model_base.py 16.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
4
from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
comfyanonymous's avatar
comfyanonymous committed
5
import comfy.model_management
6
import comfy.conds
7
import comfy.ops
8
from enum import Enum
9
import contextlib
10
from . import utils
comfyanonymous's avatar
comfyanonymous committed
11

12
13
14
class ModelType(Enum):
    EPS = 1
    V_PREDICTION = 2
comfyanonymous's avatar
comfyanonymous committed
15
    V_PREDICTION_EDM = 3
16

comfyanonymous's avatar
comfyanonymous committed
17

comfyanonymous's avatar
comfyanonymous committed
18
19
from comfy.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete, ModelSamplingContinuousEDM

20

comfyanonymous's avatar
comfyanonymous committed
21
def model_sampling(model_config, model_type):
comfyanonymous's avatar
comfyanonymous committed
22
23
    s = ModelSamplingDiscrete

comfyanonymous's avatar
comfyanonymous committed
24
25
26
27
    if model_type == ModelType.EPS:
        c = EPS
    elif model_type == ModelType.V_PREDICTION:
        c = V_PREDICTION
comfyanonymous's avatar
comfyanonymous committed
28
29
30
    elif model_type == ModelType.V_PREDICTION_EDM:
        c = V_PREDICTION
        s = ModelSamplingContinuousEDM
comfyanonymous's avatar
comfyanonymous committed
31
32
33
34
35
36
37

    class ModelSampling(s, c):
        pass

    return ModelSampling(model_config)


comfyanonymous's avatar
comfyanonymous committed
38
class BaseModel(torch.nn.Module):
39
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
comfyanonymous's avatar
comfyanonymous committed
40
41
        super().__init__()

42
43
        unet_config = model_config.unet_config
        self.latent_format = model_config.latent_format
44
        self.model_config = model_config
45
        self.manual_cast_dtype = model_config.manual_cast_dtype
comfyanonymous's avatar
comfyanonymous committed
46

47
        if not unet_config.get("disable_unet_model_creation", False):
48
49
50
            if self.manual_cast_dtype is not None:
                operations = comfy.ops.manual_cast
            else:
comfyanonymous's avatar
comfyanonymous committed
51
                operations = comfy.ops.disable_weight_init
52
            self.diffusion_model = UNetModel(**unet_config, device=device, operations=operations)
53
        self.model_type = model_type
comfyanonymous's avatar
comfyanonymous committed
54
55
        self.model_sampling = model_sampling(model_config, model_type)

56
57
        self.adm_channels = unet_config.get("adm_in_channels", None)
        if self.adm_channels is None:
comfyanonymous's avatar
comfyanonymous committed
58
            self.adm_channels = 0
59
        self.inpaint_model = False
60
        print("model_type", model_type.name)
comfyanonymous's avatar
comfyanonymous committed
61
62
        print("adm", self.adm_channels)

63
    def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
comfyanonymous's avatar
comfyanonymous committed
64
65
        sigma = t
        xc = self.model_sampling.calculate_input(sigma, x)
comfyanonymous's avatar
comfyanonymous committed
66
        if c_concat is not None:
comfyanonymous's avatar
comfyanonymous committed
67
68
            xc = torch.cat([xc] + [c_concat], dim=1)

69
        context = c_crossattn
70
        dtype = self.get_dtype()
71

72
73
        if self.manual_cast_dtype is not None:
            dtype = self.manual_cast_dtype
74

75
        xc = xc.to(dtype)
76
        t = self.model_sampling.timestep(t).float()
77
        context = context.to(dtype)
78
79
        extra_conds = {}
        for o in kwargs:
80
            extra = kwargs[o]
81
82
83
            if hasattr(extra, "dtype"):
                if extra.dtype != torch.int and extra.dtype != torch.long:
                    extra = extra.to(dtype)
84
            extra_conds[o] = extra
85

86
        model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
comfyanonymous's avatar
comfyanonymous committed
87
        return self.model_sampling.calculate_denoised(sigma, model_output, x)
comfyanonymous's avatar
comfyanonymous committed
88
89
90
91
92
93
94

    def get_dtype(self):
        return self.diffusion_model.dtype

    def is_adm(self):
        return self.adm_channels > 0

95
96
97
    def encode_adm(self, **kwargs):
        return None

98
99
    def extra_conds(self, **kwargs):
        out = {}
100
101
102
103
104
105
        if self.inpaint_model:
            concat_keys = ("mask", "masked_image")
            cond_concat = []
            denoise_mask = kwargs.get("denoise_mask", None)
            latent_image = kwargs.get("latent_image", None)
            noise = kwargs.get("noise", None)
106
            device = kwargs["device"]
107
108
109
110
111
112
113
114
115
116
117
118
119

