model_management.py 20 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
4
import torch
comfyanonymous's avatar
comfyanonymous committed
5
import sys
6

7
class VRAMState(Enum):
8
9
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
10
11
12
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
13
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
14
15
16
17
18

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
19

20
21
22
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
23
cpu_state = CPUState.GPU
24

25
total_vram = 0
26

27
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
28
xpu_available = False
29

30
directml_enabled = False
31
if args.directml is not None:
32
33
    import torch_directml
    directml_enabled = True
34
35
36
37
38
39
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
40
    # torch_directml.disable_tiled_resources(True)
41
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
42

43
try:
44
45
46
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
47
48
49
except:
    pass

50
51
52
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
53
        import torch.mps
54
55
56
57
58
59
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

60
61
62
def get_torch_device():
    global xpu_available
    global directml_enabled
63
    global cpu_state
64
65
66
    if directml_enabled:
        global directml_device
        return directml_device
67
    if cpu_state == CPUState.MPS:
68
        return torch.device("mps")
69
    if cpu_state == CPUState.CPU:
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        return torch.device("cpu")
    else:
        if xpu_available:
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global xpu_available
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
        elif xpu_available:
            mem_total = torch.xpu.get_device_properties(dev).total_memory
            mem_total_torch = mem_total
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
        print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
        set_vram_to = VRAMState.LOW_VRAM
    elif total_vram > total_ram * 1.1 and total_vram > 14336:
        print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
        vram_state = VRAMState.HIGH_VRAM

116
117
118
119
120
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

121
122
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
123
124
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
125
126
127
128
else:
    try:
        import xformers
        import xformers.ops
129
        XFORMERS_IS_AVAILABLE = True
130
131
132
133
134
135
136
137
138
139
140
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
141
    except:
142
        XFORMERS_IS_AVAILABLE = False
143

144
145
146
147
148
149
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True

150
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
151
152
153
154
155
156
157
158
159
160

if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
    try:
        if is_nvidia():
            torch_version = torch.version.__version__
            if int(torch_version[0]) >= 2:
                ENABLE_PYTORCH_ATTENTION = True
    except:
        pass

161
if ENABLE_PYTORCH_ATTENTION:
162
163
164
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
165
    XFORMERS_IS_AVAILABLE = False
166

167
168
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
169
    lowvram_available = True
170
171
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
172
elif args.highvram or args.gpu_only:
173
    vram_state = VRAMState.HIGH_VRAM
174

175
FORCE_FP32 = False
176
FORCE_FP16 = False
177
178
179
180
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

181
182
183
184
if args.force_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

185
if lowvram_available:
186
187
    try:
        import accelerate
188
189
        if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
            vram_state = set_vram_to
190
191
192
    except Exception as e:
        import traceback
        print(traceback.format_exc())
193
194
        print("ERROR: LOW VRAM MODE NEEDS accelerate.")
        lowvram_available = False
195

196

197
198
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
199

200
201
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
202

203
print(f"Set vram state to: {vram_state.name}")
204

205
206
207
208
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
    print("Disabling smart memory management")
209

210
211
def get_torch_device_name(device):
    if hasattr(device, 'type'):
212
        if device.type == "cuda":
213
214
215
216
217
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
218
219
220
221
        else:
            return "{}".format(device.type)
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
222
223

try:
224
    print("Device:", get_torch_device_name(get_torch_device()))
225
226
227
except:
    print("Could not pick default device.")

228

comfyanonymous's avatar
comfyanonymous committed
229
current_loaded_models = []
230

comfyanonymous's avatar
comfyanonymous committed
231
232
233
234
235
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
236

comfyanonymous's avatar
comfyanonymous committed
237
238
    def model_memory(self):
        return self.model.model_size()
239

comfyanonymous's avatar
comfyanonymous committed
240
241
242
243
244
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
245

comfyanonymous's avatar
comfyanonymous committed
246
247
248
249
    def model_load(self, lowvram_model_memory=0):
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
250

comfyanonymous's avatar
comfyanonymous committed
251
252
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
253

comfyanonymous's avatar
comfyanonymous committed
254
255
256
257
258
259
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
260

comfyanonymous's avatar
comfyanonymous committed
261
262
263
264
265
        if lowvram_model_memory > 0:
            print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
            device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
            accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
            self.model_accelerated = True
266

comfyanonymous's avatar
comfyanonymous committed
267
        return self.real_model
268

comfyanonymous's avatar
comfyanonymous committed
269
270
271
272
    def model_unload(self):
        if self.model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(self.real_model)
            self.model_accelerated = False
273

comfyanonymous's avatar
comfyanonymous committed
274
275
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
276

comfyanonymous's avatar
comfyanonymous committed
277
278
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
279

comfyanonymous's avatar
comfyanonymous committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        print("unload clone", i)
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
296
297
298
299
        if DISABLE_SMART_MEMORY:
            current_free_mem = 0
        else:
            current_free_mem = get_free_memory(device)
comfyanonymous's avatar
comfyanonymous committed
300
301
302
303
304
305
306
307
308
309
310
311
312
        if current_free_mem > memory_required:
            break
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
                current_loaded_models.pop(i).model_unload()
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()


def load_models_gpu(models, memory_required=0):
313
314
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
335
336
        return

comfyanonymous's avatar
comfyanonymous committed
337
    print("loading new")
338

comfyanonymous's avatar
comfyanonymous committed
339
340
341
342
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
343

comfyanonymous's avatar
comfyanonymous committed
344
345
346
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
347

comfyanonymous's avatar
comfyanonymous committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
            lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
364

comfyanonymous's avatar
comfyanonymous committed
365
366
        if vram_set_state == VRAMState.NO_VRAM:
            lowvram_model_memory = 256 * 1024 * 1024
367

comfyanonymous's avatar
comfyanonymous committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        print(sys.getrefcount(current_loaded_models[i].model))
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
387

