sd1_clip.py 19.9 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
import os

3
from transformers import CLIPTokenizer
4
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
5
import torch
6
import traceback
7
import zipfile
8
from . import model_management
9
10
import comfy.clip_model
import json
comfyanonymous's avatar
comfyanonymous committed
11

12
13
14
15
16
17
18
19
20
21
22
23
def gen_empty_tokens(special_tokens, length):
    start_token = special_tokens.get("start", None)
    end_token = special_tokens.get("end", None)
    pad_token = special_tokens.get("pad")
    output = []
    if start_token is not None:
        output.append(start_token)
    if end_token is not None:
        output.append(end_token)
    output += [pad_token] * (length - len(output))
    return output

comfyanonymous's avatar
comfyanonymous committed
24
25
class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
26
27
28
        to_encode = list()
        max_token_len = 0
        has_weights = False
comfyanonymous's avatar
comfyanonymous committed
29
        for x in token_weight_pairs:
30
            tokens = list(map(lambda a: a[0], x))
31
32
            max_token_len = max(len(tokens), max_token_len)
            has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
33
34
            to_encode.append(tokens)

35
36
37
38
        sections = len(to_encode)
        if has_weights or sections == 0:
            to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))

39
        out, pooled = self.encode(to_encode)
40
        if pooled is not None:
41
            first_pooled = pooled[0:1].to(model_management.intermediate_device())
42
        else:
43
            first_pooled = pooled
44
45

        output = []
46
        for k in range(0, sections):
47
            z = out[k:k+1]
48
49
50
51
52
53
54
            if has_weights:
                z_empty = out[-1]
                for i in range(len(z)):
                    for j in range(len(z[i])):
                        weight = token_weight_pairs[k][j][1]
                        if weight != 1.0:
                            z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
55
56
            output.append(z)

comfyanonymous's avatar
comfyanonymous committed
57
        if (len(output) == 0):
58
59
            return out[-1:].to(model_management.intermediate_device()), first_pooled
        return torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled
comfyanonymous's avatar
comfyanonymous committed
60

61
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
comfyanonymous's avatar
comfyanonymous committed
62
63
64
65
66
67
68
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
69
                 freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
70
                 special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False):  # clip-vit-base-patch32
comfyanonymous's avatar
comfyanonymous committed
71
72
        super().__init__()
        assert layer in self.LAYERS
73
74
75
76
77
78
79

        if textmodel_json_config is None:
            textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")

        with open(textmodel_json_config) as f:
            config = json.load(f)

80
        self.transformer = model_class(config, dtype, device, comfy.ops.manual_cast)
81
        self.num_layers = self.transformer.num_layers
82

comfyanonymous's avatar
comfyanonymous committed
83
84
85
86
87
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
88
        self.special_tokens = special_tokens
89

90
        self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
91
        self.enable_attention_masks = enable_attention_masks
92

93
        self.layer_norm_hidden_state = layer_norm_hidden_state
94
95
        self.return_projected_pooled = True

comfyanonymous's avatar
comfyanonymous committed
96
97
        if layer == "hidden":
            assert layer_idx is not None
98
            assert abs(layer_idx) < self.num_layers
99
100
            self.set_clip_options({"layer": layer_idx})
        self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled)
comfyanonymous's avatar
comfyanonymous committed
101
102
103
104
105
106
107

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

108
109
110
111
    def set_clip_options(self, options):
        layer_idx = options.get("layer", self.layer_idx)
        self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
        if layer_idx is None or abs(layer_idx) > self.num_layers:
comfyanonymous's avatar
comfyanonymous committed
112
113
114
115
116
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

117
118
119
120
    def reset_clip_options(self):
        self.layer = self.options_default[0]
        self.layer_idx = self.options_default[1]
        self.return_projected_pooled = self.options_default[2]
121

122
123
    def set_up_textual_embeddings(self, tokens, current_embeds):
        out_tokens = []
124
        next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
125
126
127
128
129
130
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
                if isinstance(y, int):
131
132
                    if y == token_dict_size: #EOS token
                        y = -1
133
134
                    tokens_temp += [y]
                else:
135
136
137
138
139
140
                    if y.shape[0] == current_embeds.weight.shape[1]:
                        embedding_weights += [y]
                        tokens_temp += [next_new_token]
                        next_new_token += 1
                    else:
                        print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
141
            while len(tokens_temp) < len(x):
142
                tokens_temp += [self.special_tokens["pad"]]
143
144
            out_tokens += [tokens_temp]

