samplers.py 20 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
3
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
4
5
import torch
import contextlib
6
import model_management
comfyanonymous's avatar
comfyanonymous committed
7
8
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
13
14
15

class CFGDenoiser(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model

    def forward(self, x, sigma, uncond, cond, cond_scale):
comfyanonymous's avatar
comfyanonymous committed
16
        if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] < (96 * 96): #TODO check memory instead
comfyanonymous's avatar
comfyanonymous committed
17
18
19
20
21
22
23
24
25
            x_in = torch.cat([x] * 2)
            sigma_in = torch.cat([sigma] * 2)
            cond_in = torch.cat([uncond, cond])
            uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
        else:
            cond = self.inner_model(x, sigma, cond=cond)
            uncond = self.inner_model(x, sigma, cond=uncond)
        return uncond + (cond - uncond) * cond_scale

comfyanonymous's avatar
comfyanonymous committed
26
27
28
29
30

#The main sampling function shared by all the samplers
#Returns predicted noise
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None):
        def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
31
32
33
34
35
36
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
            if 'area' in cond[1]:
                area = cond[1]['area']
            if 'strength' in cond[1]:
                strength = cond[1]['strength']
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
            mult = torch.ones_like(input_x) * strength

            rr = 8
            if area[2] != 0:
                for t in range(rr):
                    mult[:,:,area[2]+t:area[2]+1+t,:] *= ((1.0/rr) * (t + 1))
            if (area[0] + area[2]) < x_in.shape[2]:
                for t in range(rr):
                    mult[:,:,area[0] + area[2] - 1 - t:area[0] + area[2] - t,:] *= ((1.0/rr) * (t + 1))
            if area[3] != 0:
                for t in range(rr):
                    mult[:,:,:,area[3]+t:area[3]+1+t] *= ((1.0/rr) * (t + 1))
            if (area[1] + area[3]) < x_in.shape[3]:
                for t in range(rr):
                    mult[:,:,:,area[1] + area[3] - 1 - t:area[1] + area[3] - t] *= ((1.0/rr) * (t + 1))
comfyanonymous's avatar
comfyanonymous committed
54
55
56
57
58
59
60
61
            conditionning = {}
            conditionning['c_crossattn'] = cond[0]
            if cond_concat_in is not None and len(cond_concat_in) > 0:
                cropped = []
                for x in cond_concat_in:
                    cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
                    cropped.append(cr)
                conditionning['c_concat'] = torch.cat(cropped, dim=1)
comfyanonymous's avatar
comfyanonymous committed
62
63
64
65
66

            control = None
            if 'control' in cond[1]:
                control = cond[1]['control']
            return (input_x, mult, conditionning, area, control)
comfyanonymous's avatar
comfyanonymous committed
67
68

        def cond_equal_size(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
69
70
            if c1 is c2:
                return True
comfyanonymous's avatar
comfyanonymous committed
71
72
73
74
75
76
77
78
79
80
            if c1.keys() != c2.keys():
                return False
            if 'c_crossattn' in c1:
                if c1['c_crossattn'].shape != c2['c_crossattn'].shape:
                    return False
            if 'c_concat' in c1:
                if c1['c_concat'].shape != c2['c_concat'].shape:
                    return False
            return True

comfyanonymous's avatar
comfyanonymous committed
81
82
83
84
85
86
87
88
89
90
91
        def can_concat_cond(c1, c2):
            if c1[0].shape != c2[0].shape:
                return False
            if (c1[4] is None) != (c2[4] is None):
                return False
            if c1[4] is not None:
                if c1[4] is not c2[4]:
                    return False

            return cond_equal_size(c1[2], c2[2])

comfyanonymous's avatar
comfyanonymous committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
            for x in c_list:
                if 'c_crossattn' in x:
                    c_crossattn.append(x['c_crossattn'])
                if 'c_concat' in x:
                    c_concat.append(x['c_concat'])
            out = {}
            if len(c_crossattn) > 0:
                out['c_crossattn'] = [torch.cat(c_crossattn)]
            if len(c_concat) > 0:
                out['c_concat'] = [torch.cat(c_concat)]
            return out

comfyanonymous's avatar
comfyanonymous committed
107
        def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in):
comfyanonymous's avatar
comfyanonymous committed
108
109
            out_cond = torch.zeros_like(x_in)
            out_count = torch.ones_like(x_in)/100000.0
110
111
112
113
114
115

            out_uncond = torch.zeros_like(x_in)
            out_uncond_count = torch.ones_like(x_in)/100000.0

