utils.py 14.3 KB
Newer Older
1
import os
2
import logging
3
4
import requests

5
from typing import List
6

7
8
9
10
from apps.ollama.main import (
    generate_ollama_embeddings,
    GenerateEmbeddingsForm,
)
Timothy J. Baek's avatar
Timothy J. Baek committed
11

12
13
from huggingface_hub import snapshot_download

14
15
from langchain_core.documents import Document
from langchain_community.retrievers import BM25Retriever
Steven Kreitzer's avatar
Steven Kreitzer committed
16
from langchain.retrievers import (
17
    ContextualCompressionRetriever,
Steven Kreitzer's avatar
Steven Kreitzer committed
18
19
20
    EnsembleRetriever,
)

21
22
23
from sentence_transformers import CrossEncoder

from typing import Optional
24
25
from config import SRC_LOG_LEVELS, CHROMA_CLIENT

26

27
28
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
Timothy J. Baek's avatar
Timothy J. Baek committed
29
30


Steven Kreitzer's avatar
Steven Kreitzer committed
31
32
33
34
def query_embeddings_doc(
    collection_name: str,
    query: str,
    embeddings_function,
Steven Kreitzer's avatar
Steven Kreitzer committed
35
    reranking_function,
36
37
    k: int,
    r: Optional[float] = None,
Steven Kreitzer's avatar
Steven Kreitzer committed
38
    hybrid: Optional[bool] = False,
Steven Kreitzer's avatar
Steven Kreitzer committed
39
):
40
    try:
Steven Kreitzer's avatar
Steven Kreitzer committed
41
        if hybrid:
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
            # if you use docker use the model from the environment variable
            collection = CHROMA_CLIENT.get_collection(name=collection_name)

            documents = collection.get()  # get all documents
            bm25_retriever = BM25Retriever.from_texts(
                texts=documents.get("documents"),
                metadatas=documents.get("metadatas"),
            )
            bm25_retriever.k = k

            chroma_retriever = ChromaRetriever(
                collection=collection,
                embeddings_function=embeddings_function,
                top_n=k,
            )

            ensemble_retriever = EnsembleRetriever(
                retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
            )

            compressor = RerankCompressor(
                embeddings_function=embeddings_function,
                reranking_function=reranking_function,
                r_score=r,
                top_n=k,
            )

            compression_retriever = ContextualCompressionRetriever(
                base_compressor=compressor, base_retriever=ensemble_retriever
            )

            result = compression_retriever.invoke(query)
            result = {
                "distances": [[d.metadata.get("score") for d in result]],
                "documents": [[d.page_content for d in result]],
                "metadatas": [[d.metadata for d in result]],
            }
        else:
            # if you use docker use the model from the environment variable
            query_embeddings = embeddings_function(query)

            log.info(f"query_embeddings_doc {query_embeddings}")
            collection = CHROMA_CLIENT.get_collection(name=collection_name)

            result = collection.query(
                query_embeddings=[query_embeddings],
                n_results=k,
            )

            log.info(f"query_embeddings_doc:result {result}")
92
93
94
95
96
        return result
    except Exception as e:
        raise e


Timothy J. Baek's avatar
Timothy J. Baek committed
97
98
99
100
def merge_and_sort_query_results(query_results, k):
    # Initialize lists to store combined data
    combined_distances = []
    combined_documents = []
Steven Kreitzer's avatar
Steven Kreitzer committed
101
    combined_metadatas = []
Timothy J. Baek's avatar
Timothy J. Baek committed
102
103
104
105

    for data in query_results:
        combined_distances.extend(data["distances"][0])
        combined_documents.extend(data["documents"][0])
Steven Kreitzer's avatar
Steven Kreitzer committed
106
        combined_metadatas.extend(data["metadatas"][0])
Timothy J. Baek's avatar
Timothy J. Baek committed
107

Steven Kreitzer's avatar
Steven Kreitzer committed
108
    # Create a list of tuples (distance, document, metadata)
109
    combined = list(zip(combined_distances, combined_documents, combined_metadatas))
Timothy J. Baek's avatar
Timothy J. Baek committed
110
111
112
113

