model_base.py 15.7 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
import torch
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
4
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
comfyanonymous's avatar
comfyanonymous committed
5
import comfy.model_management
6
import comfy.conds
7
import comfy.ops
8
from enum import Enum
9
import contextlib
10
from . import utils
comfyanonymous's avatar
comfyanonymous committed
11

12
13
14
class ModelType(Enum):
    EPS = 1
    V_PREDICTION = 2
comfyanonymous's avatar
comfyanonymous committed
15
    V_PREDICTION_EDM = 3
16

comfyanonymous's avatar
comfyanonymous committed
17

comfyanonymous's avatar
comfyanonymous committed
18
19
from comfy.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete, ModelSamplingContinuousEDM

20

comfyanonymous's avatar
comfyanonymous committed
21
def model_sampling(model_config, model_type):
comfyanonymous's avatar
comfyanonymous committed
22
23
    s = ModelSamplingDiscrete

comfyanonymous's avatar
comfyanonymous committed
24
25
26
27
    if model_type == ModelType.EPS:
        c = EPS
    elif model_type == ModelType.V_PREDICTION:
        c = V_PREDICTION
comfyanonymous's avatar
comfyanonymous committed
28
29
30
    elif model_type == ModelType.V_PREDICTION_EDM:
        c = V_PREDICTION
        s = ModelSamplingContinuousEDM
comfyanonymous's avatar
comfyanonymous committed
31
32
33
34
35
36
37

    class ModelSampling(s, c):
        pass

    return ModelSampling(model_config)


comfyanonymous's avatar
comfyanonymous committed
38
class BaseModel(torch.nn.Module):
39
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
comfyanonymous's avatar
comfyanonymous committed
40
41
        super().__init__()

42
43
        unet_config = model_config.unet_config
        self.latent_format = model_config.latent_format
44
        self.model_config = model_config
45
        self.manual_cast_dtype = model_config.manual_cast_dtype
comfyanonymous's avatar
comfyanonymous committed
46

47
        if not unet_config.get("disable_unet_model_creation", False):
48
49
50
            if self.manual_cast_dtype is not None:
                operations = comfy.ops.manual_cast
            else:
comfyanonymous's avatar
comfyanonymous committed
51
                operations = comfy.ops.disable_weight_init
52
            self.diffusion_model = UNetModel(**unet_config, device=device, operations=operations)
53
        self.model_type = model_type
comfyanonymous's avatar
comfyanonymous committed
54
55
        self.model_sampling = model_sampling(model_config, model_type)

56
57
        self.adm_channels = unet_config.get("adm_in_channels", None)
        if self.adm_channels is None:
comfyanonymous's avatar
comfyanonymous committed
58
            self.adm_channels = 0
59
        self.inpaint_model = False
60
        print("model_type", model_type.name)
comfyanonymous's avatar
comfyanonymous committed
61
62
        print("adm", self.adm_channels)

63
    def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
comfyanonymous's avatar
comfyanonymous committed
64
65
        sigma = t
        xc = self.model_sampling.calculate_input(sigma, x)
comfyanonymous's avatar
comfyanonymous committed
66
        if c_concat is not None:
comfyanonymous's avatar
comfyanonymous committed
67
68
            xc = torch.cat([xc] + [c_concat], dim=1)

69
        context = c_crossattn
70
        dtype = self.get_dtype()
71

72
73
        if self.manual_cast_dtype is not None:
            dtype = self.manual_cast_dtype
74

75
        xc = xc.to(dtype)
76
        t = self.model_sampling.timestep(t).float()
77
        context = context.to(dtype)
78
79
        extra_conds = {}
        for o in kwargs:
80
81
82
83
            extra = kwargs[o]
            if hasattr(extra, "to"):
                extra = extra.to(dtype)
            extra_conds[o] = extra
84

85
        model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
comfyanonymous's avatar
comfyanonymous committed
86
        return self.model_sampling.calculate_denoised(sigma, model_output, x)
comfyanonymous's avatar
comfyanonymous committed
87
88
89
90
91
92
93

    def get_dtype(self):
        return self.diffusion_model.dtype

    def is_adm(self):
        return self.adm_channels > 0

94
95
96
    def encode_adm(self, **kwargs):
        return None

97
98
    def extra_conds(self, **kwargs):
        out = {}
99
100
101
102
103
104
        if self.inpaint_model:
            concat_keys = ("mask", "masked_image")
            cond_concat = []
            denoise_mask = kwargs.get("denoise_mask", None)
            latent_image = kwargs.get("latent_image", None)
            noise = kwargs.get("noise", None)
105
            device = kwargs["device"]
106
107
108
109
110
111
112
113
114
115
116
117
118

