model_base.py 17.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
4
from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
comfyanonymous's avatar
comfyanonymous committed
5
import comfy.model_management
6
import comfy.conds
7
import comfy.ops
8
from enum import Enum
9
import contextlib
10
from . import utils
comfyanonymous's avatar
comfyanonymous committed
11

12
13
14
class ModelType(Enum):
    EPS = 1
    V_PREDICTION = 2
comfyanonymous's avatar
comfyanonymous committed
15
    V_PREDICTION_EDM = 3
16

comfyanonymous's avatar
comfyanonymous committed
17

comfyanonymous's avatar
comfyanonymous committed
18
19
from comfy.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete, ModelSamplingContinuousEDM

20

comfyanonymous's avatar
comfyanonymous committed
21
def model_sampling(model_config, model_type):
comfyanonymous's avatar
comfyanonymous committed
22
23
    s = ModelSamplingDiscrete

comfyanonymous's avatar
comfyanonymous committed
24
25
26
27
    if model_type == ModelType.EPS:
        c = EPS
    elif model_type == ModelType.V_PREDICTION:
        c = V_PREDICTION
comfyanonymous's avatar
comfyanonymous committed
28
29
30
    elif model_type == ModelType.V_PREDICTION_EDM:
        c = V_PREDICTION
        s = ModelSamplingContinuousEDM
comfyanonymous's avatar
comfyanonymous committed
31
32
33
34
35
36
37

    class ModelSampling(s, c):
        pass

    return ModelSampling(model_config)


comfyanonymous's avatar
comfyanonymous committed
38
class BaseModel(torch.nn.Module):
39
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
comfyanonymous's avatar
comfyanonymous committed
40
41
        super().__init__()

42
43
        unet_config = model_config.unet_config
        self.latent_format = model_config.latent_format
44
        self.model_config = model_config
45
        self.manual_cast_dtype = model_config.manual_cast_dtype
comfyanonymous's avatar
comfyanonymous committed
46

47
        if not unet_config.get("disable_unet_model_creation", False):
48
49
50
            if self.manual_cast_dtype is not None:
                operations = comfy.ops.manual_cast
            else:
comfyanonymous's avatar
comfyanonymous committed
51
                operations = comfy.ops.disable_weight_init
52
            self.diffusion_model = UNetModel(**unet_config, device=device, operations=operations)
53
        self.model_type = model_type
comfyanonymous's avatar
comfyanonymous committed
54
55
        self.model_sampling = model_sampling(model_config, model_type)

56
57
        self.adm_channels = unet_config.get("adm_in_channels", None)
        if self.adm_channels is None:
comfyanonymous's avatar
comfyanonymous committed
58
            self.adm_channels = 0
59
        self.inpaint_model = False
60
        print("model_type", model_type.name)
comfyanonymous's avatar
comfyanonymous committed
61
62
        print("adm", self.adm_channels)

63
    def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
comfyanonymous's avatar
comfyanonymous committed
64
65
        sigma = t
        xc = self.model_sampling.calculate_input(sigma, x)
comfyanonymous's avatar
comfyanonymous committed
66
        if c_concat is not None:
comfyanonymous's avatar
comfyanonymous committed
67
68
            xc = torch.cat([xc] + [c_concat], dim=1)

69
        context = c_crossattn
70
        dtype = self.get_dtype()
71

72
73
        if self.manual_cast_dtype is not None:
            dtype = self.manual_cast_dtype
74

75
        xc = xc.to(dtype)
76
        t = self.model_sampling.timestep(t).float()
77
        context = context.to(dtype)
78
79
        extra_conds = {}
        for o in kwargs:
80
            extra = kwargs[o]
81
82
83
            if hasattr(extra, "dtype"):
                if extra.dtype != torch.int and extra.dtype != torch.long:
                    extra = extra.to(dtype)
84
            extra_conds[o] = extra
85

86
        model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
comfyanonymous's avatar
comfyanonymous committed
87
        return self.model_sampling.calculate_denoised(sigma, model_output, x)
comfyanonymous's avatar
comfyanonymous committed
88
89
90
91
92
93
94

    def get_dtype(self):
        return self.diffusion_model.dtype

    def is_adm(self):
        return self.adm_channels > 0

95
96
97
    def encode_adm(self, **kwargs):
        return None

98
99
    def extra_conds(self, **kwargs):
        out = {}
100
101
102
        if self.inpaint_model:
            concat_keys = ("mask", "masked_image")
            cond_concat = []
103
104
105
106
107
108
109
            denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
            concat_latent_image = kwargs.get("concat_latent_image", None)
            if concat_latent_image is None:
                concat_latent_image = kwargs.get("latent_image", None)
            else:
                concat_latent_image = self.process_latent_in(concat_latent_image)

110
            noise = kwargs.get("noise", None)
111
            device = kwargs["device"]
112