    # Sort the list based on distances
    combined.sort(key=lambda x: x[0])

114
115
116
117
118
119
120
121
    # We don't have anything :-(
    if not combined:
        sorted_distances = []
        sorted_documents = []
        sorted_metadatas = []
    else:
        # Unzip the sorted list
        sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
Timothy J. Baek's avatar
Timothy J. Baek committed
122

123
124
125
126
        # Slicing the lists to include only k elements
        sorted_distances = list(sorted_distances)[:k]
        sorted_documents = list(sorted_documents)[:k]
        sorted_metadatas = list(sorted_metadatas)[:k]
Timothy J. Baek's avatar
Timothy J. Baek committed
127
128

    # Create the output dictionary
129
    result = {
Timothy J. Baek's avatar
Timothy J. Baek committed
130
131
        "distances": [sorted_distances],
        "documents": [sorted_documents],
Steven Kreitzer's avatar
Steven Kreitzer committed
132
        "metadatas": [sorted_metadatas],
Timothy J. Baek's avatar
Timothy J. Baek committed
133
134
    }

135
    return result
Timothy J. Baek's avatar
Timothy J. Baek committed
136
137


138
def query_embeddings_collection(
Steven Kreitzer's avatar
Steven Kreitzer committed
139
140
141
    collection_names: List[str],
    query: str,
    k: int,
142
    r: float,
Steven Kreitzer's avatar
Steven Kreitzer committed
143
144
    embeddings_function,
    reranking_function,
Steven Kreitzer's avatar
Steven Kreitzer committed
145
    hybrid: bool,
Timothy J. Baek's avatar
Timothy J. Baek committed
146
147
):

148
    results = []
Timothy J. Baek's avatar
Timothy J. Baek committed
149

150
151
    for collection_name in collection_names:
        try:
152
153
154
155
            result = query_embeddings_doc(
                collection_name=collection_name,
                query=query,
                k=k,
156
                r=r,
Steven Kreitzer's avatar
Steven Kreitzer committed
157
158
                embeddings_function=embeddings_function,
                reranking_function=reranking_function,
Steven Kreitzer's avatar
Steven Kreitzer committed
159
                hybrid=hybrid,
160
161
162
163
164
165
166
167
            )
            results.append(result)
        except:
            pass

    return merge_and_sort_query_results(results, k)


Timothy J. Baek's avatar
Timothy J. Baek committed
168
def rag_template(template: str, context: str, query: str):
169
170
    template = template.replace("[context]", context)
    template = template.replace("[query]", query)
Timothy J. Baek's avatar
Timothy J. Baek committed
171
    return template
Timothy J. Baek's avatar
Timothy J. Baek committed
172
173


Steven Kreitzer's avatar
Steven Kreitzer committed
174
175
176
177
178
179
180
181
182
def query_embeddings_function(
    embedding_engine,
    embedding_model,
    embedding_function,
    openai_key,
    openai_url,
):
    if embedding_engine == "":
        return lambda query: embedding_function.encode(query).tolist()
183
184
185
186
187
188
189
190
191
    elif embedding_engine in ["ollama", "openai"]:
        if embedding_engine == "ollama":
            func = lambda query: generate_ollama_embeddings(
                GenerateEmbeddingsForm(
                    **{
                        "model": embedding_model,
                        "prompt": query,
                    }
                )
Steven Kreitzer's avatar
Steven Kreitzer committed
192
            )
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        elif embedding_engine == "openai":
            func = lambda query: generate_openai_embeddings(
                model=embedding_model,
                text=query,
                key=openai_key,
                url=openai_url,
            )

        def generate_multiple(query, f):
            if isinstance(query, list):
                return [f(q) for q in query]
            else:
                return f(query)

        return lambda query: generate_multiple(query, func)
Steven Kreitzer's avatar
Steven Kreitzer committed
208
209


