utils.py 14.9 KB
Newer Older
1
import os
2
import logging
3
4
import requests

5
from typing import List
6

7
8
9
10
from apps.ollama.main import (
    generate_ollama_embeddings,
    GenerateEmbeddingsForm,
)
Timothy J. Baek's avatar
Timothy J. Baek committed
11

12
13
from huggingface_hub import snapshot_download

14
15
from langchain_core.documents import Document
from langchain_community.retrievers import BM25Retriever
Steven Kreitzer's avatar
Steven Kreitzer committed
16
from langchain.retrievers import (
17
    ContextualCompressionRetriever,
Steven Kreitzer's avatar
Steven Kreitzer committed
18
19
20
    EnsembleRetriever,
)

21
from typing import Optional
22

Timothy J. Baek's avatar
Timothy J. Baek committed
23

24
25
26
27
28
29
30
31
32
33
34
from config import (
    SRC_LOG_LEVELS,
    CHROMA_CLIENT,
    SEARXNG_QUERY_URL,
    GOOGLE_PSE_API_KEY,
    GOOGLE_PSE_ENGINE_ID,
    BRAVE_SEARCH_API_KEY,
    SERPSTACK_API_KEY,
    SERPSTACK_HTTPS,
    SERPER_API_KEY,
)
35

36
37
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
Timothy J. Baek's avatar
Timothy J. Baek committed
38
39


Timothy J. Baek's avatar
Timothy J. Baek committed
40
def query_doc(
Steven Kreitzer's avatar
Steven Kreitzer committed
41
42
    collection_name: str,
    query: str,
Timothy J. Baek's avatar
Timothy J. Baek committed
43
    embedding_function,
44
    k: int,
Steven Kreitzer's avatar
Steven Kreitzer committed
45
):
46
    try:
Steven Kreitzer's avatar
Steven Kreitzer committed
47
        collection = CHROMA_CLIENT.get_collection(name=collection_name)
Timothy J. Baek's avatar
Timothy J. Baek committed
48
        query_embeddings = embedding_function(query)
Steven Kreitzer's avatar
Steven Kreitzer committed
49

Timothy J. Baek's avatar
Timothy J. Baek committed
50
51
52
53
        result = collection.query(
            query_embeddings=[query_embeddings],
            n_results=k,
        )
54

Timothy J. Baek's avatar
Timothy J. Baek committed
55
56
57
58
        log.info(f"query_doc:result {result}")
        return result
    except Exception as e:
        raise e
59
60


Timothy J. Baek's avatar
Timothy J. Baek committed
61
62
63
64
65
66
def query_doc_with_hybrid_search(
    collection_name: str,
    query: str,
    embedding_function,
    k: int,
    reranking_function,
tabacoWang's avatar
fix:  
tabacoWang committed
67
    r: float,
Timothy J. Baek's avatar
Timothy J. Baek committed
68
69
70
71
):
    try:
        collection = CHROMA_CLIENT.get_collection(name=collection_name)
        documents = collection.get()  # get all documents
72

Timothy J. Baek's avatar
Timothy J. Baek committed
73
74
75
76
77
        bm25_retriever = BM25Retriever.from_texts(
            texts=documents.get("documents"),
            metadatas=documents.get("metadatas"),
        )
        bm25_retriever.k = k
78

Timothy J. Baek's avatar
Timothy J. Baek committed
79
80
81
82
83
        chroma_retriever = ChromaRetriever(
            collection=collection,
            embedding_function=embedding_function,
            top_n=k,
        )
84

Timothy J. Baek's avatar
Timothy J. Baek committed
85
86
87
88
89
90
        ensemble_retriever = EnsembleRetriever(
            retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
        )

        compressor = RerankCompressor(
            embedding_function=embedding_function,
Steven Kreitzer's avatar
Steven Kreitzer committed
91
            top_n=k,
Timothy J. Baek's avatar
Timothy J. Baek committed
92
93
94
95
96
97
98
            reranking_function=reranking_function,
            r_score=r,
        )

        compression_retriever = ContextualCompressionRetriever(
            base_compressor=compressor, base_retriever=ensemble_retriever
        )
99