145
        n = token_dict_size
146
        if len(embedding_weights) > 0:
147
148
            new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
            new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
149
150
151
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
152
            new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding
153
            self.transformer.set_input_embeddings(new_embedding)
154
155
156
157
158
159

        processed_tokens = []
        for x in out_tokens:
            processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one

        return processed_tokens
160

comfyanonymous's avatar
comfyanonymous committed
161
    def forward(self, tokens):
162
        backup_embeds = self.transformer.get_input_embeddings()
163
        device = backup_embeds.weight.device
164
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
165
166
        tokens = torch.LongTensor(tokens).to(device)

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        attention_mask = None
        if self.enable_attention_masks:
            attention_mask = torch.zeros_like(tokens)
            max_token = self.transformer.get_input_embeddings().weight.shape[0] - 1
            for x in range(attention_mask.shape[0]):
                for y in range(attention_mask.shape[1]):
                    attention_mask[x, y] = 1
                    if tokens[x, y] == max_token:
                        break

        outputs = self.transformer(tokens, attention_mask, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
        self.transformer.set_input_embeddings(backup_embeds)

        if self.layer == "last":
            z = outputs[0]
comfyanonymous's avatar
comfyanonymous committed
182
        else:
183
184
            z = outputs[1]

185
186
187
188
189
190
        pooled_output = None
        if len(outputs) >= 3:
            if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None:
                pooled_output = outputs[3].float()
            elif outputs[2] is not None:
                pooled_output = outputs[2].float()
191

192
        return z.float(), pooled_output
comfyanonymous's avatar
comfyanonymous committed
193
194
195
196

    def encode(self, tokens):
        return self(tokens)

197
198
199
    def load_sd(self, sd):
        return self.transformer.load_state_dict(sd, strict=False)

comfyanonymous's avatar
comfyanonymous committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
def parse_parentheses(string):
    result = []
    current_item = ""
    nesting_level = 0
    for char in string:
        if char == "(":
            if nesting_level == 0:
                if current_item:
                    result.append(current_item)
                    current_item = "("
                else:
                    current_item = "("
            else:
                current_item += char
            nesting_level += 1
        elif char == ")":
            nesting_level -= 1
            if nesting_level == 0:
                result.append(current_item + ")")
                current_item = ""
            else:
                current_item += char
        else:
            current_item += char
    if current_item:
        result.append(current_item)
    return result

def token_weights(string, current_weight):
    a = parse_parentheses(string)
    out = []
    for x in a:
        weight = current_weight
        if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
            x = x[1:-1]
            xx = x.rfind(":")
            weight *= 1.1
            if xx > 0:
                try:
                    weight = float(x[xx+1:])
                    x = x[:xx]
                except:
                    pass
            out += token_weights(x, weight)
        else:
            out += [(x, current_weight)]
    return out

def escape_important(text):
    text = text.replace("\\)", "\0\1")
    text = text.replace("\\(", "\0\2")
    return text

def unescape_important(text):
    text = text.replace("\0\1", ")")
    text = text.replace("\0\2", "(")
    return text

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
def safe_load_embed_zip(embed_path):
    with zipfile.ZipFile(embed_path) as myzip:
        names = list(filter(lambda a: "data/" in a, myzip.namelist()))
        names.reverse()
        for n in names:
            with myzip.open(n) as myfile:
                data = myfile.read()
                number = len(data) // 4
                length_embed = 1024 #sd2.x
                if number < 768:
                    continue
                if number % 768 == 0:
                    length_embed = 768 #sd1.x
                num_embeds = number // length_embed
                embed = torch.frombuffer(data, dtype=torch.float)
                out = embed.reshape((num_embeds, length_embed)).clone()
                del embed
                return out

277
278
279
280
281
282
283
def expand_directory_list(directories):
    dirs = set()
    for x in directories:
        dirs.add(x)
        for root, subdir, file in os.walk(x, followlinks=True):
            dirs.add(root)
    return list(dirs)
284

285
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
286
287
288
    if isinstance(embedding_directory, str):
        embedding_directory = [embedding_directory]

