
34
35
36
from transformers import (
    AutoTokenizer,
    IntervalStrategy,
    PretrainedConfig,
    TrainingArguments,
    is_torch_available,
    logging,
)
37
from transformers.file_utils import WEIGHTS_NAME
38
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
39
40
41
    ENDPOINT_STAGING,
    PASS,
    USER,
42
    CaptureLogger,
43
    TestCasePlus,
44
    get_gpu_count,
45
    get_tests_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
46
    is_staging_test,
47
    require_datasets,
48
    require_optuna,
49
    require_ray,
50
51
52
    require_sentencepiece,
    require_tokenizers,
    require_torch,
53
    require_torch_gpu,
54
    require_torch_multi_gpu,
55
56
    require_torch_non_multi_gpu,
    require_torch_up_to_2_gpus,
57
58
    slow,
)
59
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
60
from transformers.utils.hp_naming import TrialShortNamer
Julien Chaumond's avatar
Julien Chaumond committed
61
62
63
64


if is_torch_available():
    import torch
65
    from torch import nn
66
67
    from torch.utils.data import IterableDataset

Julien Chaumond's avatar
Julien Chaumond committed
68
69
    from transformers import (
        AutoModelForSequenceClassification,
70
        EarlyStoppingCallback,
Julien Chaumond's avatar
Julien Chaumond committed
71
72
        GlueDataset,
        GlueDataTrainingArguments,
73
74
        GPT2Config,
        GPT2LMHeadModel,
75
        LineByLineTextDataset,
76
        PreTrainedModel,
77
        Trainer,
78
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
79
    )
80
    from transformers.modeling_utils import unwrap_model
Julien Chaumond's avatar
Julien Chaumond committed
81
82


83
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
84
85


Sylvain Gugger's avatar
Sylvain Gugger committed
86
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
87
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
88
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
89
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
90
91
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
92
93
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
94

Sylvain Gugger's avatar
Sylvain Gugger committed
95
96
97
98
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
99
100
101
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
102
103


104
105
106
107
108
@dataclasses.dataclass
class RegressionTrainingArguments(TrainingArguments):
    a: float = 0.0
    b: float = 0.0

109
110
111
112
113
    def __post_init__(self):
        super().__post_init__()
        # save resources not dealing with reporting (also avoids the warning when it's not set)
        self.report_to = []

114

115
116
117
118
119
120
121
122
123
124
125
126
class RepeatDataset:
    def __init__(self, x, length=64):
        self.x = x
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_ids": self.x, "labels": self.x}


127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
class DynamicShapesDataset:
    def __init__(self, length=64, seed=42, batch_size=8):
        self.length = length
        np.random.seed(seed)
        sizes = np.random.randint(1, 20, (length // batch_size,))
        # For easy batching, we make every batch_size consecutive samples the same size.
        self.xs = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]
        self.ys = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.xs[i], "labels": self.ys[i]}


Sylvain Gugger's avatar
Sylvain Gugger committed
143
144
145
146
147
148
149
150
class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
151

Julien Chaumond's avatar
Julien Chaumond committed
152

153
154
155
156
157
158
class RegressionModelConfig(PretrainedConfig):
    def __init__(self, a=0, b=0, double_output=False, **kwargs):
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output
159
        self.hidden_size = 1
160
161


162
163
164
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
165
166
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)
167
168

        def __iter__(self):
169
170
            for i in range(len(self.dataset)):
                yield self.dataset[i]
171

172
    class RegressionModel(nn.Module):
173
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
174
            super().__init__()
175
176
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
177
178
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
179

Stas Bekman's avatar
Stas Bekman committed
180
        def forward(self, input_x, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
181
182
            y = input_x * self.a + self.b
            if labels is None:
183
                return (y, y) if self.double_output else (y,)
184
            loss = nn.functional.mse_loss(y, labels)
185
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
186

187
    class RegressionDictModel(nn.Module):
188
189
        def __init__(self, a=0, b=0):
            super().__init__()
190
191
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
192
193
            self.config = None

