model_base.py 20.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.ldm.cascade.stage_c import StageC
comfyanonymous's avatar
comfyanonymous committed
4
from comfy.ldm.cascade.stage_b import StageB
comfyanonymous's avatar
comfyanonymous committed
5
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
6
from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
comfyanonymous's avatar
comfyanonymous committed
7
import comfy.model_management
8
import comfy.conds
9
import comfy.ops
10
from enum import Enum
11
from . import utils
comfyanonymous's avatar
comfyanonymous committed
12

13
14
15
class ModelType(Enum):
    EPS = 1
    V_PREDICTION = 2
comfyanonymous's avatar
comfyanonymous committed
16
    V_PREDICTION_EDM = 3
comfyanonymous's avatar
comfyanonymous committed
17
    STABLE_CASCADE = 4
18
    EDM = 5
19

comfyanonymous's avatar
comfyanonymous committed
20

21
from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling
comfyanonymous's avatar
comfyanonymous committed
22

23

comfyanonymous's avatar
comfyanonymous committed
24
def model_sampling(model_config, model_type):
comfyanonymous's avatar
comfyanonymous committed
25
26
    s = ModelSamplingDiscrete

comfyanonymous's avatar
comfyanonymous committed
27
28
29
30
    if model_type == ModelType.EPS:
        c = EPS
    elif model_type == ModelType.V_PREDICTION:
        c = V_PREDICTION
comfyanonymous's avatar
comfyanonymous committed
31
32
33
    elif model_type == ModelType.V_PREDICTION_EDM:
        c = V_PREDICTION
        s = ModelSamplingContinuousEDM
comfyanonymous's avatar
comfyanonymous committed
34
35
36
    elif model_type == ModelType.STABLE_CASCADE:
        c = EPS
        s = StableCascadeSampling
37
38
39
    elif model_type == ModelType.EDM:
        c = EDM
        s = ModelSamplingContinuousEDM
comfyanonymous's avatar
comfyanonymous committed
40
41
42
43
44
45
46

    class ModelSampling(s, c):
        pass

    return ModelSampling(model_config)


comfyanonymous's avatar
comfyanonymous committed
47
class BaseModel(torch.nn.Module):
comfyanonymous's avatar
comfyanonymous committed
48
    def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel):
comfyanonymous's avatar
comfyanonymous committed
49
50
        super().__init__()

51
52
        unet_config = model_config.unet_config
        self.latent_format = model_config.latent_format
53
        self.model_config = model_config
54
        self.manual_cast_dtype = model_config.manual_cast_dtype
comfyanonymous's avatar
comfyanonymous committed
55

56
        if not unet_config.get("disable_unet_model_creation", False):
57
58
59
            if self.manual_cast_dtype is not None:
                operations = comfy.ops.manual_cast
            else:
comfyanonymous's avatar
comfyanonymous committed
60
                operations = comfy.ops.disable_weight_init
comfyanonymous's avatar
comfyanonymous committed
61
            self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
62
        self.model_type = model_type
comfyanonymous's avatar
comfyanonymous committed
63
64
        self.model_sampling = model_sampling(model_config, model_type)

65
66
        self.adm_channels = unet_config.get("adm_in_channels", None)
        if self.adm_channels is None:
comfyanonymous's avatar
comfyanonymous committed
67
            self.adm_channels = 0
68
        self.inpaint_model = False
69
        print("model_type", model_type.name)
comfyanonymous's avatar
comfyanonymous committed
70
71
        print("adm", self.adm_channels)

72
    def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
comfyanonymous's avatar
comfyanonymous committed
73
74
        sigma = t
        xc = self.model_sampling.calculate_input(sigma, x)
comfyanonymous's avatar
comfyanonymous committed
75
        if c_concat is not None:
comfyanonymous's avatar
comfyanonymous committed
76
77
            xc = torch.cat([xc] + [c_concat], dim=1)

78
        context = c_crossattn
79
        dtype = self.get_dtype()
80

81
82
        if self.manual_cast_dtype is not None:
            dtype = self.manual_cast_dtype
83

84
        xc = xc.to(dtype)
85
        t = self.model_sampling.timestep(t).float()
86
        context = context.to(dtype)
87
88
        extra_conds = {}
        for o in kwargs:
89
            extra = kwargs[o]
90
91
92
            if hasattr(extra, "dtype"):
                if extra.dtype != torch.int and extra.dtype != torch.long:
                    extra = extra.to(dtype)
93
            extra_conds[o] = extra
94

