utils.py 14.2 KB
Newer Older
1
import os
2
import logging
3
4
import requests

5
from typing import List
6

7
8
9
10
from apps.ollama.main import (
    generate_ollama_embeddings,
    GenerateEmbeddingsForm,
)
Timothy J. Baek's avatar
Timothy J. Baek committed
11

12
13
from huggingface_hub import snapshot_download

14
15
from langchain_core.documents import Document
from langchain_community.retrievers import BM25Retriever
Steven Kreitzer's avatar
Steven Kreitzer committed
16
from langchain.retrievers import (
17
    ContextualCompressionRetriever,
Steven Kreitzer's avatar
Steven Kreitzer committed
18
19
20
    EnsembleRetriever,
)

21
22
23
from sentence_transformers import CrossEncoder

from typing import Optional
24
25
from config import SRC_LOG_LEVELS, CHROMA_CLIENT

26

27
28
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
Timothy J. Baek's avatar
Timothy J. Baek committed
29
30


Steven Kreitzer's avatar
Steven Kreitzer committed
31
32
33
34
def query_embeddings_doc(
    collection_name: str,
    query: str,
    embeddings_function,
35
36
37
    k: int,
    reranking_function: Optional[CrossEncoder] = None,
    r: Optional[float] = None,
Steven Kreitzer's avatar
Steven Kreitzer committed
38
):
39
    try:
Steven Kreitzer's avatar
Steven Kreitzer committed
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        if reranking_function:
            # if you use docker use the model from the environment variable
            collection = CHROMA_CLIENT.get_collection(name=collection_name)

            documents = collection.get()  # get all documents
            bm25_retriever = BM25Retriever.from_texts(
                texts=documents.get("documents"),
                metadatas=documents.get("metadatas"),
            )
            bm25_retriever.k = k

            chroma_retriever = ChromaRetriever(
                collection=collection,
                embeddings_function=embeddings_function,
                top_n=k,
            )

            ensemble_retriever = EnsembleRetriever(
                retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
            )

            compressor = RerankCompressor(
                embeddings_function=embeddings_function,
                reranking_function=reranking_function,
                r_score=r,
                top_n=k,
            )

            compression_retriever = ContextualCompressionRetriever(
                base_compressor=compressor, base_retriever=ensemble_retriever
            )

            result = compression_retriever.invoke(query)
            result = {
                "distances": [[d.metadata.get("score") for d in result]],
                "documents": [[d.page_content for d in result]],
                "metadatas": [[d.metadata for d in result]],
            }
        else:
            # if you use docker use the model from the environment variable
            query_embeddings = embeddings_function(query)

            log.info(f"query_embeddings_doc {query_embeddings}")
            collection = CHROMA_CLIENT.get_collection(name=collection_name)

            result = collection.query(
                query_embeddings=[query_embeddings],
                n_results=k,
            )

            log.info(f"query_embeddings_doc:result {result}")
92
93
94
95
96
        return result
    except Exception as e:
        raise e


Timothy J. Baek's avatar
Timothy J. Baek committed
97
98
99
100
def merge_and_sort_query_results(query_results, k):
    # Initialize lists to store combined data
    combined_distances = []
    combined_documents = []
Steven Kreitzer's avatar
Steven Kreitzer committed
101
    combined_metadatas = []
Timothy J. Baek's avatar
Timothy J. Baek committed
102
103
104
105

    for data in query_results:
        combined_distances.extend(data["distances"][0])
        combined_documents.extend(data["documents"][0])
Steven Kreitzer's avatar
Steven Kreitzer committed
106
        combined_metadatas.extend(data["metadatas"][0])
Timothy J. Baek's avatar
Timothy J. Baek committed
107

Steven Kreitzer's avatar
Steven Kreitzer committed
108
    # Create a list of tuples (distance, document, metadata)
109
    combined = list(zip(combined_distances, combined_documents, combined_metadatas))
Timothy J. Baek's avatar
Timothy J. Baek committed
110
111
112
113