Stas Bekman's avatar
Stas Bekman committed
194
        def forward(self, input_x, labels=None, **kwargs):
195
196
197
            y = input_x * self.a + self.b
            result = {"output": y}
            if labels is not None:
198
                result["loss"] = nn.functional.mse_loss(y, labels)
199
200
            return result

201
202
203
204
205
206
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
207
208
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
209
210
            self.double_output = config.double_output

Stas Bekman's avatar
Stas Bekman committed
211
        def forward(self, input_x, labels=None, **kwargs):
212
213
214
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
215
            loss = nn.functional.mse_loss(y, labels)
216
217
            return (loss, y, y) if self.double_output else (loss, y)

218
219
220
221
222
223
    class RegressionRandomPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
224
225
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
226
227
228
229
230
231
232
233
234
235
236

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
            torch_rand = torch.randn(1).squeeze()
            np_rand = np.random.rand()
            rand_rand = random.random()

            y += 0.05 * torch_rand + 0.05 * torch.tensor(np_rand + rand_rand)

            if labels is None:
                return (y,)
237
            loss = nn.functional.mse_loss(y, labels)
238
239
            return (loss, y)

240
    class TstLayer(nn.Module):
241
242
        def __init__(self, hidden_size):
            super().__init__()
243
244
245
246
247
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
248
249

        def forward(self, x):
250
251
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
252
253
            return self.ln2(x + h + self.bias)

254
    def get_regression_trainer(a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
255
256
257
        label_names = kwargs.get("label_names", None)
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
258
259
260
261

        model_init = kwargs.pop("model_init", None)
        if model_init is not None:
            model = None
262
        else:
263
264
265
266
267
268
            if pretrained:
                config = RegressionModelConfig(a=a, b=b, double_output=double_output)
                model = RegressionPreTrainedModel(config)
            else:
                model = RegressionModel(a=a, b=b, double_output=double_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
269
270
271
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
272
        output_dir = kwargs.pop("output_dir", "./regression")
273
274

        args = RegressionTrainingArguments(output_dir, a=a, b=b, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
275
276
277
278
279
280
281
282
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
283
            model_init=model_init,
Sylvain Gugger's avatar
Sylvain Gugger committed
284
285
        )

286

287
class TrainerIntegrationCommon:
288
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True):
289
        file_list = [WEIGHTS_NAME, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
290
291
292
293
294
295
296
297
298
299
300
301
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
302
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
303
304
305
306
307
308
309
310
311
312
313
314

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
            state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            best_model.load_state_dict(state_dict)
315
            best_model.to(trainer.args.device)
316
317
318
319
320
321
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

322
323
324
325
326
327
328
329
    def check_trainer_state_are_the_same(self, trainer_state, trainer_state1):
        # We'll pop things so operate on copies.
        state = trainer_state.copy()
        state1 = trainer_state1.copy()
        # Log history main contain different logs for the time metrics (after resuming a training).
        log_history = state.pop("log_history", None)
        log_history1 = state1.pop("log_history", None)
        self.assertEqual(state, state1)
330
        skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"]
331
        for log, log1 in zip(log_history, log_history1):
332
333
334
            for key in skip_log_keys:
                _ = log.pop(key, None)
                _ = log1.pop(key, None)
335
336
            self.assertEqual(log, log1)

337
338
339
340

@require_torch
@require_sentencepiece
@require_tokenizers
341
342
343
344
345
346
347
348
class TrainerIntegrationPrerunTest(TestCasePlus, TrainerIntegrationCommon):
    """
    Only tests that want to tap into the auto-pre-run 2 trainings:
    - self.default_trained_model
    - self.alternate_trained_model
    directly, or via check_trained_model
    """

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    def setUp(self):
        super().setUp()
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    @require_datasets
    def test_trainer_with_datasets(self):
        import datasets

