"backend/vscode:/vscode.git/clone" did not exist on "e8085f80a78a72acd614db5204c42b81e922e0ad"
utils.py 13.4 KB
Newer Older
1
import os
2
import logging
3
4
import requests

5
from typing import List
6

7
8
9
10
from apps.ollama.main import (
    generate_ollama_embeddings,
    GenerateEmbeddingsForm,
)
Timothy J. Baek's avatar
Timothy J. Baek committed
11

12
13
from huggingface_hub import snapshot_download

14
15
from langchain_core.documents import Document
from langchain_community.retrievers import BM25Retriever
Steven Kreitzer's avatar
Steven Kreitzer committed
16
from langchain.retrievers import (
17
    ContextualCompressionRetriever,
Steven Kreitzer's avatar
Steven Kreitzer committed
18
19
20
    EnsembleRetriever,
)

21
22
from config import SRC_LOG_LEVELS, CHROMA_CLIENT

23

24
25
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
Timothy J. Baek's avatar
Timothy J. Baek committed
26
27


Steven Kreitzer's avatar
Steven Kreitzer committed
28
29
30
31
def query_embeddings_doc(
    collection_name: str,
    query: str,
    k: int,
32
    r: float,
Steven Kreitzer's avatar
Steven Kreitzer committed
33
34
35
    embeddings_function,
    reranking_function,
):
36
37
    try:
        # if you use docker use the model from the environment variable
38
39
        collection = CHROMA_CLIENT.get_collection(name=collection_name)

40
        documents = collection.get()  # get all documents
Steven Kreitzer's avatar
Steven Kreitzer committed
41
42
43
44
45
46
47
48
49
        bm25_retriever = BM25Retriever.from_texts(
            texts=documents.get("documents"),
            metadatas=documents.get("metadatas"),
        )
        bm25_retriever.k = k

        chroma_retriever = ChromaRetriever(
            collection=collection,
            embeddings_function=embeddings_function,
50
            top_n=k,
Steven Kreitzer's avatar
Steven Kreitzer committed
51
52
53
        )

        ensemble_retriever = EnsembleRetriever(
54
            retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
55
        )
Timothy J. Baek's avatar
fix  
Timothy J. Baek committed
56

57
58
        compressor = RerankCompressor(
            embeddings_function=embeddings_function,
Steven Kreitzer's avatar
Steven Kreitzer committed
59
            reranking_function=reranking_function,
60
61
            r_score=r,
            top_n=k,
Steven Kreitzer's avatar
Steven Kreitzer committed
62
        )
63
64
65
66
67
68

        compression_retriever = ContextualCompressionRetriever(
            base_compressor=compressor, base_retriever=ensemble_retriever
        )

        result = compression_retriever.invoke(query)
Steven Kreitzer's avatar
Steven Kreitzer committed
69
        result = {
70
71
72
            "distances": [[d.metadata.get("score") for d in result]],
            "documents": [[d.page_content for d in result]],
            "metadatas": [[d.metadata for d in result]],
Steven Kreitzer's avatar
Steven Kreitzer committed
73
74
        }

75
76
77
78
79
        return result
    except Exception as e:
        raise e


Timothy J. Baek's avatar
Timothy J. Baek committed
80
81
82
83
def merge_and_sort_query_results(query_results, k):
    # Initialize lists to store combined data
    combined_distances = []
    combined_documents = []
Steven Kreitzer's avatar
Steven Kreitzer committed
84
    combined_metadatas = []
Timothy J. Baek's avatar
Timothy J. Baek committed
85
86
87
88

    for data in query_results:
        combined_distances.extend(data["distances"][0])
        combined_documents.extend(data["documents"][0])
Steven Kreitzer's avatar
Steven Kreitzer committed
89
        combined_metadatas.extend(data["metadatas"][0])
Timothy J. Baek's avatar
Timothy J. Baek committed
90

Steven Kreitzer's avatar
Steven Kreitzer committed
91
    # Create a list of tuples (distance, document, metadata)
92
    combined = list(zip(combined_distances, combined_documents, combined_metadatas))
Timothy J. Baek's avatar
Timothy J. Baek committed
93
94
95
96