113
114
115
116
117
118
119
120
121
122
123
124
125
            if concat_latent_image.shape[1:] != noise.shape[1:]:
                concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

            concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])

            if len(denoise_mask.shape) == len(noise.shape):
                denoise_mask = denoise_mask[:,:1]

            denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1]))
            if denoise_mask.shape[-2:] != noise.shape[-2:]:
                denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center")
            denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0])

126
127
128
129
130
131
132
133
134
135
136
137
            def blank_inpaint_image_like(latent_image):
                blank_image = torch.ones_like(latent_image)
                # these are the values for "zero" in pixel space translated to latent space
                blank_image[:,0] *= 0.8223
                blank_image[:,1] *= -0.6876
                blank_image[:,2] *= 0.6364
                blank_image[:,3] *= 0.1380
                return blank_image

            for ck in concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
138
                        cond_concat.append(denoise_mask.to(device))
139
                    elif ck == "masked_image":
140
                        cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
141
142
143
144
145
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(blank_inpaint_image_like(noise))
146
147
            data = torch.cat(cond_concat, dim=1)
            out['c_concat'] = comfy.conds.CONDNoiseShape(data)
148

149
150
        adm = self.encode_adm(**kwargs)
        if adm is not None:
151
            out['y'] = comfy.conds.CONDRegular(adm)
152
153
154
155
156

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)

157
        return out
158

159
160
161
162
163
164
165
    def load_model_weights(self, sd, unet_prefix=""):
        to_load = {}
        keys = list(sd.keys())
        for k in keys:
            if k.startswith(unet_prefix):
                to_load[k[len(unet_prefix):]] = sd.pop(k)

166
        to_load = self.model_config.process_unet_state_dict(to_load)
167
168
169
170
171
172
173
174
175
        m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
        if len(m) > 0:
            print("unet missing:", m)

        if len(u) > 0:
            print("unet unexpected:", u)
        del to_load
        return self

176
177
178
179
180
181
    def process_latent_in(self, latent):
        return self.latent_format.process_in(latent)

    def process_latent_out(self, latent):
        return self.latent_format.process_out(latent)

182
183
    def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
        clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
184
        unet_state_dict = self.diffusion_model.state_dict()
185
186
187
188
189
        unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
        vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
        if self.get_dtype() == torch.float16:
            clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16)
            vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16)
190
191
192
193

        if self.model_type == ModelType.V_PREDICTION:
            unet_state_dict["v_pred"] = torch.tensor([])

194
195
        return {**unet_state_dict, **vae_state_dict, **clip_state_dict}

comfyanonymous's avatar
comfyanonymous committed
196
    def set_inpaint(self):
197
        self.inpaint_model = True
comfyanonymous's avatar
comfyanonymous committed
198

199
200
    def memory_required(self, input_shape):
        if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
201
202
203
            dtype = self.get_dtype()
            if self.manual_cast_dtype is not None:
                dtype = self.manual_cast_dtype
204
            #TODO: this needs to be tweaked
205
            area = input_shape[0] * input_shape[2] * input_shape[3]
206
            return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024)
207
208
        else:
            #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
209
            area = input_shape[0] * input_shape[2] * input_shape[3]
210
211
212
            return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)


comfyanonymous's avatar
comfyanonymous committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
    adm_inputs = []
    weights = []
    noise_aug = []
    for unclip_cond in unclip_conditioning:
        for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
            weight = unclip_cond["strength"]
            noise_augment = unclip_cond["noise_augmentation"]
            noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
            c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
            adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
            weights.append(weight)
            noise_aug.append(noise_augment)
            adm_inputs.append(adm_out)

    if len(noise_aug) > 1:
        adm_out = torch.stack(adm_inputs).sum(0)
        noise_augment = noise_augment_merge
        noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
        c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
        adm_out = torch.cat((c_adm, noise_level_emb), 1)

    return adm_out
236

comfyanonymous's avatar
comfyanonymous committed
237
class SD21UNCLIP(BaseModel):
238
239
    def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device)
comfyanonymous's avatar
comfyanonymous committed
240
241
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)

242
243
244
    def encode_adm(self, **kwargs):
        unclip_conditioning = kwargs.get("unclip_conditioning", None)
        device = kwargs["device"]
comfyanonymous's avatar
comfyanonymous committed
245
246
        if unclip_conditioning is None:
            return torch.zeros((1, self.adm_channels))
247
        else:
comfyanonymous's avatar
comfyanonymous committed
248
            return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))
249

250
251
252
253
254
255
def sdxl_pooled(args, noise_augmentor):
    if "unclip_conditioning" in args:
        return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor)[:,:1280]
    else:
        return args["pooled_output"]