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
116

117
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
118
            for x in cond:
comfyanonymous's avatar
comfyanonymous committed
119
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
120
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
121
                    continue
122
123
124

                to_run += [(p, COND)]
            for x in uncond:
comfyanonymous's avatar
comfyanonymous committed
125
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
126
127
128
129
130
131
132
133
                if p is None:
                    continue

                to_run += [(p, UNCOND)]

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
134
                to_batch_temp = []
135
                for x in range(len(to_run)):
comfyanonymous's avatar
comfyanonymous committed
136
137
                    if can_concat_cond(to_run[x][0], first[0]):
                        to_batch_temp += [x]
138
139
140
141
142
143
144
145
146

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
147
148
149
150
151
152

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
comfyanonymous's avatar
comfyanonymous committed
153
                control = None
154
155
156
157
158
159
160
161
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]
comfyanonymous's avatar
comfyanonymous committed
162
                    control = p[4]
163
164
165

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
166
                c = cond_cat(c)
comfyanonymous's avatar
comfyanonymous committed
167
                timestep_ = torch.cat([timestep] * batch_chunks)
168

comfyanonymous's avatar
comfyanonymous committed
169
                if control is not None:
170
                    c['control'] = control.get_control(input_x, timestep_, c['c_crossattn'], len(cond_or_uncond))
comfyanonymous's avatar
comfyanonymous committed
171
172

                output = model_function(input_x, timestep_, cond=c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
173
                del input_x
174
175
176
177
178
179
180
181

                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
182
183
184
185
                del mult

            out_cond /= out_count
            del out_count
186
187
188
189
            out_uncond /= out_uncond_count
            del out_uncond_count

            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
190
191


192
        max_total_area = model_management.maximum_batch_area()
comfyanonymous's avatar
comfyanonymous committed
193
        cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat)
comfyanonymous's avatar
comfyanonymous committed
194
        return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
195

comfyanonymous's avatar
comfyanonymous committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):
    def __init__(self, model, quantize=False, device='cpu'):
        super().__init__(model, model.alphas_cumprod, quantize=quantize)

    def get_v(self, x, t, cond, **kwargs):
        return self.inner_model.apply_model(x, t, cond, **kwargs)


class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
        self.alphas_cumprod = model.alphas_cumprod
    def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None):
        out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat)
        return out


class KSamplerX0Inpaint(torch.nn.Module):
216
217
218
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
comfyanonymous's avatar
comfyanonymous committed
219
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None):
220
221
222
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
            x = x * denoise_mask + (self.latent_image + self.noise * sigma) * latent_mask
comfyanonymous's avatar
comfyanonymous committed
223
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat)
224
225
226
227
228
229
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
230

comfyanonymous's avatar
comfyanonymous committed
231
232
233
234
235
236
237
238
def simple_scheduler(model, steps):
    sigs = []
    ss = len(model.sigmas) / steps
    for x in range(steps):
        sigs += [float(model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
239
240
241
242
243
244
245
246
def ddim_scheduler(model, steps):
    sigs = []
    ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
    for x in range(len(ddim_timesteps) - 1, -1, -1):
        sigs.append(model.t_to_sigma(torch.tensor(ddim_timesteps[x])))
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
247
248
249
250
251
252
253
254
255
def blank_inpaint_image_like(latent_image):
    blank_image = torch.ones_like(latent_image)
    # these are the values for "zero" in pixel space translated to latent space
    blank_image[:,0] *= 0.8223
    blank_image[:,1] *= -0.6876
    blank_image[:,2] *= 0.6364
    blank_image[:,3] *= 0.1380
    return blank_image