            def blank_inpaint_image_like(latent_image):
                blank_image = torch.ones_like(latent_image)
                # these are the values for "zero" in pixel space translated to latent space
                blank_image[:,0] *= 0.8223
                blank_image[:,1] *= -0.6876
                blank_image[:,2] *= 0.6364
                blank_image[:,3] *= 0.1380
                return blank_image

            for ck in concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
119
                        cond_concat.append(denoise_mask[:,:1].to(device))
120
                    elif ck == "masked_image":
121
                        cond_concat.append(latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
122
123
124
125
126
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(blank_inpaint_image_like(noise))
127
128
            data = torch.cat(cond_concat, dim=1)
            out['c_concat'] = comfy.conds.CONDNoiseShape(data)
129

130
131
        adm = self.encode_adm(**kwargs)
        if adm is not None:
132
            out['y'] = comfy.conds.CONDRegular(adm)
133
134
135
136
137

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)

138
        return out
139

140
141
142
143
144
145
146
    def load_model_weights(self, sd, unet_prefix=""):
        to_load = {}
        keys = list(sd.keys())
        for k in keys:
            if k.startswith(unet_prefix):
                to_load[k[len(unet_prefix):]] = sd.pop(k)

147
        to_load = self.model_config.process_unet_state_dict(to_load)
148
149
150
151
152
153
154
155
156
        m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
        if len(m) > 0:
            print("unet missing:", m)

        if len(u) > 0:
            print("unet unexpected:", u)
        del to_load
        return self

157
158
159
160
161
162
    def process_latent_in(self, latent):
        return self.latent_format.process_in(latent)

    def process_latent_out(self, latent):
        return self.latent_format.process_out(latent)

163
164
    def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
        clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
165
        unet_state_dict = self.diffusion_model.state_dict()
166
167
168
169
170
        unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
        vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
        if self.get_dtype() == torch.float16:
            clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16)
            vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16)
171
172
173
174

        if self.model_type == ModelType.V_PREDICTION:
            unet_state_dict["v_pred"] = torch.tensor([])

175
176
        return {**unet_state_dict, **vae_state_dict, **clip_state_dict}

comfyanonymous's avatar
comfyanonymous committed
177
    def set_inpaint(self):
178
        self.inpaint_model = True
comfyanonymous's avatar
comfyanonymous committed
179

180
181
    def memory_required(self, input_shape):
        if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
182
183
184
            dtype = self.get_dtype()
            if self.manual_cast_dtype is not None:
                dtype = self.manual_cast_dtype
185
            #TODO: this needs to be tweaked
186
            area = input_shape[0] * input_shape[2] * input_shape[3]
187
            return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024)
188
189
        else:
            #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
190
            area = input_shape[0] * input_shape[2] * input_shape[3]
191
192
193
            return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)


comfyanonymous's avatar
comfyanonymous committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
    adm_inputs = []
    weights = []
    noise_aug = []
    for unclip_cond in unclip_conditioning:
        for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
            weight = unclip_cond["strength"]
            noise_augment = unclip_cond["noise_augmentation"]
            noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
            c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
            adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
            weights.append(weight)
            noise_aug.append(noise_augment)
            adm_inputs.append(adm_out)

    if len(noise_aug) > 1:
        adm_out = torch.stack(adm_inputs).sum(0)
        noise_augment = noise_augment_merge
        noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
        c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
        adm_out = torch.cat((c_adm, noise_level_emb), 1)

    return adm_out
217

comfyanonymous's avatar
comfyanonymous committed
218
class SD21UNCLIP(BaseModel):
219
220
    def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device)
comfyanonymous's avatar
comfyanonymous committed
221
222
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)

223
224
225
    def encode_adm(self, **kwargs):
        unclip_conditioning = kwargs.get("unclip_conditioning", None)
        device = kwargs["device"]
comfyanonymous's avatar
comfyanonymous committed
226
227
        if unclip_conditioning is None:
            return torch.zeros((1, self.adm_channels))
228
        else:
comfyanonymous's avatar
comfyanonymous committed
229
            return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))
230

231
232
233
234
235
236
def sdxl_pooled(args, noise_augmentor):
    if "unclip_conditioning" in args:
        return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor)[:,:1280]
    else:
        return args["pooled_output"]