    # Sort the list based on distances
    combined.sort(key=lambda x: x[0])

97
98
99
100
101
102
103
104
    # We don't have anything :-(
    if not combined:
        sorted_distances = []
        sorted_documents = []
        sorted_metadatas = []
    else:
        # Unzip the sorted list
        sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
Timothy J. Baek's avatar
Timothy J. Baek committed
105

106
107
108
109
        # Slicing the lists to include only k elements
        sorted_distances = list(sorted_distances)[:k]
        sorted_documents = list(sorted_documents)[:k]
        sorted_metadatas = list(sorted_metadatas)[:k]
Timothy J. Baek's avatar
Timothy J. Baek committed
110
111

    # Create the output dictionary
112
    result = {
Timothy J. Baek's avatar
Timothy J. Baek committed
113
114
        "distances": [sorted_distances],
        "documents": [sorted_documents],
Steven Kreitzer's avatar
Steven Kreitzer committed
115
        "metadatas": [sorted_metadatas],
Timothy J. Baek's avatar
Timothy J. Baek committed
116
117
    }

118
    return result
Timothy J. Baek's avatar
Timothy J. Baek committed
119
120


121
def query_embeddings_collection(
Steven Kreitzer's avatar
Steven Kreitzer committed
122
123
124
    collection_names: List[str],
    query: str,
    k: int,
125
    r: float,
Steven Kreitzer's avatar
Steven Kreitzer committed
126
127
    embeddings_function,
    reranking_function,
Timothy J. Baek's avatar
Timothy J. Baek committed
128
129
):

130
    results = []
Timothy J. Baek's avatar
Timothy J. Baek committed
131

132
133
    for collection_name in collection_names:
        try:
134
135
136
137
            result = query_embeddings_doc(
                collection_name=collection_name,
                query=query,
                k=k,
138
                r=r,
Steven Kreitzer's avatar
Steven Kreitzer committed
139
140
                embeddings_function=embeddings_function,
                reranking_function=reranking_function,
141
142
143
144
145
146
147
148
            )
            results.append(result)
        except:
            pass

    return merge_and_sort_query_results(results, k)


Timothy J. Baek's avatar
Timothy J. Baek committed
149
def rag_template(template: str, context: str, query: str):
150
151
    template = template.replace("[context]", context)
    template = template.replace("[query]", query)
Timothy J. Baek's avatar
Timothy J. Baek committed
152
    return template
Timothy J. Baek's avatar
Timothy J. Baek committed
153
154


Steven Kreitzer's avatar
Steven Kreitzer committed
155
156
157
158
159
160
161
162
163
def query_embeddings_function(
    embedding_engine,
    embedding_model,
    embedding_function,
    openai_key,
    openai_url,
):
    if embedding_engine == "":
        return lambda query: embedding_function.encode(query).tolist()
164
165
166
167
168
169
170
171
172
    elif embedding_engine in ["ollama", "openai"]:
        if embedding_engine == "ollama":
            func = lambda query: generate_ollama_embeddings(
                GenerateEmbeddingsForm(
                    **{
                        "model": embedding_model,
                        "prompt": query,
                    }
                )
Steven Kreitzer's avatar
Steven Kreitzer committed
173
            )
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        elif embedding_engine == "openai":
            func = lambda query: generate_openai_embeddings(
                model=embedding_model,
                text=query,
                key=openai_key,
                url=openai_url,
            )

        def generate_multiple(query, f):
            if isinstance(query, list):
                return [f(q) for q in query]
            else:
                return f(query)

        return lambda query: generate_multiple(query, func)
Steven Kreitzer's avatar
Steven Kreitzer committed
189
190