    # Sort the list based on distances
    combined.sort(key=lambda x: x[0])

114
115
116
117
118
119
120
121
    # We don't have anything :-(
    if not combined:
        sorted_distances = []
        sorted_documents = []
        sorted_metadatas = []
    else:
        # Unzip the sorted list
        sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
Timothy J. Baek's avatar
Timothy J. Baek committed
122

123
124
125
126
        # Slicing the lists to include only k elements
        sorted_distances = list(sorted_distances)[:k]
        sorted_documents = list(sorted_documents)[:k]
        sorted_metadatas = list(sorted_metadatas)[:k]
Timothy J. Baek's avatar
Timothy J. Baek committed
127
128

    # Create the output dictionary
129
    result = {
Timothy J. Baek's avatar
Timothy J. Baek committed
130
131
        "distances": [sorted_distances],
        "documents": [sorted_documents],
Steven Kreitzer's avatar
Steven Kreitzer committed
132
        "metadatas": [sorted_metadatas],
Timothy J. Baek's avatar
Timothy J. Baek committed
133
134
    }

135
    return result
Timothy J. Baek's avatar
Timothy J. Baek committed
136
137


138
def query_embeddings_collection(
Steven Kreitzer's avatar
Steven Kreitzer committed
139
140
141
    collection_names: List[str],
    query: str,
    k: int,
142
    r: float,
Steven Kreitzer's avatar
Steven Kreitzer committed
143
144
    embeddings_function,
    reranking_function,
Timothy J. Baek's avatar
Timothy J. Baek committed
145
146
):

147
    results = []
Timothy J. Baek's avatar
Timothy J. Baek committed
148

149
150
    for collection_name in collection_names:
        try:
151
152
153
154
            result = query_embeddings_doc(
                collection_name=collection_name,
                query=query,
                k=k,
155
                r=r,
Steven Kreitzer's avatar
Steven Kreitzer committed
156
157
                embeddings_function=embeddings_function,
                reranking_function=reranking_function,
158
159
160
161
162
163
164
165
            )
            results.append(result)
        except:
            pass

    return merge_and_sort_query_results(results, k)


Timothy J. Baek's avatar
Timothy J. Baek committed
166
def rag_template(template: str, context: str, query: str):
167
168
    template = template.replace("[context]", context)
    template = template.replace("[query]", query)
Timothy J. Baek's avatar
Timothy J. Baek committed
169
    return template
Timothy J. Baek's avatar
Timothy J. Baek committed
170
171


Steven Kreitzer's avatar
Steven Kreitzer committed
172
173
174
175
176
177
178
179
180
def query_embeddings_function(
    embedding_engine,
    embedding_model,
    embedding_function,
    openai_key,
    openai_url,
):
    if embedding_engine == "":
        return lambda query: embedding_function.encode(query).tolist()
181
182
183
184
185
186
187
188
189
    elif embedding_engine in ["ollama", "openai"]:
        if embedding_engine == "ollama":
            func = lambda query: generate_ollama_embeddings(
                GenerateEmbeddingsForm(
                    **{
                        "model": embedding_model,
                        "prompt": query,
                    }
                )
Steven Kreitzer's avatar
Steven Kreitzer committed
190
            )
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        elif embedding_engine == "openai":
            func = lambda query: generate_openai_embeddings(
                model=embedding_model,
                text=query,
                key=openai_key,
                url=openai_url,
            )

        def generate_multiple(query, f):
            if isinstance(query, list):
                return [f(q) for q in query]
            else:
                return f(query)

        return lambda query: generate_multiple(query, func)
Steven Kreitzer's avatar
Steven Kreitzer committed
206
207