210
211
212
213
214
def rag_messages(
    docs,
    messages,
    template,
    k,
215
    r,
Steven Kreitzer's avatar
Steven Kreitzer committed
216
    hybrid,
217
218
219
    embedding_engine,
    embedding_model,
    embedding_function,
Steven Kreitzer's avatar
Steven Kreitzer committed
220
    reranking_function,
221
222
223
    openai_key,
    openai_url,
):
Timothy J. Baek's avatar
fix  
Timothy J. Baek committed
224
    log.debug(
Steven Kreitzer's avatar
Steven Kreitzer committed
225
        f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {reranking_function} {openai_key} {openai_url}"
Timothy J. Baek's avatar
fix  
Timothy J. Baek committed
226
    )
Timothy J. Baek's avatar
Timothy J. Baek committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

    last_user_message_idx = None
    for i in range(len(messages) - 1, -1, -1):
        if messages[i]["role"] == "user":
            last_user_message_idx = i
            break

    user_message = messages[last_user_message_idx]

    if isinstance(user_message["content"], list):
        # Handle list content input
        content_type = "list"
        query = ""
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                query = content_item["text"]
                break
    elif isinstance(user_message["content"], str):
        # Handle text content input
        content_type = "text"
        query = user_message["content"]
    else:
        # Fallback in case the input does not match expected types
        content_type = None
        query = ""

253
254
255
256
257
258
259
260
261
    embeddings_function = query_embeddings_function(
        embedding_engine,
        embedding_model,
        embedding_function,
        openai_key,
        openai_url,
    )

    extracted_collections = []
Timothy J. Baek's avatar
Timothy J. Baek committed
262
263
264
265
266
    relevant_contexts = []

    for doc in docs:
        context = None

267
268
269
270
271
272
273
274
275
276
        collection = doc.get("collection_name")
        if collection:
            collection = [collection]
        else:
            collection = doc.get("collection_names", [])

        collection = set(collection).difference(extracted_collections)
        if not collection:
            log.debug(f"skipping {doc} as it has already been extracted")
            continue
277

278
        try:
279
            if doc["type"] == "text":
280
                context = doc["content"]
281
282
283
284
285
286
287
288
            elif doc["type"] == "collection":
                context = query_embeddings_collection(
                    collection_names=doc["collection_names"],
                    query=query,
                    k=k,
                    r=r,
                    embeddings_function=embeddings_function,
                    reranking_function=reranking_function,
Steven Kreitzer's avatar
Steven Kreitzer committed
289
                    hybrid=hybrid,
290
                )
Timothy J. Baek's avatar
Timothy J. Baek committed
291
            else:
292
293
294
295
296
297
298
                context = query_embeddings_doc(
                    collection_name=doc["collection_name"],
                    query=query,
                    k=k,
                    r=r,
                    embeddings_function=embeddings_function,
                    reranking_function=reranking_function,
Steven Kreitzer's avatar
Steven Kreitzer committed
299
                    hybrid=hybrid,
Steven Kreitzer's avatar
Steven Kreitzer committed
300
                )
Timothy J. Baek's avatar
Timothy J. Baek committed
301
        except Exception as e:
302
            log.exception(e)
Timothy J. Baek's avatar
Timothy J. Baek committed
303
304
            context = None

305
306
307
308
        if context:
            relevant_contexts.append(context)

        extracted_collections.extend(collection)
Timothy J. Baek's avatar
Timothy J. Baek committed
309
310
311

    context_string = ""
    for context in relevant_contexts:
312
313
314
        items = context["documents"][0]
        context_string += "\n\n".join(items)
    context_string = context_string.strip()
Timothy J. Baek's avatar
Timothy J. Baek committed
315
316
317
318
319
320
321

    ra_content = rag_template(
        template=template,
        context=context_string,
        query=query,
    )

322
323
    log.debug(f"ra_content: {ra_content}")

Timothy J. Baek's avatar
Timothy J. Baek committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    if content_type == "list":
        new_content = []
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                # Update the text item's content with ra_content
                new_content.append({"type": "text", "text": ra_content})
            else:
                # Keep other types of content as they are
                new_content.append(content_item)
        new_user_message = {**user_message, "content": new_content}
    else:
        new_user_message = {
            **user_message,
            "content": ra_content,
        }

    messages[last_user_message_idx] = new_user_message

    return messages
343

Self Denial's avatar
Self Denial committed
344

345
346
347
348
349
350
351
352
353
354
355
def get_model_path(model: str, update_model: bool = False):
    # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
    cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")

    local_files_only = not update_model

    snapshot_kwargs = {
        "cache_dir": cache_dir,
        "local_files_only": local_files_only,
    }