388
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
389
    if vram_state == VRAMState.HIGH_VRAM:
390
391
392
393
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
394
395
396
397
398
399
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
400
401
402
    if DISABLE_SMART_MEMORY:
        return cpu_dev

403
404
405
406
407
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2

    model_size = dtype_size * parameters
comfyanonymous's avatar
comfyanonymous committed
408
409
410
411
412
413
414
415

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

416
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
417
    if args.gpu_only:
418
419
420
421
        return get_torch_device()
    else:
        return torch.device("cpu")

422
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
423
    if args.gpu_only:
424
        return get_torch_device()
425
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
426
427
        #NOTE: on a Ryzen 5 7600X with 4080 it's faster to shift to GPU
        if torch.get_num_threads() < 8: #leaving the text encoder on the CPU is faster than shifting it if the CPU is fast enough.
428
429
430
            return get_torch_device()
        else:
            return torch.device("cpu")
431
432
433
    else:
        return torch.device("cpu")

434
435
436
437
def vae_device():
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
438
    if args.gpu_only:
439
440
441
442
        return get_torch_device()
    else:
        return torch.device("cpu")

443
444
445
446
447
448
449
450
def vae_dtype():
    if args.fp16_vae:
        return torch.float16
    elif args.bf16_vae:
        return torch.bfloat16
    else:
        return torch.float32

451
452
453
454
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
455

456

457
def xformers_enabled():
458
459
    global xpu_available
    global directml_enabled
460
461
    global cpu_state
    if cpu_state != CPUState.GPU:
462
        return False
463
464
465
466
    if xpu_available:
        return False
    if directml_enabled:
        return False
467
    return XFORMERS_IS_AVAILABLE
468

469
470
471
472
473

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
474
475

    return XFORMERS_ENABLED_VAE
476

477
def pytorch_attention_enabled():
478
    global ENABLE_PYTORCH_ATTENTION
479
480
    return ENABLE_PYTORCH_ATTENTION

481
482
483
484
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
485
        if is_nvidia(): #pytorch flash attention only works on Nvidia
486
487
488
            return True
    return False

489
def get_free_memory(dev=None, torch_free_too=False):
490
    global xpu_available
491
    global directml_enabled
492
    if dev is None:
493
        dev = get_torch_device()
494

Yurii Mazurevich's avatar
Yurii Mazurevich committed
495
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
496
497
498
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
499
500
501
502
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
        elif xpu_available:
503
504
505
506
507
508
509
510
511
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
            mem_free_torch = mem_free_total
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
512
513
514
515
516

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
517

comfyanonymous's avatar
comfyanonymous committed
518
519
520
521
522
523
524
def batch_area_memory(area):
    if xformers_enabled() or pytorch_attention_flash_attention():
        #TODO: these formulas are copied from maximum_batch_area below
        return (area / 20) * (1024 * 1024)
    else:
        return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)

525
526
def maximum_batch_area():
    global vram_state
527
    if vram_state == VRAMState.NO_VRAM:
528
529
530
        return 0

    memory_free = get_free_memory() / (1024 * 1024)
531
    if xformers_enabled() or pytorch_attention_flash_attention():
532
        #TODO: this needs to be tweaked
533
        area = 20 * memory_free
534
535
536
    else:
        #TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future
        area = ((memory_free - 1024) * 0.9) / (0.6)
537
    return int(max(area, 0))
538
539

def cpu_mode():
540
541
    global cpu_state
    return cpu_state == CPUState.CPU
542

Yurii Mazurevich's avatar
Yurii Mazurevich committed
543
def mps_mode():
544
545
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
546

547
548
def is_device_cpu(device):
    if hasattr(device, 'type'):
comfyanonymous's avatar
comfyanonymous committed
549
550
551
552
553
554
555
        if (device.type == 'cpu'):
            return True
    return False

def is_device_mps(device):
    if hasattr(device, 'type'):
        if (device.type == 'mps'):
556
557
558
            return True
    return False

559
def should_use_fp16(device=None, model_params=0):
560
    global xpu_available
561
562
    global directml_enabled

563
564
565
    if FORCE_FP16:
        return True

566
    if device is not None: #TODO
comfyanonymous's avatar
comfyanonymous committed
567
        if is_device_cpu(device) or is_device_mps(device):
568
            return False
569

570
571
572
    if FORCE_FP32:
        return False

573
574
575
    if directml_enabled:
        return False

576
    if cpu_mode() or mps_mode() or xpu_available:
577
578
579
580
581
        return False #TODO ?

    if torch.cuda.is_bf16_supported():
        return True

comfyanonymous's avatar
comfyanonymous committed
582
    props = torch.cuda.get_device_properties("cuda")
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
        if model_params * 4 > free_model_memory:
            return True

600
601
602
    if props.major < 7:
        return False

603
    #FP16 is just broken on these cards
604
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX"]
605
606
607
608
609
610
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

611
612
def soft_empty_cache():
    global xpu_available
613
614
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
615
616
        torch.mps.empty_cache()
    elif xpu_available:
617
618
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
619
        if is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
620
621
622
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()