208
209
210
211
212
def rag_messages(
    docs,
    messages,
    template,
    k,
213
    r,
214
215
216
    embedding_engine,
    embedding_model,
    embedding_function,
Steven Kreitzer's avatar
Steven Kreitzer committed
217
    reranking_function,
218
219
220
    openai_key,
    openai_url,
):
Timothy J. Baek's avatar
fix  
Timothy J. Baek committed
221
    log.debug(
Steven Kreitzer's avatar
Steven Kreitzer committed
222
        f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {reranking_function} {openai_key} {openai_url}"
Timothy J. Baek's avatar
fix  
Timothy J. Baek committed
223
    )
Timothy J. Baek's avatar
Timothy J. Baek committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

    last_user_message_idx = None
    for i in range(len(messages) - 1, -1, -1):
        if messages[i]["role"] == "user":
            last_user_message_idx = i
            break

    user_message = messages[last_user_message_idx]

    if isinstance(user_message["content"], list):
        # Handle list content input
        content_type = "list"
        query = ""
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                query = content_item["text"]
                break
    elif isinstance(user_message["content"], str):
        # Handle text content input
        content_type = "text"
        query = user_message["content"]
    else:
        # Fallback in case the input does not match expected types
        content_type = None
        query = ""

250
251
252
253
254
255
256
257
258
    embeddings_function = query_embeddings_function(
        embedding_engine,
        embedding_model,
        embedding_function,
        openai_key,
        openai_url,
    )

    extracted_collections = []
Timothy J. Baek's avatar
Timothy J. Baek committed
259
260
261
262
263
    relevant_contexts = []

    for doc in docs:
        context = None

264
265
266
267
268
269
270
271
272
273
        collection = doc.get("collection_name")
        if collection:
            collection = [collection]
        else:
            collection = doc.get("collection_names", [])

        collection = set(collection).difference(extracted_collections)
        if not collection:
            log.debug(f"skipping {doc} as it has already been extracted")
            continue
274

275
        try:
276
            if doc["type"] == "text":
277
                context = doc["content"]
278
279
280
281
282
283
284
285
286
            elif doc["type"] == "collection":
                context = query_embeddings_collection(
                    collection_names=doc["collection_names"],
                    query=query,
                    k=k,
                    r=r,
                    embeddings_function=embeddings_function,
                    reranking_function=reranking_function,
                )
Timothy J. Baek's avatar
Timothy J. Baek committed
287
            else:
288
289
290
291
292
293
294
                context = query_embeddings_doc(
                    collection_name=doc["collection_name"],
                    query=query,
                    k=k,
                    r=r,
                    embeddings_function=embeddings_function,
                    reranking_function=reranking_function,
Steven Kreitzer's avatar
Steven Kreitzer committed
295
                )
Timothy J. Baek's avatar
Timothy J. Baek committed
296
        except Exception as e:
297
            log.exception(e)
Timothy J. Baek's avatar
Timothy J. Baek committed
298
299
            context = None

300
301
302
303
        if context:
            relevant_contexts.append(context)

        extracted_collections.extend(collection)
Timothy J. Baek's avatar
Timothy J. Baek committed
304
305
306

    context_string = ""
    for context in relevant_contexts:
307
308
309
        items = context["documents"][0]
        context_string += "\n\n".join(items)
    context_string = context_string.strip()
Timothy J. Baek's avatar
Timothy J. Baek committed
310
311
312
313
314
315
316

    ra_content = rag_template(
        template=template,
        context=context_string,
        query=query,
    )

317
318
    log.debug(f"ra_content: {ra_content}")

Timothy J. Baek's avatar
Timothy J. Baek committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    if content_type == "list":
        new_content = []
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                # Update the text item's content with ra_content
                new_content.append({"type": "text", "text": ra_content})
            else:
                # Keep other types of content as they are
                new_content.append(content_item)
        new_user_message = {**user_message, "content": new_content}
    else:
        new_user_message = {
            **user_message,
            "content": ra_content,
        }

    messages[last_user_message_idx] = new_user_message

    return messages
338

Self Denial's avatar
Self Denial committed
339

340
341
342
343
344
345
346
347
348
349
350
def get_model_path(model: str, update_model: bool = False):
    # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
    cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")

    local_files_only = not update_model

    snapshot_kwargs = {
        "cache_dir": cache_dir,
        "local_files_only": local_files_only,
    }

Steven Kreitzer's avatar
Steven Kreitzer committed
351
    log.debug(f"model: {model}")
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    log.debug(f"snapshot_kwargs: {snapshot_kwargs}")