Timothy J. Baek's avatar
Timothy J. Baek committed
100
101
102
103
104
105
        result = compression_retriever.invoke(query)
        result = {
            "distances": [[d.metadata.get("score") for d in result]],
            "documents": [[d.page_content for d in result]],
            "metadatas": [[d.metadata for d in result]],
        }
Steven Kreitzer's avatar
Steven Kreitzer committed
106

Timothy J. Baek's avatar
Timothy J. Baek committed
107
        log.info(f"query_doc_with_hybrid_search:result {result}")
108
109
110
111
112
        return result
    except Exception as e:
        raise e


Steven Kreitzer's avatar
Steven Kreitzer committed
113
def merge_and_sort_query_results(query_results, k, reverse=False):
Timothy J. Baek's avatar
Timothy J. Baek committed
114
115
116
    # Initialize lists to store combined data
    combined_distances = []
    combined_documents = []
Steven Kreitzer's avatar
Steven Kreitzer committed
117
    combined_metadatas = []
Timothy J. Baek's avatar
Timothy J. Baek committed
118
119
120
121

    for data in query_results:
        combined_distances.extend(data["distances"][0])
        combined_documents.extend(data["documents"][0])
Steven Kreitzer's avatar
Steven Kreitzer committed
122
        combined_metadatas.extend(data["metadatas"][0])
Timothy J. Baek's avatar
Timothy J. Baek committed
123

Steven Kreitzer's avatar
Steven Kreitzer committed
124
    # Create a list of tuples (distance, document, metadata)
125
    combined = list(zip(combined_distances, combined_documents, combined_metadatas))
Timothy J. Baek's avatar
Timothy J. Baek committed
126
127

    # Sort the list based on distances
Steven Kreitzer's avatar
Steven Kreitzer committed
128
    combined.sort(key=lambda x: x[0], reverse=reverse)
Timothy J. Baek's avatar
Timothy J. Baek committed
129

130
131
132
133
134
135
136
137
    # We don't have anything :-(
    if not combined:
        sorted_distances = []
        sorted_documents = []
        sorted_metadatas = []
    else:
        # Unzip the sorted list
        sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
Timothy J. Baek's avatar
Timothy J. Baek committed
138

139
140
141
142
        # Slicing the lists to include only k elements
        sorted_distances = list(sorted_distances)[:k]
        sorted_documents = list(sorted_documents)[:k]
        sorted_metadatas = list(sorted_metadatas)[:k]
Timothy J. Baek's avatar
Timothy J. Baek committed
143
144

    # Create the output dictionary
145
    result = {
Timothy J. Baek's avatar
Timothy J. Baek committed
146
147
        "distances": [sorted_distances],
        "documents": [sorted_documents],
Steven Kreitzer's avatar
Steven Kreitzer committed
148
        "metadatas": [sorted_metadatas],
Timothy J. Baek's avatar
Timothy J. Baek committed
149
150
    }

151
    return result
Timothy J. Baek's avatar
Timothy J. Baek committed
152
153


Timothy J. Baek's avatar
Timothy J. Baek committed
154
def query_collection(
Steven Kreitzer's avatar
Steven Kreitzer committed
155
156
    collection_names: List[str],
    query: str,
Timothy J. Baek's avatar
Timothy J. Baek committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    embedding_function,
    k: int,
):
    results = []
    for collection_name in collection_names:
        try:
            result = query_doc(
                collection_name=collection_name,
                query=query,
                k=k,
                embedding_function=embedding_function,
            )
            results.append(result)
        except:
            pass
    return merge_and_sort_query_results(results, k=k)