Steven Kreitzer's avatar
Steven Kreitzer committed
356
    log.debug(f"model: {model}")
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    log.debug(f"snapshot_kwargs: {snapshot_kwargs}")

    # Inspiration from upstream sentence_transformers
    if (
        os.path.exists(model)
        or ("\\" in model or model.count("/") > 1)
        and local_files_only
    ):
        # If fully qualified path exists, return input, else set repo_id
        return model
    elif "/" not in model:
        # Set valid repo_id for model short-name
        model = "sentence-transformers" + "/" + model

    snapshot_kwargs["repo_id"] = model

    # Attempt to query the huggingface_hub library to determine the local path and/or to update
    try:
        model_repo_path = snapshot_download(**snapshot_kwargs)
        log.debug(f"model_repo_path: {model_repo_path}")
        return model_repo_path
    except Exception as e:
        log.exception(f"Cannot determine model snapshot path: {e}")
        return model


383
def generate_openai_embeddings(
Timothy J. Baek's avatar
Timothy J. Baek committed
384
    model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
385
386
387
):
    try:
        r = requests.post(
Timothy J. Baek's avatar
Timothy J. Baek committed
388
            f"{url}/embeddings",
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
            headers={
                "Content-Type": "application/json",
                "Authorization": f"Bearer {key}",
            },
            json={"input": text, "model": model},
        )
        r.raise_for_status()
        data = r.json()
        if "data" in data:
            return data["data"][0]["embedding"]
        else:
            raise "Something went wrong :/"
    except Exception as e:
        print(e)
        return None
Steven Kreitzer's avatar
Steven Kreitzer committed
404
405
406
407
408


from typing import Any

from langchain_core.retrievers import BaseRetriever
409
from langchain_core.callbacks import CallbackManagerForRetrieverRun
Steven Kreitzer's avatar
Steven Kreitzer committed
410
411
412
413
414


class ChromaRetriever(BaseRetriever):
    collection: Any
    embeddings_function: Any
415
    top_n: int
Steven Kreitzer's avatar
Steven Kreitzer committed
416
417
418
419
420
421
422
423
424
425
426

    def _get_relevant_documents(
        self,
        query: str,
        *,
        run_manager: CallbackManagerForRetrieverRun,
    ) -> List[Document]:
        query_embeddings = self.embeddings_function(query)

        results = self.collection.query(
            query_embeddings=[query_embeddings],
427
            n_results=self.top_n,
Steven Kreitzer's avatar
Steven Kreitzer committed
428
429
430
431
432
433
434
435
436
437
438
439
440
        )

        ids = results["ids"][0]
        metadatas = results["metadatas"][0]
        documents = results["documents"][0]

        return [
            Document(
                metadata=metadatas[idx],
                page_content=documents[idx],
            )
            for idx in range(len(ids))
        ]
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497


import operator

from typing import Optional, Sequence

from langchain_core.documents import BaseDocumentCompressor, Document
from langchain_core.callbacks import Callbacks
from langchain_core.pydantic_v1 import Extra

from sentence_transformers import util


class RerankCompressor(BaseDocumentCompressor):
    embeddings_function: Any
    reranking_function: Any
    r_score: float
    top_n: int

    class Config:
        extra = Extra.forbid
        arbitrary_types_allowed = True

    def compress_documents(
        self,
        documents: Sequence[Document],
        query: str,
        callbacks: Optional[Callbacks] = None,
    ) -> Sequence[Document]:
        if self.reranking_function:
            scores = self.reranking_function.predict(
                [(query, doc.page_content) for doc in documents]
            )
        else:
            query_embedding = self.embeddings_function(query)
            document_embedding = self.embeddings_function(
                [doc.page_content for doc in documents]
            )
            scores = util.cos_sim(query_embedding, document_embedding)[0]

        docs_with_scores = list(zip(documents, scores.tolist()))
        if self.r_score:
            docs_with_scores = [
                (d, s) for d, s in docs_with_scores if s >= self.r_score
            ]

        result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
        final_results = []
        for doc, doc_score in result[: self.top_n]:
            metadata = doc.metadata
            metadata["score"] = doc_score
            doc = Document(
                page_content=doc.page_content,
                metadata=metadata,
            )
            final_results.append(doc)
        return final_results