utils.py 14.5 KB
Newer Older
1
import os
2
import logging
3
4
import requests

5
from typing import List
6

7
8
9
10
from apps.ollama.main import (
    generate_ollama_embeddings,
    GenerateEmbeddingsForm,
)
Timothy J. Baek's avatar
Timothy J. Baek committed
11

12
13
from huggingface_hub import snapshot_download

14
15
from langchain_core.documents import Document
from langchain_community.retrievers import BM25Retriever
Steven Kreitzer's avatar
Steven Kreitzer committed
16
from langchain.retrievers import (
17
    ContextualCompressionRetriever,
Steven Kreitzer's avatar
Steven Kreitzer committed
18
19
20
    EnsembleRetriever,
)

21
from typing import Optional
22
23
from config import SRC_LOG_LEVELS, CHROMA_CLIENT

24

25
26
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
Timothy J. Baek's avatar
Timothy J. Baek committed
27
28


Timothy J. Baek's avatar
Timothy J. Baek committed
29
def query_doc(
Steven Kreitzer's avatar
Steven Kreitzer committed
30
31
    collection_name: str,
    query: str,
Timothy J. Baek's avatar
Timothy J. Baek committed
32
    embedding_function,
33
    k: int,
Steven Kreitzer's avatar
Steven Kreitzer committed
34
):
35
    try:
Steven Kreitzer's avatar
Steven Kreitzer committed
36
        collection = CHROMA_CLIENT.get_collection(name=collection_name)
Timothy J. Baek's avatar
Timothy J. Baek committed
37
38
39
40
41
        query_embeddings = embedding_function(query)
        result = collection.query(
            query_embeddings=[query_embeddings],
            n_results=k,
        )
42

Timothy J. Baek's avatar
Timothy J. Baek committed
43
44
45
46
        log.info(f"query_doc:result {result}")
        return result
    except Exception as e:
        raise e
47
48


Timothy J. Baek's avatar
Timothy J. Baek committed
49
50
51
52
53
54
55
56
57
58
59
def query_doc_with_hybrid_search(
    collection_name: str,
    query: str,
    embedding_function,
    k: int,
    reranking_function,
    r: int,
):
    try:
        collection = CHROMA_CLIENT.get_collection(name=collection_name)
        documents = collection.get()  # get all documents
60

Timothy J. Baek's avatar
Timothy J. Baek committed
61
62
63
64
65
        bm25_retriever = BM25Retriever.from_texts(
            texts=documents.get("documents"),
            metadatas=documents.get("metadatas"),
        )
        bm25_retriever.k = k
66

Timothy J. Baek's avatar
Timothy J. Baek committed
67
68
69
70
71
        chroma_retriever = ChromaRetriever(
            collection=collection,
            embedding_function=embedding_function,
            top_n=k,
        )
72

Timothy J. Baek's avatar
Timothy J. Baek committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        ensemble_retriever = EnsembleRetriever(
            retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
        )

        compressor = RerankCompressor(
            embedding_function=embedding_function,
            reranking_function=reranking_function,
            r_score=r,
            top_n=k,
        )

        compression_retriever = ContextualCompressionRetriever(
            base_compressor=compressor, base_retriever=ensemble_retriever
        )
87

Timothy J. Baek's avatar
Timothy J. Baek committed
88
89
90
91
92
93
94
        result = compression_retriever.invoke(query)
        result = {
            "distances": [[d.metadata.get("score") for d in result]],
            "documents": [[d.page_content for d in result]],
            "metadatas": [[d.metadata for d in result]],
        }
        log.info(f"query_doc_with_hybrid_search:result {result}")
95
96
97
98
99
        return result
    except Exception as e:
        raise e


Steven Kreitzer's avatar
Steven Kreitzer committed
100
def merge_and_sort_query_results(query_results, k, reverse=False):
Timothy J. Baek's avatar
Timothy J. Baek committed
101
102
103
    # Initialize lists to store combined data
    combined_distances = []
    combined_documents = []
Steven Kreitzer's avatar
Steven Kreitzer committed
104
    combined_metadatas = []
Timothy J. Baek's avatar
Timothy J. Baek committed
105
106
107
108

    for data in query_results:
        combined_distances.extend(data["distances"][0])
        combined_documents.extend(data["documents"][0])
Steven Kreitzer's avatar
Steven Kreitzer committed
109
        combined_metadatas.extend(data["metadatas"][0])
Timothy J. Baek's avatar
Timothy J. Baek committed
110