        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,))
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch", dtype=torch.float32)
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
        trainer.args.seed = 314
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_gradient_accumulation(self):
        # Training with half the batch size but accumulation steps as 2 should give the same results.
        trainer = get_regression_trainer(
            gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1
        )
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

    def test_adafactor_lr_none(self):
        # test the special case where lr=None, since Trainer can't not have lr_scheduler

        from transformers.optimization import Adafactor, AdafactorSchedule

        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
        lr_scheduler = AdafactorSchedule(optimizer)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0)


@require_torch
@require_sentencepiece
@require_tokenizers
class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    def test_trainer_works_with_dict(self):
        # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break
        # anything.
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

    def test_evaluation_with_keys_to_drop(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_ctx=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        eval_dataset = RepeatDataset(x)
        args = TrainingArguments("./test")
        trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset)
        # By default the past_key_values are removed
        result = trainer.predict(eval_dataset)
        self.assertTrue(isinstance(result.predictions, np.ndarray))
        # We can still get them by setting ignore_keys to []
        result = trainer.predict(eval_dataset, ignore_keys=[])
        self.assertTrue(isinstance(result.predictions, tuple))
        self.assertEqual(len(result.predictions), 2)

504
505
506
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
507
        args = TrainingArguments("./regression", report_to=[])
508
509
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
510
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
511
            if key != "logging_dir":
512
                self.assertEqual(dict1[key], dict2[key])
513

Sylvain Gugger's avatar
Sylvain Gugger committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

    def test_train_and_eval_dataloaders(self):
531
        n_gpu = max(1, torch.cuda.device_count())
Sylvain Gugger's avatar
Sylvain Gugger committed
532
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
533
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
534
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
535
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
536
537
538
539
540

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
541
542
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
543
544
545
546
547
548
549
550
551

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
552
553
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
554

555
        # Check passing a new dataset for evaluation works
Sylvain Gugger's avatar
Sylvain Gugger committed
556
        new_eval_dataset = RegressionDataset(length=128)
557
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
558

559
560
561
562
563
564
    @require_torch_multi_gpu
    def test_data_is_not_parallelized_when_model_is_parallel(self):
        model = RegressionModel()
        # Make the Trainer believe it's a parallelized model
        model.is_parallelizable = True
        model.model_parallel = True
565
566
        args = TrainingArguments("./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16)
        trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset())
567
568
        # Check the Trainer was fooled
        self.assertTrue(trainer.is_model_parallel)
569
        self.assertEqual(trainer.args.n_gpu, 1)
570
571
572
573
574
575
576

        # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16)
        self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16)
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16)
        self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16)

Sylvain Gugger's avatar
Sylvain Gugger committed
577
578
579
580
    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
581
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
582
583
584
585
586
587
588
589
590
591
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
592
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

611
612
613
614
615
616
617
618
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
619
620
621
622
623
624
625
626
627
628
629
630
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
        self.assertTrue(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
    def test_dynamic_shapes(self):
        eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
        model = RegressionModel(a=2, b=1)
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        # Same tests with eval accumulation
        args = TrainingArguments("./regression", eval_accumulation_steps=2)
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

667
    def test_log_level(self):
668
        # testing only --log_level (--log_level_replica requires multiple gpus and DDP and is tested elsewhere)
669
670
671
        logger = logging.get_logger()
        log_info_string = "Running training"

672
        # test with the default log_level - should be info and thus log on the main process
673
674
675
676
677
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer()
            trainer.train()
        self.assertIn(log_info_string, cl.out)

678
        # test with low log_level - lower than info
679
680
681
682
683
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(log_level="debug")
            trainer.train()
        self.assertIn(log_info_string, cl.out)

684
        # test with high log_level - should be quiet
685
686
687
688
689
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(log_level="error")
            trainer.train()
        self.assertNotIn(log_info_string, cl.out)

690
691
692
693
694
695
696
697
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
698
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
699
700
701
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