            def blank_inpaint_image_like(latent_image):
                blank_image = torch.ones_like(latent_image)
                # these are the values for "zero" in pixel space translated to latent space
                blank_image[:,0] *= 0.8223
                blank_image[:,1] *= -0.6876
                blank_image[:,2] *= 0.6364
                blank_image[:,3] *= 0.1380
                return blank_image

            for ck in concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
120
                        cond_concat.append(denoise_mask[:,:1].to(device))
121
                    elif ck == "masked_image":
122
                        cond_concat.append(latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
123
124
125
126
127
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(blank_inpaint_image_like(noise))
128
129
            data = torch.cat(cond_concat, dim=1)
            out['c_concat'] = comfy.conds.CONDNoiseShape(data)
130

131
132
        adm = self.encode_adm(**kwargs)
        if adm is not None:
133
            out['y'] = comfy.conds.CONDRegular(adm)
134
135
136
137
138

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)

139
        return out
140

141
142
143
144
145
146
147
    def load_model_weights(self, sd, unet_prefix=""):
        to_load = {}
        keys = list(sd.keys())
        for k in keys:
            if k.startswith(unet_prefix):
                to_load[k[len(unet_prefix):]] = sd.pop(k)

148
        to_load = self.model_config.process_unet_state_dict(to_load)
149
150
151
152
153
154
155
156
157
        m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
        if len(m) > 0:
            print("unet missing:", m)

        if len(u) > 0:
            print("unet unexpected:", u)
        del to_load
        return self

158
159
160
161
162
163
    def process_latent_in(self, latent):
        return self.latent_format.process_in(latent)

    def process_latent_out(self, latent):
        return self.latent_format.process_out(latent)

164
165
    def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
        clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
166
        unet_state_dict = self.diffusion_model.state_dict()
167
168
169
170
171
        unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
        vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
        if self.get_dtype() == torch.float16:
            clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16)
            vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16)
172
173
174
175

        if self.model_type == ModelType.V_PREDICTION:
            unet_state_dict["v_pred"] = torch.tensor([])

176
177
        return {**unet_state_dict, **vae_state_dict, **clip_state_dict}

comfyanonymous's avatar
comfyanonymous committed
178
    def set_inpaint(self):
179
        self.inpaint_model = True
comfyanonymous's avatar
comfyanonymous committed
180

181
182
    def memory_required(self, input_shape):
        if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
183
184
185
            dtype = self.get_dtype()
            if self.manual_cast_dtype is not None:
                dtype = self.manual_cast_dtype
186
            #TODO: this needs to be tweaked
187
            area = input_shape[0] * input_shape[2] * input_shape[3]
188
            return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024)
189
190
        else:
            #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
191
            area = input_shape[0] * input_shape[2] * input_shape[3]
192
193
194
            return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)


comfyanonymous's avatar
comfyanonymous committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
    adm_inputs = []
    weights = []
    noise_aug = []
    for unclip_cond in unclip_conditioning:
        for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
            weight = unclip_cond["strength"]
            noise_augment = unclip_cond["noise_augmentation"]
            noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
            c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
            adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
            weights.append(weight)
            noise_aug.append(noise_augment)
            adm_inputs.append(adm_out)

    if len(noise_aug) > 1:
        adm_out = torch.stack(adm_inputs).sum(0)
        noise_augment = noise_augment_merge
        noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
        c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
        adm_out = torch.cat((c_adm, noise_level_emb), 1)

    return adm_out
218

comfyanonymous's avatar
comfyanonymous committed
219
class SD21UNCLIP(BaseModel):
220
221
    def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device)
comfyanonymous's avatar
comfyanonymous committed
222
223
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)

224
225
226
    def encode_adm(self, **kwargs):
        unclip_conditioning = kwargs.get("unclip_conditioning", None)
        device = kwargs["device"]
comfyanonymous's avatar
comfyanonymous committed
227
228
        if unclip_conditioning is None:
            return torch.zeros((1, self.adm_channels))
229
        else:
comfyanonymous's avatar
comfyanonymous committed
230
            return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))
231

232
233
234
235
236
237
def sdxl_pooled(args, noise_augmentor):
    if "unclip_conditioning" in args:
        return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor)[:,:1280]
    else:
        return args["pooled_output"]