def query_collection_with_hybrid_search(
    collection_names: List[str],
    query: str,
    embedding_function,
Steven Kreitzer's avatar
Steven Kreitzer committed
179
180
    k: int,
    reranking_function,
Timothy J. Baek's avatar
Timothy J. Baek committed
181
    r: float,
Timothy J. Baek's avatar
Timothy J. Baek committed
182
):
183
184
185
    results = []
    for collection_name in collection_names:
        try:
Timothy J. Baek's avatar
Timothy J. Baek committed
186
            result = query_doc_with_hybrid_search(
187
188
                collection_name=collection_name,
                query=query,
Timothy J. Baek's avatar
Timothy J. Baek committed
189
                embedding_function=embedding_function,
190
                k=k,
Steven Kreitzer's avatar
Steven Kreitzer committed
191
                reranking_function=reranking_function,
Timothy J. Baek's avatar
Timothy J. Baek committed
192
                r=r,
193
194
195
196
            )
            results.append(result)
        except:
            pass
Timothy J. Baek's avatar
Timothy J. Baek committed
197
    return merge_and_sort_query_results(results, k=k, reverse=True)
198
199


Timothy J. Baek's avatar
Timothy J. Baek committed
200
def rag_template(template: str, context: str, query: str):
201
202
    template = template.replace("[context]", context)
    template = template.replace("[query]", query)
Timothy J. Baek's avatar
Timothy J. Baek committed
203
    return template
Timothy J. Baek's avatar
Timothy J. Baek committed
204
205


Timothy J. Baek's avatar
Timothy J. Baek committed
206
def get_embedding_function(
Steven Kreitzer's avatar
Steven Kreitzer committed
207
208
209
210
211
212
213
214
    embedding_engine,
    embedding_model,
    embedding_function,
    openai_key,
    openai_url,
):
    if embedding_engine == "":
        return lambda query: embedding_function.encode(query).tolist()
215
216
217
218
219
220
221
222
223
    elif embedding_engine in ["ollama", "openai"]:
        if embedding_engine == "ollama":
            func = lambda query: generate_ollama_embeddings(
                GenerateEmbeddingsForm(
                    **{
                        "model": embedding_model,
                        "prompt": query,
                    }
                )
Steven Kreitzer's avatar
Steven Kreitzer committed
224
            )
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        elif embedding_engine == "openai":
            func = lambda query: generate_openai_embeddings(
                model=embedding_model,
                text=query,
                key=openai_key,
                url=openai_url,
            )

        def generate_multiple(query, f):
            if isinstance(query, list):
                return [f(q) for q in query]
            else:
                return f(query)

        return lambda query: generate_multiple(query, func)
Steven Kreitzer's avatar
Steven Kreitzer committed
240
241


242
243
244
245
def rag_messages(
    docs,
    messages,
    template,
Timothy J. Baek's avatar
Timothy J. Baek committed
246
    embedding_function,
247
    k,
Timothy J. Baek's avatar
Timothy J. Baek committed
248
    reranking_function,
249
    r,
Timothy J. Baek's avatar
Timothy J. Baek committed
250
    hybrid_search,
251
):
Timothy J. Baek's avatar
Timothy J. Baek committed
252
    log.debug(f"docs: {docs} {messages} {embedding_function} {reranking_function}")
Timothy J. Baek's avatar
Timothy J. Baek committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

    last_user_message_idx = None
    for i in range(len(messages) - 1, -1, -1):
        if messages[i]["role"] == "user":
            last_user_message_idx = i
            break

    user_message = messages[last_user_message_idx]

    if isinstance(user_message["content"], list):
        # Handle list content input
        content_type = "list"
        query = ""
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                query = content_item["text"]
                break
    elif isinstance(user_message["content"], str):
        # Handle text content input
        content_type = "text"
        query = user_message["content"]
    else:
        # Fallback in case the input does not match expected types
        content_type = None
        query = ""

279
    extracted_collections = []
Timothy J. Baek's avatar
Timothy J. Baek committed
280
281
282
283
284
    relevant_contexts = []

    for doc in docs:
        context = None

285
286
287
288
289
290
291
292
        collection_names = (
            doc["collection_names"]
            if doc["type"] == "collection"
            else [doc["collection_name"]]
        )

        collection_names = set(collection_names).difference(extracted_collections)
        if not collection_names:
293
294
            log.debug(f"skipping {doc} as it has already been extracted")
            continue
295