191
192
193
194
195
def rag_messages(
    docs,
    messages,
    template,
    k,
196
    r,
197
198
199
    embedding_engine,
    embedding_model,
    embedding_function,
Steven Kreitzer's avatar
Steven Kreitzer committed
200
    reranking_function,
201
202
203
    openai_key,
    openai_url,
):
Timothy J. Baek's avatar
fix  
Timothy J. Baek committed
204
    log.debug(
Steven Kreitzer's avatar
Steven Kreitzer committed
205
        f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {reranking_function} {openai_key} {openai_url}"
Timothy J. Baek's avatar
fix  
Timothy J. Baek committed
206
    )
Timothy J. Baek's avatar
Timothy J. Baek committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

    last_user_message_idx = None
    for i in range(len(messages) - 1, -1, -1):
        if messages[i]["role"] == "user":
            last_user_message_idx = i
            break

    user_message = messages[last_user_message_idx]

    if isinstance(user_message["content"], list):
        # Handle list content input
        content_type = "list"
        query = ""
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                query = content_item["text"]
                break
    elif isinstance(user_message["content"], str):
        # Handle text content input
        content_type = "text"
        query = user_message["content"]
    else:
        # Fallback in case the input does not match expected types
        content_type = None
        query = ""

233
234
235
236
237
238
239
240
241
    embeddings_function = query_embeddings_function(
        embedding_engine,
        embedding_model,
        embedding_function,
        openai_key,
        openai_url,
    )

    extracted_collections = []
Timothy J. Baek's avatar
Timothy J. Baek committed
242
243
244
245
246
    relevant_contexts = []

    for doc in docs:
        context = None

247
248
249
250
251
252
253
254
255
256
        collection = doc.get("collection_name")
        if collection:
            collection = [collection]
        else:
            collection = doc.get("collection_names", [])

        collection = set(collection).difference(extracted_collections)
        if not collection:
            log.debug(f"skipping {doc} as it has already been extracted")
            continue
257

258
        try:
259
            if doc["type"] == "text":
260
                context = doc["content"]
261
262
263
264
265
266
267
268
269
            elif doc["type"] == "collection":
                context = query_embeddings_collection(
                    collection_names=doc["collection_names"],
                    query=query,
                    k=k,
                    r=r,
                    embeddings_function=embeddings_function,
                    reranking_function=reranking_function,
                )
Timothy J. Baek's avatar
Timothy J. Baek committed
270
            else:
271
272
273
274
275
276
277
                context = query_embeddings_doc(
                    collection_name=doc["collection_name"],
                    query=query,
                    k=k,
                    r=r,
                    embeddings_function=embeddings_function,
                    reranking_function=reranking_function,
Steven Kreitzer's avatar
Steven Kreitzer committed
278
                )
Timothy J. Baek's avatar
Timothy J. Baek committed
279
        except Exception as e:
280
            log.exception(e)
Timothy J. Baek's avatar
Timothy J. Baek committed
281
282
            context = None

283
284
285
286
        if context:
            relevant_contexts.append(context)

        extracted_collections.extend(collection)
Timothy J. Baek's avatar
Timothy J. Baek committed
287
288
289

    context_string = ""
    for context in relevant_contexts:
290
291
292
        items = context["documents"][0]
        context_string += "\n\n".join(items)
    context_string = context_string.strip()
Timothy J. Baek's avatar
Timothy J. Baek committed
293
294
295
296
297
298
299

    ra_content = rag_template(
        template=template,
        context=context_string,
        query=query,
    )

300
301
    log.debug(f"ra_content: {ra_content}")

Timothy J. Baek's avatar
Timothy J. Baek committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    if content_type == "list":
        new_content = []
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                # Update the text item's content with ra_content
                new_content.append({"type": "text", "text": ra_content})
            else:
                # Keep other types of content as they are
                new_content.append(content_item)
        new_user_message = {**user_message, "content": new_content}
    else:
        new_user_message = {
            **user_message,
            "content": ra_content,
        }

    messages[last_user_message_idx] = new_user_message

    return messages
321

Self Denial's avatar
Self Denial committed
322

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
def get_model_path(model: str, update_model: bool = False):
    # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
    cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")

    local_files_only = not update_model

    snapshot_kwargs = {
        "cache_dir": cache_dir,
        "local_files_only": local_files_only,
    }

    log.debug(f"embedding_model: {model}")
    log.debug(f"snapshot_kwargs: {snapshot_kwargs}")