237
class SDXLRefiner(BaseModel):
238
239
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
240
        self.embedder = Timestep(256)
241
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
242
243

    def encode_adm(self, **kwargs):
244
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
245
246
247
248
249
250
251
252
253
254
255
256
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)

        if kwargs.get("prompt_type", "") == "negative":
            aesthetic_score = kwargs.get("aesthetic_score", 2.5)
        else:
            aesthetic_score = kwargs.get("aesthetic_score", 6)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
comfyanonymous's avatar
comfyanonymous committed
257
        out.append(self.embedder(torch.Tensor([width])))
258
        out.append(self.embedder(torch.Tensor([crop_h])))
comfyanonymous's avatar
comfyanonymous committed
259
        out.append(self.embedder(torch.Tensor([crop_w])))
260
        out.append(self.embedder(torch.Tensor([aesthetic_score])))
261
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
262
263
264
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)

class SDXL(BaseModel):
265
266
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
267
        self.embedder = Timestep(256)
268
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
269
270

    def encode_adm(self, **kwargs):
271
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
272
273
274
275
276
277
278
279
280
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)
        target_width = kwargs.get("target_width", width)
        target_height = kwargs.get("target_height", height)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
comfyanonymous's avatar
comfyanonymous committed
281
        out.append(self.embedder(torch.Tensor([width])))
282
        out.append(self.embedder(torch.Tensor([crop_h])))
comfyanonymous's avatar
comfyanonymous committed
283
        out.append(self.embedder(torch.Tensor([crop_w])))
284
        out.append(self.embedder(torch.Tensor([target_height])))
comfyanonymous's avatar
comfyanonymous committed
285
        out.append(self.embedder(torch.Tensor([target_width])))
286
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
287
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
comfyanonymous's avatar
comfyanonymous committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

class SVD_img2vid(BaseModel):
    def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
        super().__init__(model_config, model_type, device=device)
        self.embedder = Timestep(256)

    def encode_adm(self, **kwargs):
        fps_id = kwargs.get("fps", 6) - 1
        motion_bucket_id = kwargs.get("motion_bucket_id", 127)
        augmentation = kwargs.get("augmentation_level", 0)

        out = []
        out.append(self.embedder(torch.Tensor([fps_id])))
        out.append(self.embedder(torch.Tensor([motion_bucket_id])))
        out.append(self.embedder(torch.Tensor([augmentation])))

        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
        return flat

    def extra_conds(self, **kwargs):
        out = {}
        adm = self.encode_adm(**kwargs)
        if adm is not None:
            out['y'] = comfy.conds.CONDRegular(adm)

        latent_image = kwargs.get("concat_latent_image", None)
        noise = kwargs.get("noise", None)
        device = kwargs["device"]

        if latent_image is None:
            latent_image = torch.zeros_like(noise)

        if latent_image.shape[1:] != noise.shape[1:]:
            latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

323
        latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
comfyanonymous's avatar
comfyanonymous committed
324
325
326

        out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)

327
328
329
330
        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)

comfyanonymous's avatar
comfyanonymous committed
331
332
333
334
335
336
        if "time_conditioning" in kwargs:
            out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"])

        out['image_only_indicator'] = comfy.conds.CONDConstant(torch.zeros((1,), device=device))
        out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0])
        return out
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

class Stable_Zero123(BaseModel):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None):
        super().__init__(model_config, model_type, device=device)
        self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device)
        self.cc_projection.weight.copy_(cc_projection_weight)
        self.cc_projection.bias.copy_(cc_projection_bias)

    def extra_conds(self, **kwargs):
        out = {}

        latent_image = kwargs.get("concat_latent_image", None)
        noise = kwargs.get("noise", None)

        if latent_image is None:
            latent_image = torch.zeros_like(noise)

        if latent_image.shape[1:] != noise.shape[1:]:
            latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

        latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])

        out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            if cross_attn.shape[-1] != 768:
                cross_attn = self.cc_projection(cross_attn)
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
        return out
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

class SD_X4Upscaler(BaseModel):
    def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device)

    def extra_conds(self, **kwargs):
        out = {}

        image = kwargs.get("concat_image", None)
        noise = kwargs.get("noise", None)

        if image is None:
            image = torch.zeros_like(noise)[:,:3]

        if image.shape[1:] != noise.shape[1:]:
            image = utils.common_upscale(image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

        image = utils.resize_to_batch_size(image, noise.shape[0])

        out['c_concat'] = comfy.conds.CONDNoiseShape(image)
        return out