95
        model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
comfyanonymous's avatar
comfyanonymous committed
96
        return self.model_sampling.calculate_denoised(sigma, model_output, x)
comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
101
102
103

    def get_dtype(self):
        return self.diffusion_model.dtype

    def is_adm(self):
        return self.adm_channels > 0

104
105
106
    def encode_adm(self, **kwargs):
        return None

107
108
    def extra_conds(self, **kwargs):
        out = {}
109
110
111
        if self.inpaint_model:
            concat_keys = ("mask", "masked_image")
            cond_concat = []
112
113
114
115
116
117
118
            denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
            concat_latent_image = kwargs.get("concat_latent_image", None)
            if concat_latent_image is None:
                concat_latent_image = kwargs.get("latent_image", None)
            else:
                concat_latent_image = self.process_latent_in(concat_latent_image)

119
            noise = kwargs.get("noise", None)
120
            device = kwargs["device"]
121

122
123
124
125
126
127
128
129
130
131
132
133
134
            if concat_latent_image.shape[1:] != noise.shape[1:]:
                concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

            concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])

            if len(denoise_mask.shape) == len(noise.shape):
                denoise_mask = denoise_mask[:,:1]

            denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1]))
            if denoise_mask.shape[-2:] != noise.shape[-2:]:
                denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center")
            denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0])

135
136
137
138
139
140
141
142
143
144
145
146
            def blank_inpaint_image_like(latent_image):
                blank_image = torch.ones_like(latent_image)
                # these are the values for "zero" in pixel space translated to latent space
                blank_image[:,0] *= 0.8223
                blank_image[:,1] *= -0.6876
                blank_image[:,2] *= 0.6364
                blank_image[:,3] *= 0.1380
                return blank_image

            for ck in concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
147
                        cond_concat.append(denoise_mask.to(device))
148
                    elif ck == "masked_image":
149
                        cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
150
151
152
153
154
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(blank_inpaint_image_like(noise))
155
156
            data = torch.cat(cond_concat, dim=1)
            out['c_concat'] = comfy.conds.CONDNoiseShape(data)
157

158
159
        adm = self.encode_adm(**kwargs)
        if adm is not None:
160
            out['y'] = comfy.conds.CONDRegular(adm)
161
162
163
164
165

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)

166
167
168
169
        cross_attn_cnet = kwargs.get("cross_attn_controlnet", None)
        if cross_attn_cnet is not None:
            out['crossattn_controlnet'] = comfy.conds.CONDCrossAttn(cross_attn_cnet)

170
        return out
171

172
173
174
175
176
177
178
    def load_model_weights(self, sd, unet_prefix=""):
        to_load = {}
        keys = list(sd.keys())
        for k in keys:
            if k.startswith(unet_prefix):
                to_load[k[len(unet_prefix):]] = sd.pop(k)

179
        to_load = self.model_config.process_unet_state_dict(to_load)
180
181
182
183
184
185
186
187
188
        m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
        if len(m) > 0:
            print("unet missing:", m)

        if len(u) > 0:
            print("unet unexpected:", u)
        del to_load
        return self

189
190
191
192
193
194
    def process_latent_in(self, latent):
        return self.latent_format.process_in(latent)

    def process_latent_out(self, latent):
        return self.latent_format.process_out(latent)

195
196
197
198
199
200
201
202
203
    def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
        extra_sds = []
        if clip_state_dict is not None:
            extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict))
        if vae_state_dict is not None:
            extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict))
        if clip_vision_state_dict is not None:
            extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))

204
        unet_state_dict = self.diffusion_model.state_dict()
205
        unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
206

207
        if self.get_dtype() == torch.float16:
208
            extra_sds = map(lambda sd: utils.convert_sd_to(sd, torch.float16), extra_sds)
209
210
211
212

        if self.model_type == ModelType.V_PREDICTION:
            unet_state_dict["v_pred"] = torch.tensor([])

213
214
215
216
        for sd in extra_sds:
            unet_state_dict.update(sd)

        return unet_state_dict
217

comfyanonymous's avatar
comfyanonymous committed
218
    def set_inpaint(self):
219
        self.inpaint_model = True
comfyanonymous's avatar
comfyanonymous committed
220

221
222
    def memory_required(self, input_shape):
        if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
223
224
225
            dtype = self.get_dtype()
            if self.manual_cast_dtype is not None:
                dtype = self.manual_cast_dtype
226
            #TODO: this needs to be tweaked
227
            area = input_shape[0] * input_shape[2] * input_shape[3]
228
            return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024)
229
230
        else:
            #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
231
            area = input_shape[0] * input_shape[2] * input_shape[3]
232
233
234
            return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)