289
290
    embedding_directory = expand_directory_list(embedding_directory)

291
292
    valid_file = None
    for embed_dir in embedding_directory:
293
294
295
296
297
298
299
        embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name))
        embed_dir = os.path.abspath(embed_dir)
        try:
            if os.path.commonpath((embed_dir, embed_path)) != embed_dir:
                continue
        except:
            continue
300
301
302
303
304
305
306
        if not os.path.isfile(embed_path):
            extensions = ['.safetensors', '.pt', '.bin']
            for x in extensions:
                t = embed_path + x
                if os.path.isfile(t):
                    valid_file = t
                    break
307
        else:
308
309
310
311
312
313
314
315
            valid_file = embed_path
        if valid_file is not None:
            break

    if valid_file is None:
        return None

    embed_path = valid_file
316

317
318
    embed_out = None

319
320
321
322
    try:
        if embed_path.lower().endswith(".safetensors"):
            import safetensors.torch
            embed = safetensors.torch.load_file(embed_path, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
323
        else:
324
            if 'weights_only' in torch.load.__code__.co_varnames:
325
326
327
328
                try:
                    embed = torch.load(embed_path, weights_only=True, map_location="cpu")
                except:
                    embed_out = safe_load_embed_zip(embed_path)
329
330
331
332
333
334
335
336
            else:
                embed = torch.load(embed_path, map_location="cpu")
    except Exception as e:
        print(traceback.format_exc())
        print()
        print("error loading embedding, skipping loading:", embedding_name)
        return None

337
338
339
    if embed_out is None:
        if 'string_to_param' in embed:
            values = embed['string_to_param'].values()
340
341
342
343
344
345
346
347
348
349
            embed_out = next(iter(values))
        elif isinstance(embed, list):
            out_list = []
            for x in range(len(embed)):
                for k in embed[x]:
                    t = embed[x][k]
                    if t.shape[-1] != embedding_size:
                        continue
                    out_list.append(t.reshape(-1, t.shape[-1]))
            embed_out = torch.cat(out_list, dim=0)
350
351
        elif embed_key is not None and embed_key in embed:
            embed_out = embed[embed_key]
352
353
        else:
            values = embed.values()
354
            embed_out = next(iter(values))
355
    return embed_out
356

357
class SDTokenizer:
358
    def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True):
comfyanonymous's avatar
comfyanonymous committed
359
360
        if tokenizer_path is None:
            tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
361
        self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
comfyanonymous's avatar
comfyanonymous committed
362
        self.max_length = max_length
363

comfyanonymous's avatar
comfyanonymous committed
364
        empty = self.tokenizer('')["input_ids"]
365
366
367
368
369
370
371
372
        if has_start_token:
            self.tokens_start = 1
            self.start_token = empty[0]
            self.end_token = empty[1]
        else:
            self.tokens_start = 0
            self.start_token = None
            self.end_token = empty[0]
comfyanonymous's avatar
comfyanonymous committed
373
        self.pad_with_end = pad_with_end
374
375
        self.pad_to_max_length = pad_to_max_length

comfyanonymous's avatar
comfyanonymous committed
376
377
        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
378
379
        self.embedding_directory = embedding_directory
        self.max_word_length = 8
380
        self.embedding_identifier = "embedding:"
381
        self.embedding_size = embedding_size
382
        self.embedding_key = embedding_key
383

384
    def _try_get_embedding(self, embedding_name:str):
385
386
387
388
        '''
        Takes a potential embedding name and tries to retrieve it.
        Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
        '''
389
        embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
390
391
392
        if embed is None:
            stripped = embedding_name.strip(',')
            if len(stripped) < len(embedding_name):
393
                embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
394
395
396
397
                return (embed, embedding_name[len(stripped):])
        return (embed, "")


398
    def tokenize_with_weights(self, text:str, return_word_ids=False):
399
400
401
402
403
404
        '''
        Takes a prompt and converts it to a list of (token, weight, word id) elements.
        Tokens can both be integer tokens and pre computed CLIP tensors.
        Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
        Returned list has the dimensions NxM where M is the input size of CLIP
        '''
BlenderNeko's avatar
BlenderNeko committed
405
406
407
408
        if self.pad_with_end:
            pad_token = self.end_token
        else:
            pad_token = 0
comfyanonymous's avatar
comfyanonymous committed
409
410
411
412

        text = escape_important(text)
        parsed_weights = token_weights(text, 1.0)