296
        try:
297
            if doc["type"] == "text":
298
                context = doc["content"]
Timothy J. Baek's avatar
Timothy J. Baek committed
299
            else:
Timothy J. Baek's avatar
Timothy J. Baek committed
300
301
                if hybrid_search:
                    context = query_collection_with_hybrid_search(
302
                        collection_names=collection_names,
Timothy J. Baek's avatar
Timothy J. Baek committed
303
304
305
306
307
308
309
310
                        query=query,
                        embedding_function=embedding_function,
                        k=k,
                        reranking_function=reranking_function,
                        r=r,
                    )
                else:
                    context = query_collection(
311
                        collection_names=collection_names,
Timothy J. Baek's avatar
Timothy J. Baek committed
312
313
314
315
                        query=query,
                        embedding_function=embedding_function,
                        k=k,
                    )
Timothy J. Baek's avatar
Timothy J. Baek committed
316
        except Exception as e:
317
            log.exception(e)
Timothy J. Baek's avatar
Timothy J. Baek committed
318
319
            context = None

320
        if context:
321
            relevant_contexts.append({**context, "source": doc})
322

323
        extracted_collections.extend(collection_names)
Timothy J. Baek's avatar
Timothy J. Baek committed
324
325

    context_string = ""
Timothy J. Baek's avatar
Timothy J. Baek committed
326

327
    citations = []
Timothy J. Baek's avatar
Timothy J. Baek committed
328
    for context in relevant_contexts:
329
330
        try:
            if "documents" in context:
331
332
333
334
                context_string += "\n\n".join(
                    [text for text in context["documents"][0] if text is not None]
                )

335
336
337
                if "metadatas" in context:
                    citations.append(
                        {
338
                            "source": context["source"],
339
340
341
342
                            "document": context["documents"][0],
                            "metadata": context["metadatas"][0],
                        }
                    )
343
344
        except Exception as e:
            log.exception(e)
Timothy J. Baek's avatar
Timothy J. Baek committed
345

346
    context_string = context_string.strip()
Timothy J. Baek's avatar
Timothy J. Baek committed
347
348
349
350
351
352
353

    ra_content = rag_template(
        template=template,
        context=context_string,
        query=query,
    )

354
355
    log.debug(f"ra_content: {ra_content}")

Timothy J. Baek's avatar
Timothy J. Baek committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    if content_type == "list":
        new_content = []
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                # Update the text item's content with ra_content
                new_content.append({"type": "text", "text": ra_content})
            else:
                # Keep other types of content as they are
                new_content.append(content_item)
        new_user_message = {**user_message, "content": new_content}
    else:
        new_user_message = {
            **user_message,
            "content": ra_content,
        }

    messages[last_user_message_idx] = new_user_message

374
    return messages, citations
375

Self Denial's avatar
Self Denial committed
376

377
378
379
380
381
382
383
384
385
386
387
def get_model_path(model: str, update_model: bool = False):
    # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
    cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")

    local_files_only = not update_model

    snapshot_kwargs = {
        "cache_dir": cache_dir,
        "local_files_only": local_files_only,
    }

Steven Kreitzer's avatar
Steven Kreitzer committed
388
    log.debug(f"model: {model}")
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    log.debug(f"snapshot_kwargs: {snapshot_kwargs}")

    # Inspiration from upstream sentence_transformers
    if (
        os.path.exists(model)
        or ("\\" in model or model.count("/") > 1)
        and local_files_only
    ):
        # If fully qualified path exists, return input, else set repo_id
        return model
    elif "/" not in model:
        # Set valid repo_id for model short-name
        model = "sentence-transformers" + "/" + model

    snapshot_kwargs["repo_id"] = model

    # Attempt to query the huggingface_hub library to determine the local path and/or to update
    try:
        model_repo_path = snapshot_download(**snapshot_kwargs)
        log.debug(f"model_repo_path: {model_repo_path}")
        return model_repo_path
    except Exception as e:
        log.exception(f"Cannot determine model snapshot path: {e}")
        return model