    # Inspiration from upstream sentence_transformers
    if (
        os.path.exists(model)
        or ("\\" in model or model.count("/") > 1)
        and local_files_only
    ):
        # If fully qualified path exists, return input, else set repo_id
        return model
    elif "/" not in model:
        # Set valid repo_id for model short-name
        model = "sentence-transformers" + "/" + model

    snapshot_kwargs["repo_id"] = model

    # Attempt to query the huggingface_hub library to determine the local path and/or to update
    try:
        model_repo_path = snapshot_download(**snapshot_kwargs)
        log.debug(f"model_repo_path: {model_repo_path}")
        return model_repo_path
    except Exception as e:
        log.exception(f"Cannot determine model snapshot path: {e}")
        return model


378
def generate_openai_embeddings(
Timothy J. Baek's avatar
Timothy J. Baek committed
379
    model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
380
381
382
):
    try:
        r = requests.post(
Timothy J. Baek's avatar
Timothy J. Baek committed
383
            f"{url}/embeddings",
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
            headers={
                "Content-Type": "application/json",
                "Authorization": f"Bearer {key}",
            },
            json={"input": text, "model": model},
        )
        r.raise_for_status()
        data = r.json()
        if "data" in data:
            return data["data"][0]["embedding"]
        else:
            raise "Something went wrong :/"
    except Exception as e:
        print(e)
        return None
Steven Kreitzer's avatar
Steven Kreitzer committed
399
400
401
402
403


from typing import Any

from langchain_core.retrievers import BaseRetriever
404
from langchain_core.callbacks import CallbackManagerForRetrieverRun
Steven Kreitzer's avatar
Steven Kreitzer committed
405
406
407
408
409


class ChromaRetriever(BaseRetriever):
    collection: Any
    embeddings_function: Any
410
    top_n: int
Steven Kreitzer's avatar
Steven Kreitzer committed
411
412
413
414
415
416
417
418
419
420
421

    def _get_relevant_documents(
        self,
        query: str,
        *,
        run_manager: CallbackManagerForRetrieverRun,
    ) -> List[Document]:
        query_embeddings = self.embeddings_function(query)

        results = self.collection.query(
            query_embeddings=[query_embeddings],
422
            n_results=self.top_n,
Steven Kreitzer's avatar
Steven Kreitzer committed
423
424
425
426
427
428
429
430
431
432
433
434
435
        )

        ids = results["ids"][0]
        metadatas = results["metadatas"][0]
        documents = results["documents"][0]

        return [
            Document(
                metadata=metadatas[idx],
                page_content=documents[idx],
            )
            for idx in range(len(ids))
        ]
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492


import operator

from typing import Optional, Sequence

from langchain_core.documents import BaseDocumentCompressor, Document
from langchain_core.callbacks import Callbacks
from langchain_core.pydantic_v1 import Extra

from sentence_transformers import util


class RerankCompressor(BaseDocumentCompressor):
    embeddings_function: Any
    reranking_function: Any
    r_score: float
    top_n: int

    class Config:
        extra = Extra.forbid
        arbitrary_types_allowed = True

    def compress_documents(
        self,
        documents: Sequence[Document],
        query: str,
        callbacks: Optional[Callbacks] = None,
    ) -> Sequence[Document]:
        if self.reranking_function:
            scores = self.reranking_function.predict(
                [(query, doc.page_content) for doc in documents]
            )
        else:
            query_embedding = self.embeddings_function(query)
            document_embedding = self.embeddings_function(
                [doc.page_content for doc in documents]
            )
            scores = util.cos_sim(query_embedding, document_embedding)[0]

        docs_with_scores = list(zip(documents, scores.tolist()))
        if self.r_score:
            docs_with_scores = [
                (d, s) for d, s in docs_with_scores if s >= self.r_score
            ]

        result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
        final_results = []
        for doc, doc_score in result[: self.top_n]:
            metadata = doc.metadata
            metadata["score"] = doc_score
            doc = Document(
                page_content=doc.page_content,
                metadata=metadata,
            )
            final_results.append(doc)
        return final_results