413
        #tokenize words
comfyanonymous's avatar
comfyanonymous committed
414
        tokens = []
415
416
417
418
419
420
        for weighted_segment, weight in parsed_weights:
            to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
            to_tokenize = [x for x in to_tokenize if x != ""]
            for word in to_tokenize:
                #if we find an embedding, deal with the embedding
                if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
421
422
                    embedding_name = word[len(self.embedding_identifier):].strip('\n')
                    embed, leftover = self._try_get_embedding(embedding_name)
423
                    if embed is None:
424
                        print(f"warning, embedding:{embedding_name} does not exist, ignoring")
425
                    else:
426
                        if len(embed.shape) == 1:
427
                            tokens.append([(embed, weight)])
428
                        else:
429
430
431
432
                            tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
                    #if we accidentally have leftover text, continue parsing using leftover, else move on to next word
                    if leftover != "":
                        word = leftover
433
                    else:
434
435
                        continue
                #parse word
436
                tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
437

438
439
        #reshape token array to CLIP input size
        batched_tokens = []
440
441
442
        batch = []
        if self.start_token is not None:
            batch.append((self.start_token, 1.0, 0))
443
444
        batched_tokens.append(batch)
        for i, t_group in enumerate(tokens):
445
446
            #determine if we're going to try and keep the tokens in a single batch
            is_large = len(t_group) >= self.max_word_length
BlenderNeko's avatar
BlenderNeko committed
447

448
            while len(t_group) > 0:
BlenderNeko's avatar
BlenderNeko committed
449
450
451
                if len(t_group) + len(batch) > self.max_length - 1:
                    remaining_length = self.max_length - len(batch) - 1
                    #break word in two and add end token
452
453
                    if is_large:
                        batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
BlenderNeko's avatar
BlenderNeko committed
454
                        batch.append((self.end_token, 1.0, 0))
455
                        t_group = t_group[remaining_length:]
BlenderNeko's avatar
BlenderNeko committed
456
                    #add end token and pad
457
                    else:
BlenderNeko's avatar
BlenderNeko committed
458
                        batch.append((self.end_token, 1.0, 0))
459
460
                        if self.pad_to_max_length:
                            batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
BlenderNeko's avatar
BlenderNeko committed
461
                    #start new batch
462
463
464
                    batch = []
                    if self.start_token is not None:
                        batch.append((self.start_token, 1.0, 0))
465
                    batched_tokens.append(batch)
466
                else:
467
468
                    batch.extend([(t,w,i+1) for t,w in t_group])
                    t_group = []
469

470
        #fill last batch
471
472
473
        batch.append((self.end_token, 1.0, 0))
        if self.pad_to_max_length:
            batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
comfyanonymous's avatar
comfyanonymous committed
474

475
476
        if not return_word_ids:
            batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
comfyanonymous's avatar
comfyanonymous committed
477

478
        return batched_tokens
comfyanonymous's avatar
comfyanonymous committed
479
480
481
482


    def untokenize(self, token_weight_pair):
        return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500


class SD1Tokenizer:
    def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer):
        self.clip_name = clip_name
        self.clip = "clip_{}".format(self.clip_name)
        setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory))

    def tokenize_with_weights(self, text:str, return_word_ids=False):
        out = {}
        out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
        return out

    def untokenize(self, token_weight_pair):
        return getattr(self, self.clip).untokenize(token_weight_pair)


class SD1ClipModel(torch.nn.Module):
501
    def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, **kwargs):
502
503
504
        super().__init__()
        self.clip_name = clip_name
        self.clip = "clip_{}".format(self.clip_name)
505
        setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))
506

507
508
    def set_clip_options(self, options):
        getattr(self, self.clip).set_clip_options(options)
509

510
511
    def reset_clip_options(self):
        getattr(self, self.clip).reset_clip_options()
512
513
514
515
516
517
518
519

    def encode_token_weights(self, token_weight_pairs):
        token_weight_pairs = token_weight_pairs[self.clip_name]
        out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
        return out, pooled

    def load_sd(self, sd):
        return getattr(self, self.clip).load_sd(sd)