utils.py 7.33 KB
Newer Older
1
import logging
2
3
import requests

4
from typing import List
5

6
7
8
9
from apps.ollama.main import (
    generate_ollama_embeddings,
    GenerateEmbeddingsForm,
)
Timothy J. Baek's avatar
Timothy J. Baek committed
10

11
12
from config import SRC_LOG_LEVELS, CHROMA_CLIENT

13

14
15
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
Timothy J. Baek's avatar
Timothy J. Baek committed
16
17


18
def query_embeddings_doc(collection_name: str, query: str, query_embeddings, k: int):
19
20
    try:
        # if you use docker use the model from the environment variable
21
        log.info(f"query_embeddings_doc {query_embeddings}")
22
23
        collection = CHROMA_CLIENT.get_collection(name=collection_name)

24
25
26
27
        result = collection.query(
            query_embeddings=[query_embeddings],
            n_results=k,
        )
Timothy J. Baek's avatar
fix  
Timothy J. Baek committed
28
29

        log.info(f"query_embeddings_doc:result {result}")
30
31
32
33
34
        return result
    except Exception as e:
        raise e


Timothy J. Baek's avatar
Timothy J. Baek committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def merge_and_sort_query_results(query_results, k):
    # Initialize lists to store combined data
    combined_ids = []
    combined_distances = []
    combined_metadatas = []
    combined_documents = []

    # Combine data from each dictionary
    for data in query_results:
        combined_ids.extend(data["ids"][0])
        combined_distances.extend(data["distances"][0])
        combined_metadatas.extend(data["metadatas"][0])
        combined_documents.extend(data["documents"][0])

    # Create a list of tuples (distance, id, metadata, document)
    combined = list(
        zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
    )

    # Sort the list based on distances
    combined.sort(key=lambda x: x[0])

    # Unzip the sorted list
    sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)

    # Slicing the lists to include only k elements
    sorted_distances = list(sorted_distances)[:k]
    sorted_ids = list(sorted_ids)[:k]
    sorted_metadatas = list(sorted_metadatas)[:k]
    sorted_documents = list(sorted_documents)[:k]

    # Create the output dictionary
    merged_query_results = {
        "ids": [sorted_ids],
        "distances": [sorted_distances],
        "metadatas": [sorted_metadatas],
        "documents": [sorted_documents],
        "embeddings": None,
        "uris": None,
        "data": None,
    }

    return merged_query_results


80
81
def query_embeddings_collection(
    collection_names: List[str], query: str, query_embeddings, k: int
Timothy J. Baek's avatar
Timothy J. Baek committed
82
83
):

84
    results = []
85
    log.info(f"query_embeddings_collection {query_embeddings}")
Timothy J. Baek's avatar
Timothy J. Baek committed
86

87
88
    for collection_name in collection_names:
        try:
89
90
91
92
93
            result = query_embeddings_doc(
                collection_name=collection_name,
                query=query,
                query_embeddings=query_embeddings,
                k=k,
94
95
96
97
98
99
100
101
            )
            results.append(result)
        except:
            pass

    return merge_and_sort_query_results(results, k)


Timothy J. Baek's avatar
Timothy J. Baek committed
102
def rag_template(template: str, context: str, query: str):
103
104
    template = template.replace("[context]", context)
    template = template.replace("[query]", query)
Timothy J. Baek's avatar
Timothy J. Baek committed
105
    return template
Timothy J. Baek's avatar
Timothy J. Baek committed
106
107


108
109
110
111
112
113
114
115
116
117
118
def rag_messages(
    docs,
    messages,
    template,
    k,
    embedding_engine,
    embedding_model,
    embedding_function,
    openai_key,
    openai_url,
):
Timothy J. Baek's avatar
fix  
Timothy J. Baek committed
119
120
121
    log.debug(
        f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {openai_key} {openai_url}"
    )
Timothy J. Baek's avatar
Timothy J. Baek committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

    last_user_message_idx = None
    for i in range(len(messages) - 1, -1, -1):
        if messages[i]["role"] == "user":
            last_user_message_idx = i
            break

    user_message = messages[last_user_message_idx]

    if isinstance(user_message["content"], list):
        # Handle list content input
        content_type = "list"
        query = ""
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                query = content_item["text"]
                break
    elif isinstance(user_message["content"], str):
        # Handle text content input
        content_type = "text"
        query = user_message["content"]
    else:
        # Fallback in case the input does not match expected types
        content_type = None
        query = ""

    relevant_contexts = []

    for doc in docs:
        context = None

        try:
154
155

            if doc["type"] == "text":
156
                context = doc["content"]
Timothy J. Baek's avatar
Timothy J. Baek committed
157
            else:
158
                if embedding_engine == "":
159
160
161
162
163
164
165
166
                    query_embeddings = embedding_function.encode(query).tolist()
                elif embedding_engine == "ollama":
                    query_embeddings = generate_ollama_embeddings(
                        GenerateEmbeddingsForm(
                            **{
                                "model": embedding_model,
                                "prompt": query,
                            }
167
                        )
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
                    )
                elif embedding_engine == "openai":
                    query_embeddings = generate_openai_embeddings(
                        model=embedding_model,
                        text=query,
                        key=openai_key,
                        url=openai_url,
                    )

                if doc["type"] == "collection":
                    context = query_embeddings_collection(
                        collection_names=doc["collection_names"],
                        query=query,
                        query_embeddings=query_embeddings,
                        k=k,
                    )
184
                else:
185
186
187
188
189
190
                    context = query_embeddings_doc(
                        collection_name=doc["collection_name"],
                        query=query,
                        query_embeddings=query_embeddings,
                        k=k,
                    )
191

Timothy J. Baek's avatar
Timothy J. Baek committed
192
        except Exception as e:
193
            log.exception(e)
Timothy J. Baek's avatar
Timothy J. Baek committed
194
195
196
197
            context = None

        relevant_contexts.append(context)

Timothy J. Baek's avatar
Timothy J. Baek committed
198
199
    log.debug(f"relevant_contexts: {relevant_contexts}")

Timothy J. Baek's avatar
Timothy J. Baek committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    context_string = ""
    for context in relevant_contexts:
        if context:
            context_string += " ".join(context["documents"][0]) + "\n"

    ra_content = rag_template(
        template=template,
        context=context_string,
        query=query,
    )

    if content_type == "list":
        new_content = []
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                # Update the text item's content with ra_content
                new_content.append({"type": "text", "text": ra_content})
            else:
                # Keep other types of content as they are
                new_content.append(content_item)
        new_user_message = {**user_message, "content": new_content}
    else:
        new_user_message = {
            **user_message,
            "content": ra_content,
        }

    messages[last_user_message_idx] = new_user_message

    return messages
230

Self Denial's avatar
Self Denial committed
231

232
def generate_openai_embeddings(
Timothy J. Baek's avatar
Timothy J. Baek committed
233
    model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
234
235
236
):
    try:
        r = requests.post(
Timothy J. Baek's avatar
Timothy J. Baek committed
237
            f"{url}/embeddings",
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
            headers={
                "Content-Type": "application/json",
                "Authorization": f"Bearer {key}",
            },
            json={"input": text, "model": model},
        )
        r.raise_for_status()
        data = r.json()
        if "data" in data:
            return data["data"][0]["embedding"]
        else:
            raise "Something went wrong :/"
    except Exception as e:
        print(e)
        return None