Steven Kreitzer's avatar
Steven Kreitzer committed
111
    # Create a list of tuples (distance, document, metadata)
112
    combined = list(zip(combined_distances, combined_documents, combined_metadatas))
Timothy J. Baek's avatar
Timothy J. Baek committed
113
114

    # Sort the list based on distances
Steven Kreitzer's avatar
Steven Kreitzer committed
115
    combined.sort(key=lambda x: x[0], reverse=reverse)
Timothy J. Baek's avatar
Timothy J. Baek committed
116

117
118
119
120
121
122
123
124
    # We don't have anything :-(
    if not combined:
        sorted_distances = []
        sorted_documents = []
        sorted_metadatas = []
    else:
        # Unzip the sorted list
        sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
Timothy J. Baek's avatar
Timothy J. Baek committed
125

126
127
128
129
        # Slicing the lists to include only k elements
        sorted_distances = list(sorted_distances)[:k]
        sorted_documents = list(sorted_documents)[:k]
        sorted_metadatas = list(sorted_metadatas)[:k]
Timothy J. Baek's avatar
Timothy J. Baek committed
130
131

    # Create the output dictionary
132
    result = {
Timothy J. Baek's avatar
Timothy J. Baek committed
133
134
        "distances": [sorted_distances],
        "documents": [sorted_documents],
Steven Kreitzer's avatar
Steven Kreitzer committed
135
        "metadatas": [sorted_metadatas],
Timothy J. Baek's avatar
Timothy J. Baek committed
136
137
    }

138
    return result
Timothy J. Baek's avatar
Timothy J. Baek committed
139
140


Timothy J. Baek's avatar
Timothy J. Baek committed
141
def query_collection(
Steven Kreitzer's avatar
Steven Kreitzer committed
142
143
    collection_names: List[str],
    query: str,
Timothy J. Baek's avatar
Timothy J. Baek committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    embedding_function,
    k: int,
):
    results = []
    for collection_name in collection_names:
        try:
            result = query_doc(
                collection_name=collection_name,
                query=query,
                k=k,
                embedding_function=embedding_function,
            )
            results.append(result)
        except:
            pass
    return merge_and_sort_query_results(results, k=k)


def query_collection_with_hybrid_search(
    collection_names: List[str],
    query: str,
    embedding_function,
Steven Kreitzer's avatar
Steven Kreitzer committed
166
167
    k: int,
    reranking_function,
Timothy J. Baek's avatar
Timothy J. Baek committed
168
    r: float,
Timothy J. Baek's avatar
Timothy J. Baek committed
169
170
):

171
172
173
    results = []
    for collection_name in collection_names:
        try:
Timothy J. Baek's avatar
Timothy J. Baek committed
174
            result = query_doc_with_hybrid_search(
175
176
                collection_name=collection_name,
                query=query,
Timothy J. Baek's avatar
Timothy J. Baek committed
177
                embedding_function=embedding_function,
178
                k=k,
Steven Kreitzer's avatar
Steven Kreitzer committed
179
                reranking_function=reranking_function,
Timothy J. Baek's avatar
Timothy J. Baek committed
180
                r=r,
181
182
183
184
185
            )
            results.append(result)
        except:
            pass

Timothy J. Baek's avatar
Timothy J. Baek committed
186
    return merge_and_sort_query_results(results, k=k, reverse=True)
187
188


Timothy J. Baek's avatar
Timothy J. Baek committed
189
def rag_template(template: str, context: str, query: str):
190
191
    template = template.replace("[context]", context)
    template = template.replace("[query]", query)
Timothy J. Baek's avatar
Timothy J. Baek committed
192
    return template
Timothy J. Baek's avatar
Timothy J. Baek committed
193
194


Timothy J. Baek's avatar
Timothy J. Baek committed
195
def get_embedding_function(
Steven Kreitzer's avatar
Steven Kreitzer committed
196
197
198
199
200
201
202
203
    embedding_engine,
    embedding_model,
    embedding_function,
    openai_key,
    openai_url,
):
    if embedding_engine == "":
        return lambda query: embedding_function.encode(query).tolist()
204
205
206
207
208
209
210
211
212
    elif embedding_engine in ["ollama", "openai"]:
        if embedding_engine == "ollama":
            func = lambda query: generate_ollama_embeddings(
                GenerateEmbeddingsForm(
                    **{
                        "model": embedding_model,
                        "prompt": query,
                    }
                )
Steven Kreitzer's avatar
Steven Kreitzer committed
213
            )
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        elif embedding_engine == "openai":
            func = lambda query: generate_openai_embeddings(
                model=embedding_model,
                text=query,
                key=openai_key,
                url=openai_url,
            )

        def generate_multiple(query, f):
            if isinstance(query, list):
                return [f(q) for q in query]
            else:
                return f(query)

        return lambda query: generate_multiple(query, func)
Steven Kreitzer's avatar
Steven Kreitzer committed
229
230