702
703
704
705
706
707
708
709
710
711
712
713
714
    @require_torch_multi_gpu
    def test_run_seq2seq_double_train_wrap_once(self):
        # test that we don't wrap the model more than once
        # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for
        # example DataParallel(DataParallel(model))

        trainer = get_regression_trainer()
        trainer.train()
        model_wrapped_before = trainer.model_wrapped
        trainer.train()
        model_wrapped_after = trainer.model_wrapped
        self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice")

715
    @require_torch_up_to_2_gpus
716
    def test_can_resume_training(self):
717
718
719
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).
720

721
        with tempfile.TemporaryDirectory() as tmpdir:
722
723
            kwargs = dict(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer = get_regression_trainer(**kwargs)
724
725
726
727
728
729
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

730
            # Reinitialize trainer
731
            trainer = get_regression_trainer(**kwargs)
732

733
            trainer.train(resume_from_checkpoint=checkpoint)
734
735
736
737
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
738
            self.check_trainer_state_are_the_same(state, state1)
739

740
741
742
743
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
744
            trainer = get_regression_trainer(**kwargs)
745

746
            trainer.train(resume_from_checkpoint=checkpoint)
747
748
749
750
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
751
            self.check_trainer_state_are_the_same(state, state1)
752

753
754
        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
755
756
757
            kwargs = dict(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, pretrained=False)

            trainer = get_regression_trainer(**kwargs)
758
759
760
761
762
763
764
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
765
            trainer = get_regression_trainer(**kwargs)
766

767
            trainer.train(resume_from_checkpoint=checkpoint)
768
769
770
771
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
772
            self.check_trainer_state_are_the_same(state, state1)
773

774
775
776
777
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
778
            trainer = get_regression_trainer(**kwargs)
779

780
            trainer.train(resume_from_checkpoint=checkpoint)
781
782
783
784
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
785
            self.check_trainer_state_are_the_same(state, state1)
786

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
        # Now check failures

        # 1. fail to find a bogus checkpoint
        trainer = get_regression_trainer()
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
        self.assertTrue("Can't find a valid checkpoint at" in str(context.exception))

        # 2. fail to find any checkpoint - due a fresh output_dir
        output_dir2 = self.get_auto_remove_tmp_dir()
        trainer = get_regression_trainer(output_dir=output_dir2)
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=True)
        self.assertTrue("No valid checkpoint found in output directory" in str(context.exception))

802
    @require_torch_non_multi_gpu
803
    def test_resume_training_with_randomness(self):
804
805
        # This test will fail flakily for more than 1 GPUs since the result will be slightly more different
        # TODO: investigate why it fails for 2 GPUs?
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train()
        (a, b) = trainer.model.a.item(), trainer.model.b.item()

        model = RegressionRandomPreTrainedModel(config)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15"))
        (a1, b1) = trainer.model.a.item(), trainer.model.b.item()

827
828
        self.assertAlmostEqual(a, a1, delta=1e-8)
        self.assertAlmostEqual(b, b1, delta=1e-8)
829

830
    @require_torch_up_to_2_gpus
831
    def test_resume_training_with_gradient_accumulation(self):
832
833
834
835
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

851
852
853
854
855
856
857
858
859
            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
860

861
            trainer.train(resume_from_checkpoint=checkpoint)
862
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
863
864
865
866
867
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

868
    @require_torch_up_to_2_gpus
869
    def test_resume_training_with_frozen_params(self):
870
871
872
873
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)

            trainer.train(resume_from_checkpoint=checkpoint)

            self.assertFalse(trainer.model.a.requires_grad)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
903
904
905
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
906
            self.check_trainer_state_are_the_same(state, state1)
907

908
909
910
911
912
913
914
915
916
917
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
918
                save_steps=5,
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
934
                save_steps=5,
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                evaluation_strategy="epoch",
951
                save_strategy="epoch",
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
970
                save_steps=5,
971
                load_best_model_at_end=True,
972
                pretrained=False,
973
974
975
976
977
978
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

979
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
980
981
982
983
984
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
985
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
986
        )
987
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
988
989
990
991

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
992
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
993