235
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
comfyanonymous's avatar
comfyanonymous committed
236
237
238
239
240
241
242
243
    adm_inputs = []
    weights = []
    noise_aug = []
    for unclip_cond in unclip_conditioning:
        for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
            weight = unclip_cond["strength"]
            noise_augment = unclip_cond["noise_augmentation"]
            noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
244
            c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device), seed=seed)
comfyanonymous's avatar
comfyanonymous committed
245
246
247
248
249
250
251
252
253
254
255
256
257
            adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
            weights.append(weight)
            noise_aug.append(noise_augment)
            adm_inputs.append(adm_out)

    if len(noise_aug) > 1:
        adm_out = torch.stack(adm_inputs).sum(0)
        noise_augment = noise_augment_merge
        noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
        c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
        adm_out = torch.cat((c_adm, noise_level_emb), 1)

    return adm_out
258

comfyanonymous's avatar
comfyanonymous committed
259
class SD21UNCLIP(BaseModel):
260
261
    def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device)
comfyanonymous's avatar
comfyanonymous committed
262
263
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)

264
265
266
    def encode_adm(self, **kwargs):
        unclip_conditioning = kwargs.get("unclip_conditioning", None)
        device = kwargs["device"]
comfyanonymous's avatar
comfyanonymous committed
267
268
        if unclip_conditioning is None:
            return torch.zeros((1, self.adm_channels))
269
        else:
270
            return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10)
271

272
273
def sdxl_pooled(args, noise_augmentor):
    if "unclip_conditioning" in args:
274
        return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor, seed=args.get("seed", 0) - 10)[:,:1280]
275
276
277
    else:
        return args["pooled_output"]

278
class SDXLRefiner(BaseModel):
279
280
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
281
        self.embedder = Timestep(256)
282
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
283
284

    def encode_adm(self, **kwargs):
285
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
286
287
288
289
290
291
292
293
294
295
296
297
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)

        if kwargs.get("prompt_type", "") == "negative":
            aesthetic_score = kwargs.get("aesthetic_score", 2.5)
        else:
            aesthetic_score = kwargs.get("aesthetic_score", 6)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
comfyanonymous's avatar
comfyanonymous committed
298
        out.append(self.embedder(torch.Tensor([width])))
299
        out.append(self.embedder(torch.Tensor([crop_h])))
comfyanonymous's avatar
comfyanonymous committed
300
        out.append(self.embedder(torch.Tensor([crop_w])))
301
        out.append(self.embedder(torch.Tensor([aesthetic_score])))
302
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
303
304
305
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)

class SDXL(BaseModel):
306
307
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
308
        self.embedder = Timestep(256)
309
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
310
311

    def encode_adm(self, **kwargs):
312
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
313
314
315
316
317
318
319
320
321
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)
        target_width = kwargs.get("target_width", width)
        target_height = kwargs.get("target_height", height)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
comfyanonymous's avatar
comfyanonymous committed
322
        out.append(self.embedder(torch.Tensor([width])))
323
        out.append(self.embedder(torch.Tensor([crop_h])))
comfyanonymous's avatar
comfyanonymous committed
324
        out.append(self.embedder(torch.Tensor([crop_w])))
325
        out.append(self.embedder(torch.Tensor([target_height])))
comfyanonymous's avatar
comfyanonymous committed
326
        out.append(self.embedder(torch.Tensor([target_width])))
327
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
328
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
comfyanonymous's avatar
comfyanonymous committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

class SVD_img2vid(BaseModel):
    def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
        super().__init__(model_config, model_type, device=device)
        self.embedder = Timestep(256)

    def encode_adm(self, **kwargs):
        fps_id = kwargs.get("fps", 6) - 1
        motion_bucket_id = kwargs.get("motion_bucket_id", 127)
        augmentation = kwargs.get("augmentation_level", 0)

        out = []
        out.append(self.embedder(torch.Tensor([fps_id])))
        out.append(self.embedder(torch.Tensor([motion_bucket_id])))
        out.append(self.embedder(torch.Tensor([augmentation])))

