model_base.py 8.19 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import torch
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
5
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
comfyanonymous's avatar
comfyanonymous committed
6
import numpy as np
7
from . import utils
comfyanonymous's avatar
comfyanonymous committed
8
9

class BaseModel(torch.nn.Module):
10
    def __init__(self, model_config, v_prediction=False):
comfyanonymous's avatar
comfyanonymous committed
11
12
        super().__init__()

13
14
        unet_config = model_config.unet_config
        self.latent_format = model_config.latent_format
15
        self.model_config = model_config
comfyanonymous's avatar
comfyanonymous committed
16
17
18
19
20
21
22
        self.register_schedule(given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
        self.diffusion_model = UNetModel(**unet_config)
        self.v_prediction = v_prediction
        if self.v_prediction:
            self.parameterization = "v"
        else:
            self.parameterization = "eps"
23
24
25

        self.adm_channels = unet_config.get("adm_in_channels", None)
        if self.adm_channels is None:
comfyanonymous's avatar
comfyanonymous committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
            self.adm_channels = 0
        print("v_prediction", v_prediction)
        print("adm", self.adm_channels)

    def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        if given_betas is not None:
            betas = given_betas
        else:
            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
        alphas = 1. - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end

        self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
        self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
        self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))

    def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}):
        if c_concat is not None:
            xc = torch.cat([x] + c_concat, dim=1)
        else:
            xc = x
        context = torch.cat(c_crossattn, 1)
        return self.diffusion_model(xc, t, context=context, y=c_adm, control=control, transformer_options=transformer_options)

    def get_dtype(self):
        return self.diffusion_model.dtype

    def is_adm(self):
        return self.adm_channels > 0

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    def encode_adm(self, **kwargs):
        return None

    def load_model_weights(self, sd, unet_prefix=""):
        to_load = {}
        keys = list(sd.keys())
        for k in keys:
            if k.startswith(unet_prefix):
                to_load[k[len(unet_prefix):]] = sd.pop(k)

        m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
        if len(m) > 0:
            print("unet missing:", m)

        if len(u) > 0:
            print("unet unexpected:", u)
        del to_load
        return self

82
83
84
85
86
87
    def process_latent_in(self, latent):
        return self.latent_format.process_in(latent)

    def process_latent_out(self, latent):
        return self.latent_format.process_out(latent)

88
89
90
91
92
93
94
95
96
97
    def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
        clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
        unet_state_dict = self.diffusion_model.state_dict()
        unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
        vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
        if self.get_dtype() == torch.float16:
            clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16)
            vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16)
        return {**unet_state_dict, **vae_state_dict, **clip_state_dict}

98

comfyanonymous's avatar
comfyanonymous committed
99
class SD21UNCLIP(BaseModel):
100
101
    def __init__(self, model_config, noise_aug_config, v_prediction=True):
        super().__init__(model_config, v_prediction)
comfyanonymous's avatar
comfyanonymous committed
102
103
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    def encode_adm(self, **kwargs):
        unclip_conditioning = kwargs.get("unclip_conditioning", None)
        device = kwargs["device"]

        if unclip_conditioning is not None:
            adm_inputs = []
            weights = []
            noise_aug = []
            for unclip_cond in unclip_conditioning:
                adm_cond = unclip_cond["clip_vision_output"].image_embeds
                weight = unclip_cond["strength"]
                noise_augment = unclip_cond["noise_augmentation"]
                noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
                c_adm, noise_level_emb = self.noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
                adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
                weights.append(weight)
                noise_aug.append(noise_augment)
                adm_inputs.append(adm_out)

            if len(noise_aug) > 1:
                adm_out = torch.stack(adm_inputs).sum(0)
                #TODO: add a way to control this
                noise_augment = 0.05
                noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
                c_adm, noise_level_emb = self.noise_augmentor(adm_out[:, :self.noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
                adm_out = torch.cat((c_adm, noise_level_emb), 1)
        else:
            adm_out = torch.zeros((1, self.adm_channels))

        return adm_out

comfyanonymous's avatar
comfyanonymous committed
135
class SDInpaint(BaseModel):
136
137
    def __init__(self, model_config, v_prediction=False):
        super().__init__(model_config, v_prediction)
comfyanonymous's avatar
comfyanonymous committed
138
        self.concat_keys = ("mask", "masked_image")
139
140

class SDXLRefiner(BaseModel):
141
142
    def __init__(self, model_config, v_prediction=False):
        super().__init__(model_config, v_prediction)
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        self.embedder = Timestep(256)

    def encode_adm(self, **kwargs):
        clip_pooled = kwargs["pooled_output"]
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)

        if kwargs.get("prompt_type", "") == "negative":
            aesthetic_score = kwargs.get("aesthetic_score", 2.5)
        else:
            aesthetic_score = kwargs.get("aesthetic_score", 6)

        print(clip_pooled.shape, width, height, crop_w, crop_h, aesthetic_score)
        out = []
        out.append(self.embedder(torch.Tensor([width])))
        out.append(self.embedder(torch.Tensor([height])))
        out.append(self.embedder(torch.Tensor([crop_w])))
        out.append(self.embedder(torch.Tensor([crop_h])))
        out.append(self.embedder(torch.Tensor([aesthetic_score])))
        flat = torch.flatten(torch.cat(out))[None, ]
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)

class SDXL(BaseModel):
168
169
    def __init__(self, model_config, v_prediction=False):
        super().__init__(model_config, v_prediction)
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        self.embedder = Timestep(256)

    def encode_adm(self, **kwargs):
        clip_pooled = kwargs["pooled_output"]
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)
        target_width = kwargs.get("target_width", width)
        target_height = kwargs.get("target_height", height)

        print(clip_pooled.shape, width, height, crop_w, crop_h, target_width, target_height)
        out = []
        out.append(self.embedder(torch.Tensor([width])))
        out.append(self.embedder(torch.Tensor([height])))
        out.append(self.embedder(torch.Tensor([crop_w])))
        out.append(self.embedder(torch.Tensor([crop_h])))
        out.append(self.embedder(torch.Tensor([target_width])))
        out.append(self.embedder(torch.Tensor([target_height])))
        flat = torch.flatten(torch.cat(out))[None, ]
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)