238
class SDXLRefiner(BaseModel):
239
240
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
241
        self.embedder = Timestep(256)
242
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
243
244

    def encode_adm(self, **kwargs):
245
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
246
247
248
249
250
251
252
253
254
255
256
257
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)

        if kwargs.get("prompt_type", "") == "negative":
            aesthetic_score = kwargs.get("aesthetic_score", 2.5)
        else:
            aesthetic_score = kwargs.get("aesthetic_score", 6)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
comfyanonymous's avatar
comfyanonymous committed
258
        out.append(self.embedder(torch.Tensor([width])))
259
        out.append(self.embedder(torch.Tensor([crop_h])))
comfyanonymous's avatar
comfyanonymous committed
260
        out.append(self.embedder(torch.Tensor([crop_w])))
261
        out.append(self.embedder(torch.Tensor([aesthetic_score])))
262
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
263
264
265
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)

class SDXL(BaseModel):
266
267
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
268
        self.embedder = Timestep(256)
269
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
270
271

    def encode_adm(self, **kwargs):
272
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
273
274
275
276
277
278
279
280
281
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)
        target_width = kwargs.get("target_width", width)
        target_height = kwargs.get("target_height", height)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
comfyanonymous's avatar
comfyanonymous committed
282
        out.append(self.embedder(torch.Tensor([width])))
283
        out.append(self.embedder(torch.Tensor([crop_h])))
comfyanonymous's avatar
comfyanonymous committed
284
        out.append(self.embedder(torch.Tensor([crop_w])))
285
        out.append(self.embedder(torch.Tensor([target_height])))
comfyanonymous's avatar
comfyanonymous committed
286
        out.append(self.embedder(torch.Tensor([target_width])))
287
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
288
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
comfyanonymous's avatar
comfyanonymous committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

class SVD_img2vid(BaseModel):
    def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
        super().__init__(model_config, model_type, device=device)
        self.embedder = Timestep(256)

    def encode_adm(self, **kwargs):
        fps_id = kwargs.get("fps", 6) - 1
        motion_bucket_id = kwargs.get("motion_bucket_id", 127)
        augmentation = kwargs.get("augmentation_level", 0)

        out = []
        out.append(self.embedder(torch.Tensor([fps_id])))
        out.append(self.embedder(torch.Tensor([motion_bucket_id])))
        out.append(self.embedder(torch.Tensor([augmentation])))

        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
        return flat

    def extra_conds(self, **kwargs):
        out = {}
        adm = self.encode_adm(**kwargs)
        if adm is not None:
            out['y'] = comfy.conds.CONDRegular(adm)

        latent_image = kwargs.get("concat_latent_image", None)
        noise = kwargs.get("noise", None)
        device = kwargs["device"]

        if latent_image is None:
            latent_image = torch.zeros_like(noise)

        if latent_image.shape[1:] != noise.shape[1:]:
            latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

324
        latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
comfyanonymous's avatar
comfyanonymous committed
325
326
327

        out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)

328
329
330
331
        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)

comfyanonymous's avatar
comfyanonymous committed
332
333
334
335
336
337
        if "time_conditioning" in kwargs:
            out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"])

        out['image_only_indicator'] = comfy.conds.CONDConstant(torch.zeros((1,), device=device))
        out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0])
        return out
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

class Stable_Zero123(BaseModel):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None):
        super().__init__(model_config, model_type, device=device)
        self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device)
        self.cc_projection.weight.copy_(cc_projection_weight)
        self.cc_projection.bias.copy_(cc_projection_bias)

    def extra_conds(self, **kwargs):
        out = {}

        latent_image = kwargs.get("concat_latent_image", None)
        noise = kwargs.get("noise", None)

        if latent_image is None:
            latent_image = torch.zeros_like(noise)

        if latent_image.shape[1:] != noise.shape[1:]:
            latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

        latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])

        out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            if cross_attn.shape[-1] != 768:
                cross_attn = self.cc_projection(cross_attn)
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
        return out
368
369
370
371

class SD_X4Upscaler(BaseModel):
    def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device)
372
        self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350)
373
374
375
376
377
378

    def extra_conds(self, **kwargs):
        out = {}

        image = kwargs.get("concat_image", None)
        noise = kwargs.get("noise", None)
379
380
381
382
383
        noise_augment = kwargs.get("noise_augmentation", 0.0)
        device = kwargs["device"]
        seed = kwargs["seed"] - 10

        noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment)
384
385
386
387
388

        if image is None:
            image = torch.zeros_like(noise)[:,:3]

        if image.shape[1:] != noise.shape[1:]:
389
390
391
392
393
            image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")

        noise_level = torch.tensor([noise_level], device=device)
        if noise_augment > 0:
            image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed)
394
395
396
397

        image = utils.resize_to_batch_size(image, noise.shape[0])

        out['c_concat'] = comfy.conds.CONDNoiseShape(image)
398
        out['y'] = comfy.conds.CONDRegular(noise_level)
399
        return out