994
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
995
996
997
998
    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
999
1000
1001
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
1002
1003
        )
        self.assertEqual(len(dataset), 31)
1004

1005
    def test_training_iterable_dataset(self):
1006
1007
1008
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)
        train_dataset = SampleIterableDataset()
1009

1010
        args = RegressionTrainingArguments(output_dir="./examples", max_steps=4)
1011
        trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
1012
        trainer.train()
1013
        self.assertEqual(trainer.state.global_step, 4)
1014

1015
1016
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
1017
1018
        self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)

1019
1020
1021
1022
1023
1024
1025
1026
    def test_evaluation_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()
1027

1028
1029
1030
1031
1032
1033
        x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
1034

1035
1036
1037
        # With a number of elements not a round multiple of the batch size
        eval_dataset = SampleIterableDataset(length=66)
        results = trainer.evaluate(eval_dataset)
1038

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
        x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())

        preds = trainer.predict(trainer.eval_dataset).predictions
        x = eval_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        test_dataset = SampleIterableDataset(length=66)
        preds = trainer.predict(test_dataset).predictions
        x = test_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1078

1079
1080
    def test_early_stopping_callback(self):
        # early stopping stops training before num_training_epochs
1081
1082
1083
1084
1085
1086
1087
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                load_best_model_at_end=True,
1088
                evaluation_strategy=IntervalStrategy.EPOCH,
1089
                save_strategy=IntervalStrategy.EPOCH,
1090
1091
1092
1093
1094
1095
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1, 0.0001))
            train_output = trainer.train()
            self.assertLess(train_output.global_step, 20 * 64 / 16)
1096
1097

        # Invalid inputs to trainer with early stopping callback result in assertion error
1098
1099
1100
1101
1102
1103
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
1104
                evaluation_strategy=IntervalStrategy.EPOCH,
1105
1106
1107
1108
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1))
1109
            self.assertEqual(trainer.state.global_step, 0)
1110
1111
1112
1113
            try:
                trainer.train()
            except AssertionError:
                self.assertEqual(trainer.state.global_step, 0)
1114

Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1115
1116
1117
1118
    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
1119
1120
            self.assertEqual(trainer.model, unwrap_model(wrapped_model_to_check))
            self.assertGreaterEqual(getattr(unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0)
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1121
1122
1123
1124
1125

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
1126
        assert_flos_extraction(trainer, nn.DataParallel(trainer.model))
1127

1128
1129
1130
        trainer.train()
        self.assertTrue(isinstance(trainer.state.total_flos, float))

1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
    def check_checkpoint_deletion(self, trainer, output_dir, expected):
        # Make fake checkpoints
        for n in [5, 10, 15, 20, 25]:
            os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True)
        trainer._rotate_checkpoints(output_dir=output_dir)
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")]
        values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints]
        self.assertSetEqual(set(values), set(expected))

    def test_checkpoint_rotation(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Without best model at end
            trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2)
            self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25])

            # With best model at end
1147
1148
1149
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=2
            )
1150
1151
1152
1153
1154
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

            # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume
            # from checkpoint
1155
1156
1157
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=1
            )
1158
1159
1160
1161
1162
1163
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25")
            self.check_checkpoint_deletion(trainer, tmp_dir, [25])

            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
    def check_mem_metrics(self, trainer, check_func):
        metrics = trainer.train().metrics
        check_func("init_mem_cpu_alloc_delta", metrics)
        check_func("train_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("init_mem_gpu_alloc_delta", metrics)
            check_func("train_mem_gpu_alloc_delta", metrics)

        metrics = trainer.evaluate()
        check_func("eval_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("eval_mem_gpu_alloc_delta", metrics)

        metrics = trainer.predict(RegressionDataset()).metrics
        check_func("test_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("test_mem_gpu_alloc_delta", metrics)

    def test_mem_metrics(self):

        # with mem metrics enabled
1185
        trainer = get_regression_trainer(skip_memory_metrics=False)
1186
1187
1188
1189
1190
1191
        self.check_mem_metrics(trainer, self.assertIn)