comfyanonymous's avatar
comfyanonymous committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
def create_cond_with_same_area_if_none(conds, c):
    if 'area' not in c[1]:
        return

    c_area = c[1]['area']
    smallest = None
    for x in conds:
        if 'area' in x[1]:
            a = x[1]['area']
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
                        elif 'area' not in smallest[1]:
                            smallest = x
                        else:
                            if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
    if 'area' in smallest[1]:
        if smallest[1]['area'] == c_area:
            return
    n = c[1].copy()
    conds += [[smallest[0], n]]
comfyanonymous's avatar
comfyanonymous committed
285

comfyanonymous's avatar
comfyanonymous committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

def apply_control_net_to_equal_area(conds, uncond):
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
        if 'area' not in x[1]:
            if 'control' in x[1] and x[1]['control'] is not None:
                cond_cnets.append(x[1]['control'])
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
        if 'area' not in x[1]:
            if 'control' in x[1] and x[1]['control'] is not None:
                uncond_cnets.append(x[1]['control'])
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
        if 'control' in o[1] and o[1]['control'] is not None:
            n = o[1].copy()
            n['control'] = cond_cnets[x]
            uncond += [[o[0], n]]
        else:
            n = o[1].copy()
            n['control'] = cond_cnets[x]
            uncond[temp[1]] = [o[0], n]

comfyanonymous's avatar
comfyanonymous committed
322
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
323
    SCHEDULERS = ["karras", "normal", "simple", "ddim_uniform"]
comfyanonymous's avatar
comfyanonymous committed
324
325
    SAMPLERS = ["sample_euler", "sample_euler_ancestral", "sample_heun", "sample_dpm_2", "sample_dpm_2_ancestral",
                "sample_lms", "sample_dpm_fast", "sample_dpm_adaptive", "sample_dpmpp_2s_ancestral", "sample_dpmpp_sde",
comfyanonymous's avatar
comfyanonymous committed
326
                "sample_dpmpp_2m", "ddim", "uni_pc", "uni_pc_bh2"]
comfyanonymous's avatar
comfyanonymous committed
327
328
329

    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None):
        self.model = model
comfyanonymous's avatar
comfyanonymous committed
330
        self.model_denoise = CFGNoisePredictor(self.model)
comfyanonymous's avatar
comfyanonymous committed
331
        if self.model.parameterization == "v":
comfyanonymous's avatar
comfyanonymous committed
332
            self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
333
        else:
comfyanonymous's avatar
comfyanonymous committed
334
335
336
            self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
        self.model_wrap.parameterization = self.model.parameterization
        self.model_k = KSamplerX0Inpaint(self.model_wrap)
comfyanonymous's avatar
comfyanonymous committed
337
338
339
340
341
342
343
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
344
345
        self.sigma_min=float(self.model_wrap.sigma_min)
        self.sigma_max=float(self.model_wrap.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
346
        self.set_steps(steps, denoise)
347
        self.denoise = denoise
comfyanonymous's avatar
comfyanonymous committed
348
349
350
351
352
353
354
355
356
357

    def _calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
        if self.sampler in ['sample_dpm_2', 'sample_dpm_2_ancestral']:
            steps += 1
            discard_penultimate_sigma = True

        if self.scheduler == "karras":
358
            sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device)
comfyanonymous's avatar
comfyanonymous committed
359
360
361
362
        elif self.scheduler == "normal":
            sigmas = self.model_wrap.get_sigmas(steps).to(self.device)
        elif self.scheduler == "simple":
            sigmas = simple_scheduler(self.model_wrap, steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
363
364
        elif self.scheduler == "ddim_uniform":
            sigmas = ddim_scheduler(self.model_wrap, steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
        else:
            print("error invalid scheduler", self.scheduler)

