utils.py 10.5 KB
Newer Older
1
import os
Timothy J. Baek's avatar
Timothy J. Baek committed
2
import re
3
import logging
Timothy J. Baek's avatar
Timothy J. Baek committed
4
from typing import List
5
6
7
import requests


8
from huggingface_hub import snapshot_download
9
10
from apps.ollama.main import generate_ollama_embeddings, GenerateEmbeddingsForm

Timothy J. Baek's avatar
Timothy J. Baek committed
11

12
13
from config import SRC_LOG_LEVELS, CHROMA_CLIENT

14

15
16
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
Timothy J. Baek's avatar
Timothy J. Baek committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


def query_doc(collection_name: str, query: str, k: int, embedding_function):
    try:
        # if you use docker use the model from the environment variable
        collection = CHROMA_CLIENT.get_collection(
            name=collection_name,
            embedding_function=embedding_function,
        )
        result = collection.query(
            query_texts=[query],
            n_results=k,
        )
        return result
    except Exception as e:
        raise e


35
36
37
def query_embeddings_doc(collection_name: str, query_embeddings, k: int):
    try:
        # if you use docker use the model from the environment variable
38
        log.info(f"query_embeddings_doc {query_embeddings}")
39
40
41
42
43
44
45
        collection = CHROMA_CLIENT.get_collection(
            name=collection_name,
        )
        result = collection.query(
            query_embeddings=[query_embeddings],
            n_results=k,
        )
Timothy J. Baek's avatar
fix  
Timothy J. Baek committed
46
47

        log.info(f"query_embeddings_doc:result {result}")
48
49
50
51
52
        return result
    except Exception as e:
        raise e


Timothy J. Baek's avatar
Timothy J. Baek committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def merge_and_sort_query_results(query_results, k):
    # Initialize lists to store combined data
    combined_ids = []
    combined_distances = []
    combined_metadatas = []
    combined_documents = []

    # Combine data from each dictionary
    for data in query_results:
        combined_ids.extend(data["ids"][0])
        combined_distances.extend(data["distances"][0])
        combined_metadatas.extend(data["metadatas"][0])
        combined_documents.extend(data["documents"][0])

    # Create a list of tuples (distance, id, metadata, document)
    combined = list(
        zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
    )

    # Sort the list based on distances
    combined.sort(key=lambda x: x[0])

    # Unzip the sorted list
    sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)

    # Slicing the lists to include only k elements
    sorted_distances = list(sorted_distances)[:k]
    sorted_ids = list(sorted_ids)[:k]
    sorted_metadatas = list(sorted_metadatas)[:k]
    sorted_documents = list(sorted_documents)[:k]

    # Create the output dictionary
    merged_query_results = {
        "ids": [sorted_ids],
        "distances": [sorted_distances],
        "metadatas": [sorted_metadatas],
        "documents": [sorted_documents],
        "embeddings": None,
        "uris": None,
        "data": None,
    }

    return merged_query_results


def query_collection(
    collection_names: List[str], query: str, k: int, embedding_function
):

    results = []

    for collection_name in collection_names:
        try:
            # if you use docker use the model from the environment variable
            collection = CHROMA_CLIENT.get_collection(
                name=collection_name,
                embedding_function=embedding_function,
            )

            result = collection.query(
                query_texts=[query],
                n_results=k,
            )
            results.append(result)
        except:
            pass

    return merge_and_sort_query_results(results, k)
Timothy J. Baek's avatar
Timothy J. Baek committed
121
122


123
124
125
def query_embeddings_collection(collection_names: List[str], query_embeddings, k: int):

    results = []
126
    log.info(f"query_embeddings_collection {query_embeddings}")
Timothy J. Baek's avatar
Timothy J. Baek committed
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    for collection_name in collection_names:
        try:
            collection = CHROMA_CLIENT.get_collection(name=collection_name)

            result = collection.query(
                query_embeddings=[query_embeddings],
                n_results=k,
            )
            results.append(result)
        except:
            pass

    return merge_and_sort_query_results(results, k)


Timothy J. Baek's avatar
Timothy J. Baek committed
143
def rag_template(template: str, context: str, query: str):
144
145
    template = template.replace("[context]", context)
    template = template.replace("[query]", query)
Timothy J. Baek's avatar
Timothy J. Baek committed
146
    return template
Timothy J. Baek's avatar
Timothy J. Baek committed
147
148