        # with mem metrics disabled
        trainer = get_regression_trainer(skip_memory_metrics=True)
        self.check_mem_metrics(trainer, self.assertNotIn)

1192
1193
1194
1195
1196
1197
    @require_torch_gpu
    def test_fp16_full_eval(self):

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
1198
        n_gpus = get_gpu_count()
1199
1200

        bs = 8
1201
        eval_len = 16 * n_gpus
1202
1203
1204
1205
1206
1207
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. with mem metrics enabled
1208
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

        # 2. with mem metrics disabled
1229
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False)
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
        metrics = trainer.evaluate()
        fp16_init = metrics["init_mem_gpu_alloc_delta"]
        fp16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp16_init {fp16_init}")
            print(f"fp16_eval {fp16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: fp16_init == close to zero
        self.assertLess(fp16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(fp16_eval, 27_000)

        # 3. relative comparison fp32 vs full fp16
        # should be about half of fp16_init
        # perfect world: fp32_init/2 == fp16_eval
        self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000)

1250
    def test_no_wd_param_group(self):
1251
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
        trainer = Trainer(model=model)
        trainer.create_optimizer_and_scheduler(10)
        # fmt: off
        wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight']
        # fmt: on
        wd_params = [p for n, p in model.named_parameters() if n in wd_names]
        no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names]
        self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params)
        self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params)

1262

Sylvain Gugger's avatar
Sylvain Gugger committed
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
@require_torch
@is_staging_test
class TrainerIntegrationWithHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._api = HfApi(endpoint=ENDPOINT_STAGING)
        cls._token = cls._api.login(username=USER, password=PASS)

    @classmethod
    def tearDownClass(cls):
        try:
1274
            cls._api.delete_repo(token=cls._token, name="test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
1275
1276
1277
1278
        except HTTPError:
            pass

        try:
1279
            cls._api.delete_repo(token=cls._token, name="test-trainer-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1280
1281
1282
1283
1284
        except HTTPError:
            pass

    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
1285
1286
1287
1288
1289
1290
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer"),
                push_to_hub=True,
                push_to_hub_token=self._token,
            )
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
1291
1292
1293
1294
1295
1296

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

1297
            self.assertEqual(repo_name, f"{USER}/test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
1298
1299
1300
1301
1302
1303
1304
1305
1306

            model = RegressionPreTrainedModel.from_pretrained(repo_name)
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(output_dir=tmp_dir)
            trainer.save_model()
1307
1308
1309
1310
1311
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-org"),
                push_to_hub=True,
                push_to_hub_organization="valid_org",
                push_to_hub_token=self._token,
1312
            )
1313
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
1314
1315
1316
1317
1318

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]
1319
            self.assertEqual(repo_name, "valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1320

1321
            model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1322
1323
1324
1325
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())


1326
1327
@require_torch
@require_optuna
1328
class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase):
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

1355
1356
1357
1358
1359
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
1360
                evaluation_strategy=IntervalStrategy.EPOCH,
1361
                save_strategy=IntervalStrategy.EPOCH,
1362
1363
1364
1365
1366
1367
1368
1369
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379


@require_torch
@require_ray
class TrainerHyperParameterRayIntegrationTest(unittest.TestCase):
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

1380
    def ray_hyperparameter_search(self):
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            from ray import tune

            return {
                "a": tune.randint(-4, 4),
                "b": tune.randint(-4, 4),
            }

        def model_init(config):
1393
1394
1395
1396
1397
1398
1399
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
1411
                evaluation_strategy=IntervalStrategy.EPOCH,
1412
                save_strategy=IntervalStrategy.EPOCH,
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4
            )
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433

    def test_hyperparameter_search(self):
        self.ray_hyperparameter_search()

    def test_hyperparameter_search_ray_client(self):
        import ray
        from ray.util.client.ray_client_helpers import ray_start_client_server

        with ray_start_client_server():
            assert ray.util.client.ray.is_connected()
            self.ray_hyperparameter_search()