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

    def set_steps(self, steps, denoise=None):
        self.steps = steps
        if denoise is None:
            self.sigmas = self._calculate_sigmas(steps)
        else:
            new_steps = int(steps/denoise)
            sigmas = self._calculate_sigmas(new_steps)
            self.sigmas = sigmas[-(steps + 1):]


382
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None):
comfyanonymous's avatar
comfyanonymous committed
383
384
385
        sigmas = self.sigmas
        sigma_min = self.sigma_min

comfyanonymous's avatar
comfyanonymous committed
386
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
387
388
            sigma_min = sigmas[last_step]
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
389
390
391
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
392
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
393
394
395
396
397
398
399
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
400

comfyanonymous's avatar
comfyanonymous committed
401
402
403
404
405
406
407
408
        positive = positive[:]
        negative = negative[:]
        #make sure each cond area has an opposite one with the same area
        for c in positive:
            create_cond_with_same_area_if_none(negative, c)
        for c in negative:
            create_cond_with_same_area_if_none(positive, c)

comfyanonymous's avatar
comfyanonymous committed
409
410
        apply_control_net_to_equal_area(positive, negative)

comfyanonymous's avatar
comfyanonymous committed
411
412
413
414
415
        if self.model.model.diffusion_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

416
        extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg}
comfyanonymous's avatar
comfyanonymous committed
417

comfyanonymous's avatar
comfyanonymous committed
418
        cond_concat = None
comfyanonymous's avatar
comfyanonymous committed
419
420
421
422
423
424
425
        if hasattr(self.model, 'concat_keys'):
            cond_concat = []
            for ck in self.model.concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
                        cond_concat.append(denoise_mask[:,:1])
                    elif ck == "masked_image":
426
                        cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
comfyanonymous's avatar
comfyanonymous committed
427
428
429
430
431
432
433
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(blank_inpaint_image_like(noise))
            extra_args["cond_concat"] = cond_concat

434
435
436
437
438
        if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
            max_denoise = False
        else:
            max_denoise = True

comfyanonymous's avatar
comfyanonymous committed
439
        with precision_scope(self.device):
440
            if self.sampler == "uni_pc":
441
                samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask)
comfyanonymous's avatar
comfyanonymous committed
442
            elif self.sampler == "uni_pc_bh2":
443
                samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, variant='bh2')
comfyanonymous's avatar
comfyanonymous committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
            elif self.sampler == "ddim":
                timesteps = []
                for s in range(sigmas.shape[0]):
                    timesteps.insert(0, self.model_wrap.sigma_to_t(sigmas[s]))
                noise_mask = None
                if denoise_mask is not None:
                    noise_mask = 1.0 - denoise_mask
                sampler = DDIMSampler(self.model)
                sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
                z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
                samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
                                                     conditioning=positive,
                                                     batch_size=noise.shape[0],
                                                     shape=noise.shape[1:],
                                                     verbose=False,
                                                     unconditional_guidance_scale=cfg,
                                                     unconditional_conditioning=negative,
                                                     eta=0.0,
                                                     x_T=z_enc,
                                                     x0=latent_image,
                                                     denoise_function=sampling_function,
                                                     cond_concat=cond_concat,
                                                     mask=noise_mask,
                                                     to_zero=sigmas[-1]==0,
                                                     end_step=sigmas.shape[0] - 1)

comfyanonymous's avatar
comfyanonymous committed
470
            else:
471
472
473
474
475
476
                extra_args["denoise_mask"] = denoise_mask
                self.model_k.latent_image = latent_image
                self.model_k.noise = noise

                noise = noise * sigmas[0]

477
478
479
                if latent_image is not None:
                    noise += latent_image
                if self.sampler == "sample_dpm_fast":
480
                    samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args=extra_args)
481
                elif self.sampler == "sample_dpm_adaptive":
482
                    samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args)
483
                else:
484
485
                    samples = getattr(k_diffusion_sampling, self.sampler)(self.model_k, noise, sigmas, extra_args=extra_args)

comfyanonymous's avatar
comfyanonymous committed
486
        return samples.to(torch.float32)