    # Inspiration from upstream sentence_transformers
    if (
        os.path.exists(model)
        or ("\\" in model or model.count("/") > 1)
        and local_files_only
    ):
        # If fully qualified path exists, return input, else set repo_id
        return model
    elif "/" not in model:
        # Set valid repo_id for model short-name
        model = "sentence-transformers" + "/" + model

    snapshot_kwargs["repo_id"] = model

    # Attempt to query the huggingface_hub library to determine the local path and/or to update
    try:
        model_repo_path = snapshot_download(**snapshot_kwargs)
        log.debug(f"model_repo_path: {model_repo_path}")
        return model_repo_path
    except Exception as e:
        log.exception(f"Cannot determine model snapshot path: {e}")
        return model


361
def generate_openai_embeddings(
Timothy J. Baek's avatar
Timothy J. Baek committed
362
    model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
363
364
365
):
    try:
        r = requests.post(
Timothy J. Baek's avatar
Timothy J. Baek committed
366
            f"{url}/embeddings",
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
            headers={
                "Content-Type": "application/json",
                "Authorization": f"Bearer {key}",
            },
            json={"input": text, "model": model},
        )
        r.raise_for_status()
        data = r.json()
        if "data" in data:
            return data["data"][0]["embedding"]
        else:
            raise "Something went wrong :/"
    except Exception as e:
        print(e)
        return None
Steven Kreitzer's avatar
Steven Kreitzer committed
382
383
384
385
386


from typing import Any

from langchain_core.retrievers import BaseRetriever
387
from langchain_core.callbacks import CallbackManagerForRetrieverRun
Steven Kreitzer's avatar
Steven Kreitzer committed
388
389
390
391
392


class ChromaRetriever(BaseRetriever):
    collection: Any
    embeddings_function: Any
393
    top_n: int
Steven Kreitzer's avatar
Steven Kreitzer committed
394
395
396
397
398
399
400
401
402
403
404

    def _get_relevant_documents(
        self,
        query: str,
        *,
        run_manager: CallbackManagerForRetrieverRun,
    ) -> List[Document]:
        query_embeddings = self.embeddings_function(query)

        results = self.collection.query(
            query_embeddings=[query_embeddings],
405
            n_results=self.top_n,
Steven Kreitzer's avatar
Steven Kreitzer committed
406
407
408
409
410
411
412
413
414
415
416
417
418
        )

        ids = results["ids"][0]
        metadatas = results["metadatas"][0]
        documents = results["documents"][0]

        return [
            Document(
                metadata=metadatas[idx],
                page_content=documents[idx],
            )
            for idx in range(len(ids))
        ]
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475


import operator

from typing import Optional, Sequence

from langchain_core.documents import BaseDocumentCompressor, Document
from langchain_core.callbacks import Callbacks
from langchain_core.pydantic_v1 import Extra

from sentence_transformers import util


class RerankCompressor(BaseDocumentCompressor):
    embeddings_function: Any
    reranking_function: Any
    r_score: float
    top_n: int

    class Config:
        extra = Extra.forbid
        arbitrary_types_allowed = True

    def compress_documents(
        self,
        documents: Sequence[Document],
        query: str,
        callbacks: Optional[Callbacks] = None,
    ) -> Sequence[Document]:
        if self.reranking_function:
            scores = self.reranking_function.predict(
                [(query, doc.page_content) for doc in documents]
            )
        else:
            query_embedding = self.embeddings_function(query)
            document_embedding = self.embeddings_function(
                [doc.page_content for doc in documents]
            )
            scores = util.cos_sim(query_embedding, document_embedding)[0]

        docs_with_scores = list(zip(documents, scores.tolist()))
        if self.r_score:
            docs_with_scores = [
                (d, s) for d, s in docs_with_scores if s >= self.r_score
            ]

        result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
        final_results = []
        for doc, doc_score in result[: self.top_n]:
            metadata = doc.metadata
            metadata["score"] = doc_score
            doc = Document(
                page_content=doc.page_content,
                metadata=metadata,
            )
            final_results.append(doc)
        return final_results