        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
        return flat

    def extra_conds(self, **kwargs):
        out = {}
        adm = self.encode_adm(**kwargs)
        if adm is not None:
            out['y'] = comfy.conds.CONDRegular(adm)

        latent_image = kwargs.get("concat_latent_image", None)
        noise = kwargs.get("noise", None)
        device = kwargs["device"]

        if latent_image is None:
            latent_image = torch.zeros_like(noise)

        if latent_image.shape[1:] != noise.shape[1:]:
            latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

364
        latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
comfyanonymous's avatar
comfyanonymous committed
365
366
367

        out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)

368
369
370
371
        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)

comfyanonymous's avatar
comfyanonymous committed
372
373
374
375
376
        if "time_conditioning" in kwargs:
            out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"])

        out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0])
        return out
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

class Stable_Zero123(BaseModel):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None):
        super().__init__(model_config, model_type, device=device)
        self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device)
        self.cc_projection.weight.copy_(cc_projection_weight)
        self.cc_projection.bias.copy_(cc_projection_bias)

    def extra_conds(self, **kwargs):
        out = {}

        latent_image = kwargs.get("concat_latent_image", None)
        noise = kwargs.get("noise", None)

        if latent_image is None:
            latent_image = torch.zeros_like(noise)

        if latent_image.shape[1:] != noise.shape[1:]:
            latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

        latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])

        out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            if cross_attn.shape[-1] != 768:
                cross_attn = self.cc_projection(cross_attn)
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
        return out
407
408
409
410

class SD_X4Upscaler(BaseModel):
    def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device)
411
        self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350)
412
413
414
415
416
417

    def extra_conds(self, **kwargs):
        out = {}

        image = kwargs.get("concat_image", None)
        noise = kwargs.get("noise", None)
418
419
420
421
422
        noise_augment = kwargs.get("noise_augmentation", 0.0)
        device = kwargs["device"]
        seed = kwargs["seed"] - 10

        noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment)
423
424
425
426
427

        if image is None:
            image = torch.zeros_like(noise)[:,:3]

        if image.shape[1:] != noise.shape[1:]:
428
429
430
431
432
            image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")

        noise_level = torch.tensor([noise_level], device=device)
        if noise_augment > 0:
            image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed)
433
434
435
436

        image = utils.resize_to_batch_size(image, noise.shape[0])

        out['c_concat'] = comfy.conds.CONDNoiseShape(image)
437
        out['y'] = comfy.conds.CONDRegular(noise_level)
438
        return out
comfyanonymous's avatar
comfyanonymous committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

class StableCascade_C(BaseModel):
    def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
        super().__init__(model_config, model_type, device=device, unet_model=StageC)
        self.diffusion_model.eval().requires_grad_(False)

    def extra_conds(self, **kwargs):
        out = {}
        clip_text_pooled = kwargs["pooled_output"]
        if clip_text_pooled is not None:
            out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled)

        if "unclip_conditioning" in kwargs:
            embeds = []
            for unclip_cond in kwargs["unclip_conditioning"]:
                weight = unclip_cond["strength"]
                embeds.append(unclip_cond["clip_vision_output"].image_embeds.unsqueeze(0) * weight)
            clip_img = torch.cat(embeds, dim=1)
        else:
            clip_img = torch.zeros((1, 1, 768))
        out["clip_img"] = comfy.conds.CONDRegular(clip_img)
        out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
        out["crp"] = comfy.conds.CONDRegular(torch.zeros((1,)))

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['clip_text'] = comfy.conds.CONDCrossAttn(cross_attn)
        return out

comfyanonymous's avatar
comfyanonymous committed
468
469
470
471
472
473
474
475
476
477
478
479

class StableCascade_B(BaseModel):
    def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
        super().__init__(model_config, model_type, device=device, unet_model=StageB)
        self.diffusion_model.eval().requires_grad_(False)

    def extra_conds(self, **kwargs):
        out = {}
        noise = kwargs.get("noise", None)

        clip_text_pooled = kwargs["pooled_output"]
        if clip_text_pooled is not None:
comfyanonymous's avatar
comfyanonymous committed
480
            out['clip'] = comfy.conds.CONDRegular(clip_text_pooled)
comfyanonymous's avatar
comfyanonymous committed
481
482
483
484
485
486
487

        #size of prior doesn't really matter if zeros because it gets resized but I still want it to get batched
        prior = kwargs.get("stable_cascade_prior", torch.zeros((1, 16, (noise.shape[2] * 4) // 42, (noise.shape[3] * 4) // 42), dtype=noise.dtype, layout=noise.layout, device=noise.device))

        out["effnet"] = comfy.conds.CONDRegular(prior)
        out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
        return out