231
232
233
234
def rag_messages(
    docs,
    messages,
    template,
Timothy J. Baek's avatar
Timothy J. Baek committed
235
    embedding_function,
236
    k,
Timothy J. Baek's avatar
Timothy J. Baek committed
237
    reranking_function,
238
    r,
Timothy J. Baek's avatar
Timothy J. Baek committed
239
    hybrid_search,
240
):
Timothy J. Baek's avatar
Timothy J. Baek committed
241
    log.debug(f"docs: {docs} {messages} {embedding_function} {reranking_function}")
Timothy J. Baek's avatar
Timothy J. Baek committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

    last_user_message_idx = None
    for i in range(len(messages) - 1, -1, -1):
        if messages[i]["role"] == "user":
            last_user_message_idx = i
            break

    user_message = messages[last_user_message_idx]

    if isinstance(user_message["content"], list):
        # Handle list content input
        content_type = "list"
        query = ""
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                query = content_item["text"]
                break
    elif isinstance(user_message["content"], str):
        # Handle text content input
        content_type = "text"
        query = user_message["content"]
    else:
        # Fallback in case the input does not match expected types
        content_type = None
        query = ""

268
    extracted_collections = []
Timothy J. Baek's avatar
Timothy J. Baek committed
269
270
271
272
273
    relevant_contexts = []

    for doc in docs:
        context = None

274
275
276
277
278
279
280
281
282
283
        collection = doc.get("collection_name")
        if collection:
            collection = [collection]
        else:
            collection = doc.get("collection_names", [])

        collection = set(collection).difference(extracted_collections)
        if not collection:
            log.debug(f"skipping {doc} as it has already been extracted")
            continue
284

285
        try:
286
            if doc["type"] == "text":
287
                context = doc["content"]
Timothy J. Baek's avatar
Timothy J. Baek committed
288
            else:
Timothy J. Baek's avatar
Timothy J. Baek committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
                if hybrid_search:
                    context = query_collection_with_hybrid_search(
                        collection_names=(
                            doc["collection_names"]
                            if doc["type"] == "collection"
                            else [doc["collection_name"]]
                        ),
                        query=query,
                        embedding_function=embedding_function,
                        k=k,
                        reranking_function=reranking_function,
                        r=r,
                    )
                else:
                    context = query_collection(
                        collection_names=(
                            doc["collection_names"]
                            if doc["type"] == "collection"
                            else [doc["collection_name"]]
                        ),
                        query=query,
                        embedding_function=embedding_function,
                        k=k,
                    )
Timothy J. Baek's avatar
Timothy J. Baek committed
313
        except Exception as e:
314
            log.exception(e)
Timothy J. Baek's avatar
Timothy J. Baek committed
315
316
            context = None

317
318
319
320
        if context:
            relevant_contexts.append(context)

        extracted_collections.extend(collection)
Timothy J. Baek's avatar
Timothy J. Baek committed
321
322
323

    context_string = ""
    for context in relevant_contexts:
324
325
326
        items = context["documents"][0]
        context_string += "\n\n".join(items)
    context_string = context_string.strip()
Timothy J. Baek's avatar
Timothy J. Baek committed
327
328
329
330
331
332
333

    ra_content = rag_template(
        template=template,
        context=context_string,
        query=query,
    )

334
335
    log.debug(f"ra_content: {ra_content}")

Timothy J. Baek's avatar
Timothy J. Baek committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    if content_type == "list":
        new_content = []
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                # Update the text item's content with ra_content
                new_content.append({"type": "text", "text": ra_content})
            else:
                # Keep other types of content as they are
                new_content.append(content_item)
        new_user_message = {**user_message, "content": new_content}
    else:
        new_user_message = {
            **user_message,
            "content": ra_content,
        }

    messages[last_user_message_idx] = new_user_message

    return messages
355

Self Denial's avatar
Self Denial committed
356

357
358
359
360
361
362
363
364
365
366
367
def get_model_path(model: str, update_model: bool = False):
    # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
    cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")

    local_files_only = not update_model

    snapshot_kwargs = {
        "cache_dir": cache_dir,
        "local_files_only": local_files_only,
    }

Steven Kreitzer's avatar
Steven Kreitzer committed
368
    log.debug(f"model: {model}")
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    log.debug(f"snapshot_kwargs: {snapshot_kwargs}")