256
class SDXLRefiner(BaseModel):
257
258
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
259
        self.embedder = Timestep(256)
260
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
261
262

    def encode_adm(self, **kwargs):
263
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
264
265
266
267
268
269
270
271
272
273
274
275
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)

        if kwargs.get("prompt_type", "") == "negative":
            aesthetic_score = kwargs.get("aesthetic_score", 2.5)
        else:
            aesthetic_score = kwargs.get("aesthetic_score", 6)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
comfyanonymous's avatar
comfyanonymous committed
276
        out.append(self.embedder(torch.Tensor([width])))
277
        out.append(self.embedder(torch.Tensor([crop_h])))
comfyanonymous's avatar
comfyanonymous committed
278
        out.append(self.embedder(torch.Tensor([crop_w])))
279
        out.append(self.embedder(torch.Tensor([aesthetic_score])))
280
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
281
282
283
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)

class SDXL(BaseModel):
284
285
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
286
        self.embedder = Timestep(256)
287
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
288
289

    def encode_adm(self, **kwargs):
290
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
291
292
293
294
295
296
297
298
299
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)
        target_width = kwargs.get("target_width", width)
        target_height = kwargs.get("target_height", height)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
comfyanonymous's avatar
comfyanonymous committed
300
        out.append(self.embedder(torch.Tensor([width])))
301
        out.append(self.embedder(torch.Tensor([crop_h])))
comfyanonymous's avatar
comfyanonymous committed
302
        out.append(self.embedder(torch.Tensor([crop_w])))
303
        out.append(self.embedder(torch.Tensor([target_height])))
comfyanonymous's avatar
comfyanonymous committed
304
        out.append(self.embedder(torch.Tensor([target_width])))
305
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
306
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
comfyanonymous's avatar
comfyanonymous committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

class SVD_img2vid(BaseModel):
    def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
        super().__init__(model_config, model_type, device=device)
        self.embedder = Timestep(256)

    def encode_adm(self, **kwargs):
        fps_id = kwargs.get("fps", 6) - 1
        motion_bucket_id = kwargs.get("motion_bucket_id", 127)
        augmentation = kwargs.get("augmentation_level", 0)

        out = []
        out.append(self.embedder(torch.Tensor([fps_id])))
        out.append(self.embedder(torch.Tensor([motion_bucket_id])))
        out.append(self.embedder(torch.Tensor([augmentation])))

        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
        return flat

    def extra_conds(self, **kwargs):
        out = {}
        adm = self.encode_adm(**kwargs)
        if adm is not None:
            out['y'] = comfy.conds.CONDRegular(adm)

        latent_image = kwargs.get("concat_latent_image", None)
        noise = kwargs.get("noise", None)
        device = kwargs["device"]

        if latent_image is None:
            latent_image = torch.zeros_like(noise)

        if latent_image.shape[1:] != noise.shape[1:]:
            latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

342
        latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
comfyanonymous's avatar
comfyanonymous committed
343
344
345

        out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)

346
347
348
349
        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)

comfyanonymous's avatar
comfyanonymous committed
350
351
352
353
354
355
        if "time_conditioning" in kwargs:
            out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"])

        out['image_only_indicator'] = comfy.conds.CONDConstant(torch.zeros((1,), device=device))
        out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0])
        return out
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

class Stable_Zero123(BaseModel):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None):
        super().__init__(model_config, model_type, device=device)
        self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device)
        self.cc_projection.weight.copy_(cc_projection_weight)
        self.cc_projection.bias.copy_(cc_projection_bias)

    def extra_conds(self, **kwargs):
        out = {}

        latent_image = kwargs.get("concat_latent_image", None)
        noise = kwargs.get("noise", None)

        if latent_image is None:
            latent_image = torch.zeros_like(noise)

        if latent_image.shape[1:] != noise.shape[1:]:
            latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

        latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])

        out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            if cross_attn.shape[-1] != 768:
                cross_attn = self.cc_projection(cross_attn)
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
        return out
386
387
388
389

class SD_X4Upscaler(BaseModel):
    def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device)
390
        self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350)
391
392
393
394
395
396

    def extra_conds(self, **kwargs):
        out = {}

        image = kwargs.get("concat_image", None)
        noise = kwargs.get("noise", None)
397
398
399
400
401
        noise_augment = kwargs.get("noise_augmentation", 0.0)
        device = kwargs["device"]
        seed = kwargs["seed"] - 10

        noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment)
402
403
404
405
406

        if image is None:
            image = torch.zeros_like(noise)[:,:3]

        if image.shape[1:] != noise.shape[1:]:
407
408
409
410
411
            image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")

        noise_level = torch.tensor([noise_level], device=device)
        if noise_augment > 0:
            image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed)
412
413
414
415

        image = utils.resize_to_batch_size(image, noise.shape[0])

        out['c_concat'] = comfy.conds.CONDNoiseShape(image)
416
        out['y'] = comfy.conds.CONDRegular(noise_level)
417
        return out