149
150
151
152
153
154
155
156
157
158
159
def rag_messages(
    docs,
    messages,
    template,
    k,
    embedding_engine,
    embedding_model,
    embedding_function,
    openai_key,
    openai_url,
):
Timothy J. Baek's avatar
fix  
Timothy J. Baek committed
160
161
162
    log.debug(
        f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {openai_key} {openai_url}"
    )
Timothy J. Baek's avatar
Timothy J. Baek committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

    last_user_message_idx = None
    for i in range(len(messages) - 1, -1, -1):
        if messages[i]["role"] == "user":
            last_user_message_idx = i
            break

    user_message = messages[last_user_message_idx]

    if isinstance(user_message["content"], list):
        # Handle list content input
        content_type = "list"
        query = ""
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                query = content_item["text"]
                break
    elif isinstance(user_message["content"], str):
        # Handle text content input
        content_type = "text"
        query = user_message["content"]
    else:
        # Fallback in case the input does not match expected types
        content_type = None
        query = ""

    relevant_contexts = []

    for doc in docs:
        context = None

        try:
195
196

            if doc["type"] == "text":
197
                context = doc["content"]
Timothy J. Baek's avatar
Timothy J. Baek committed
198
            else:
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
                if embedding_engine == "":
                    if doc["type"] == "collection":
                        context = query_collection(
                            collection_names=doc["collection_names"],
                            query=query,
                            k=k,
                            embedding_function=embedding_function,
                        )
                    else:
                        context = query_doc(
                            collection_name=doc["collection_name"],
                            query=query,
                            k=k,
                            embedding_function=embedding_function,
                        )

                else:
                    if embedding_engine == "ollama":
                        query_embeddings = generate_ollama_embeddings(
                            GenerateEmbeddingsForm(
                                **{
                                    "model": embedding_model,
                                    "prompt": query,
                                }
                            )
                        )
                    elif embedding_engine == "openai":
                        query_embeddings = generate_openai_embeddings(
                            model=embedding_model,
                            text=query,
                            key=openai_key,
                            url=openai_url,
                        )

                    if doc["type"] == "collection":
                        context = query_embeddings_collection(
                            collection_names=doc["collection_names"],
                            query_embeddings=query_embeddings,
                            k=k,
                        )
                    else:
                        context = query_embeddings_doc(
                            collection_name=doc["collection_name"],
                            query_embeddings=query_embeddings,
                            k=k,
                        )

Timothy J. Baek's avatar
Timothy J. Baek committed
246
        except Exception as e:
247
            log.exception(e)
Timothy J. Baek's avatar
Timothy J. Baek committed
248
249
250
251
            context = None

        relevant_contexts.append(context)

Timothy J. Baek's avatar
Timothy J. Baek committed
252
253
    log.debug(f"relevant_contexts: {relevant_contexts}")

Timothy J. Baek's avatar
Timothy J. Baek committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    context_string = ""
    for context in relevant_contexts:
        if context:
            context_string += " ".join(context["documents"][0]) + "\n"

    ra_content = rag_template(
        template=template,
        context=context_string,
        query=query,
    )

    if content_type == "list":
        new_content = []
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                # Update the text item's content with ra_content
                new_content.append({"type": "text", "text": ra_content})
            else:
                # Keep other types of content as they are
                new_content.append(content_item)
        new_user_message = {**user_message, "content": new_content}
    else:
        new_user_message = {
            **user_message,
            "content": ra_content,
        }

    messages[last_user_message_idx] = new_user_message

    return messages
284

Self Denial's avatar
Self Denial committed
285

Timothy J. Baek's avatar
refac  
Timothy J. Baek committed
286
def get_embedding_model_path(
Self Denial's avatar
Self Denial committed
287
288
    embedding_model: str, update_embedding_model: bool = False
):
289
290
    # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
    cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
Timothy J. Baek's avatar
refac  
Timothy J. Baek committed
291

292
    local_files_only = not update_embedding_model
Timothy J. Baek's avatar
refac  
Timothy J. Baek committed
293

294
295
296
297
298
299
    snapshot_kwargs = {
        "cache_dir": cache_dir,
        "local_files_only": local_files_only,
    }

    log.debug(f"embedding_model: {embedding_model}")
Timothy J. Baek's avatar
refac  
Timothy J. Baek committed
300
    log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
301
302

    # Inspiration from upstream sentence_transformers
Self Denial's avatar
Self Denial committed
303
304
305
306
307
    if (
        os.path.exists(embedding_model)
        or ("\\" in embedding_model or embedding_model.count("/") > 1)
        and local_files_only
    ):
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        # If fully qualified path exists, return input, else set repo_id
        return embedding_model
    elif "/" not in embedding_model:
        # Set valid repo_id for model short-name
        embedding_model = "sentence-transformers" + "/" + embedding_model

    snapshot_kwargs["repo_id"] = embedding_model

    # Attempt to query the huggingface_hub library to determine the local path and/or to update
    try:
        embedding_model_repo_path = snapshot_download(**snapshot_kwargs)
        log.debug(f"embedding_model_repo_path: {embedding_model_repo_path}")
        return embedding_model_repo_path
    except Exception as e:
        log.exception(f"Cannot determine embedding model snapshot path: {e}")
        return embedding_model
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346


def generate_openai_embeddings(
    model: str, text: str, key: str, url: str = "https://api.openai.com"
):
    try:
        r = requests.post(
            f"{url}/v1/embeddings",
            headers={
                "Content-Type": "application/json",
                "Authorization": f"Bearer {key}",
            },
            json={"input": text, "model": model},
        )
        r.raise_for_status()
        data = r.json()
        if "data" in data:
            return data["data"][0]["embedding"]
        else:
            raise "Something went wrong :/"
    except Exception as e:
        print(e)
        return None