    # Inspiration from upstream sentence_transformers
    if (
        os.path.exists(model)
        or ("\\" in model or model.count("/") > 1)
        and local_files_only
    ):
        # If fully qualified path exists, return input, else set repo_id
        return model
    elif "/" not in model:
        # Set valid repo_id for model short-name
        model = "sentence-transformers" + "/" + model

    snapshot_kwargs["repo_id"] = model

    # Attempt to query the huggingface_hub library to determine the local path and/or to update
    try:
        model_repo_path = snapshot_download(**snapshot_kwargs)
        log.debug(f"model_repo_path: {model_repo_path}")
        return model_repo_path
    except Exception as e:
        log.exception(f"Cannot determine model snapshot path: {e}")
        return model


395
def generate_openai_embeddings(
Timothy J. Baek's avatar
Timothy J. Baek committed
396
    model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
397
398
399
):
    try:
        r = requests.post(
Timothy J. Baek's avatar
Timothy J. Baek committed
400
            f"{url}/embeddings",
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
            headers={
                "Content-Type": "application/json",
                "Authorization": f"Bearer {key}",
            },
            json={"input": text, "model": model},
        )
        r.raise_for_status()
        data = r.json()
        if "data" in data:
            return data["data"][0]["embedding"]
        else:
            raise "Something went wrong :/"
    except Exception as e:
        print(e)
        return None
Steven Kreitzer's avatar
Steven Kreitzer committed
416
417
418
419
420


from typing import Any

from langchain_core.retrievers import BaseRetriever
421
from langchain_core.callbacks import CallbackManagerForRetrieverRun
Steven Kreitzer's avatar
Steven Kreitzer committed
422
423
424
425


class ChromaRetriever(BaseRetriever):
    collection: Any
Timothy J. Baek's avatar
Timothy J. Baek committed
426
    embedding_function: Any
427
    top_n: int
Steven Kreitzer's avatar
Steven Kreitzer committed
428
429
430
431
432
433
434

    def _get_relevant_documents(
        self,
        query: str,
        *,
        run_manager: CallbackManagerForRetrieverRun,
    ) -> List[Document]:
Timothy J. Baek's avatar
Timothy J. Baek committed
435
        query_embeddings = self.embedding_function(query)
Steven Kreitzer's avatar
Steven Kreitzer committed
436
437
438

        results = self.collection.query(
            query_embeddings=[query_embeddings],
439
            n_results=self.top_n,
Steven Kreitzer's avatar
Steven Kreitzer committed
440
441
442
443
444
445
446
447
448
449
450
451
452
        )

        ids = results["ids"][0]
        metadatas = results["metadatas"][0]
        documents = results["documents"][0]

        return [
            Document(
                metadata=metadatas[idx],
                page_content=documents[idx],
            )
            for idx in range(len(ids))
        ]
453
454
455
456
457
458
459
460
461
462
463
464
465
466


import operator

from typing import Optional, Sequence

from langchain_core.documents import BaseDocumentCompressor, Document
from langchain_core.callbacks import Callbacks
from langchain_core.pydantic_v1 import Extra

from sentence_transformers import util


class RerankCompressor(BaseDocumentCompressor):
Timothy J. Baek's avatar
Timothy J. Baek committed
467
    embedding_function: Any
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    reranking_function: Any
    r_score: float
    top_n: int

    class Config:
        extra = Extra.forbid
        arbitrary_types_allowed = True

    def compress_documents(
        self,
        documents: Sequence[Document],
        query: str,
        callbacks: Optional[Callbacks] = None,
    ) -> Sequence[Document]:
        if self.reranking_function:
            scores = self.reranking_function.predict(
                [(query, doc.page_content) for doc in documents]
            )
        else:
Timothy J. Baek's avatar
Timothy J. Baek committed
487
488
            query_embedding = self.embedding_function(query)
            document_embedding = self.embedding_function(
489
490
491
492
493
494
495
496
497
498
                [doc.page_content for doc in documents]
            )
            scores = util.cos_sim(query_embedding, document_embedding)[0]

        docs_with_scores = list(zip(documents, scores.tolist()))
        if self.r_score:
            docs_with_scores = [
                (d, s) for d, s in docs_with_scores if s >= self.r_score
            ]

Steven Kreitzer's avatar
Steven Kreitzer committed
499
500
501
        reverse = self.reranking_function is not None
        result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=reverse)

502
503
504
505
506
507
508
509
510
511
        final_results = []
        for doc, doc_score in result[: self.top_n]:
            metadata = doc.metadata
            metadata["score"] = doc_score
            doc = Document(
                page_content=doc.page_content,
                metadata=metadata,
            )
            final_results.append(doc)
        return final_results