415
def generate_openai_embeddings(
Timothy J. Baek's avatar
Timothy J. Baek committed
416
    model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
417
418
419
):
    try:
        r = requests.post(
Timothy J. Baek's avatar
Timothy J. Baek committed
420
            f"{url}/embeddings",
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
            headers={
                "Content-Type": "application/json",
                "Authorization": f"Bearer {key}",
            },
            json={"input": text, "model": model},
        )
        r.raise_for_status()
        data = r.json()
        if "data" in data:
            return data["data"][0]["embedding"]
        else:
            raise "Something went wrong :/"
    except Exception as e:
        print(e)
        return None
Steven Kreitzer's avatar
Steven Kreitzer committed
436
437
438
439
440


from typing import Any

from langchain_core.retrievers import BaseRetriever
441
from langchain_core.callbacks import CallbackManagerForRetrieverRun
Steven Kreitzer's avatar
Steven Kreitzer committed
442
443
444
445


class ChromaRetriever(BaseRetriever):
    collection: Any
Timothy J. Baek's avatar
Timothy J. Baek committed
446
    embedding_function: Any
447
    top_n: int
Steven Kreitzer's avatar
Steven Kreitzer committed
448
449
450
451
452
453
454

    def _get_relevant_documents(
        self,
        query: str,
        *,
        run_manager: CallbackManagerForRetrieverRun,
    ) -> List[Document]:
Timothy J. Baek's avatar
Timothy J. Baek committed
455
        query_embeddings = self.embedding_function(query)
Steven Kreitzer's avatar
Steven Kreitzer committed
456
457
458

        results = self.collection.query(
            query_embeddings=[query_embeddings],
459
            n_results=self.top_n,
Steven Kreitzer's avatar
Steven Kreitzer committed
460
461
462
463
464
465
        )

        ids = results["ids"][0]
        metadatas = results["metadatas"][0]
        documents = results["documents"][0]

Steven Kreitzer's avatar
Steven Kreitzer committed
466
467
468
469
470
471
472
        results = []
        for idx in range(len(ids)):
            results.append(
                Document(
                    metadata=metadatas[idx],
                    page_content=documents[idx],
                )
Steven Kreitzer's avatar
Steven Kreitzer committed
473
            )
Steven Kreitzer's avatar
Steven Kreitzer committed
474
        return results
475
476
477
478
479
480
481
482
483
484
485
486
487
488


import operator

from typing import Optional, Sequence

from langchain_core.documents import BaseDocumentCompressor, Document
from langchain_core.callbacks import Callbacks
from langchain_core.pydantic_v1 import Extra

from sentence_transformers import util


class RerankCompressor(BaseDocumentCompressor):
Timothy J. Baek's avatar
Timothy J. Baek committed
489
    embedding_function: Any
Steven Kreitzer's avatar
Steven Kreitzer committed
490
    top_n: int
491
492
493
494
495
496
497
498
499
500
501
502
503
    reranking_function: Any
    r_score: float

    class Config:
        extra = Extra.forbid
        arbitrary_types_allowed = True

    def compress_documents(
        self,
        documents: Sequence[Document],
        query: str,
        callbacks: Optional[Callbacks] = None,
    ) -> Sequence[Document]:
Steven Kreitzer's avatar
Steven Kreitzer committed
504
505
506
        reranking = self.reranking_function is not None

        if reranking:
507
508
509
510
            scores = self.reranking_function.predict(
                [(query, doc.page_content) for doc in documents]
            )
        else:
Timothy J. Baek's avatar
Timothy J. Baek committed
511
512
            query_embedding = self.embedding_function(query)
            document_embedding = self.embedding_function(
513
514
515
516
517
518
519
520
521
522
                [doc.page_content for doc in documents]
            )
            scores = util.cos_sim(query_embedding, document_embedding)[0]

        docs_with_scores = list(zip(documents, scores.tolist()))
        if self.r_score:
            docs_with_scores = [
                (d, s) for d, s in docs_with_scores if s >= self.r_score
            ]

Steven Kreitzer's avatar
Steven Kreitzer committed
523
        result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
524
525
526
527
528
529
530
531
532
533
        final_results = []
        for doc, doc_score in result[: self.top_n]:
            metadata = doc.metadata
            metadata["score"] = doc_score
            doc = Document(
                page_content=doc.page_content,
                metadata=metadata,
            )
            final_results.append(doc)
        return final_results