attention.py 27.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any
comfyanonymous's avatar
comfyanonymous committed
7
8

from .diffusionmodules.util import checkpoint, AlphaBlender, timestep_embedding
comfyanonymous's avatar
comfyanonymous committed
9
10
from .sub_quadratic_attention import efficient_dot_product_attention

11
from comfy import model_management
12

13
if model_management.xformers_enabled():
comfyanonymous's avatar
comfyanonymous committed
14
15
16
    import xformers
    import xformers.ops

comfyanonymous's avatar
comfyanonymous committed
17
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
18
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
19
ops = comfy.ops.disable_weight_init
comfyanonymous's avatar
comfyanonymous committed
20

comfyanonymous's avatar
comfyanonymous committed
21
# CrossAttn precision handling
comfyanonymous's avatar
comfyanonymous committed
22
23
24
25
26
if args.dont_upcast_attention:
    print("disabling upcasting of attention")
    _ATTN_PRECISION = "fp16"
else:
    _ATTN_PRECISION = "fp32"
comfyanonymous's avatar
comfyanonymous committed
27

28

comfyanonymous's avatar
comfyanonymous committed
29
30
31
32
33
34
35
36
37
38
39
def exists(val):
    return val is not None


def uniq(arr):
    return{el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
40
    return d
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
56
    def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
57
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
58
        self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
59
60
61
62
63
64
65

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
66
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
67
68
69
70
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
71
            operations.Linear(dim, inner_dim, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
72
            nn.GELU()
comfyanonymous's avatar
comfyanonymous committed
73
        ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
74
75
76
77

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
comfyanonymous's avatar
comfyanonymous committed
78
            operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
79
80
81
82
83
        )

    def forward(self, x):
        return self.net(x)

84
85
def Normalize(in_channels, dtype=None, device=None):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
86

87
def attention_basic(q, k, v, heads, mask=None):
88
89
90
91
    b, _, dim_head = q.shape
    dim_head //= heads
    scale = dim_head ** -0.5

92
    h = heads
93
94
95
96
97
98
99
100
    q, k, v = map(
        lambda t: t.unsqueeze(3)
        .reshape(b, -1, heads, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b * heads, -1, dim_head)
        .contiguous(),
        (q, k, v),
    )
101
102
103

    # force cast to fp32 to avoid overflowing
    if _ATTN_PRECISION =="fp32":
comfyanonymous's avatar
comfyanonymous committed
104
        sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
105
106
    else:
        sim = einsum('b i d, b j d -> b i j', q, k) * scale
comfyanonymous's avatar
comfyanonymous committed
107

108
    del q, k
comfyanonymous's avatar
comfyanonymous committed
109

110
    if exists(mask):
111
112
113
114
115
116
117
        if mask.dtype == torch.bool:
            mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = repeat(mask, 'b j -> (b h) () j', h=h)
            sim.masked_fill_(~mask, max_neg_value)
        else:
            sim += mask
comfyanonymous's avatar
comfyanonymous committed
118

119
120
    # attention, what we cannot get enough of
    sim = sim.softmax(dim=-1)
comfyanonymous's avatar
comfyanonymous committed
121

122
    out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
123
124
125
126
127
128
    out = (
        out.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
129
    return out
comfyanonymous's avatar
comfyanonymous committed
130
131


132
def attention_sub_quad(query, key, value, heads, mask=None):
133
134
135
136
137
138
139
140
    b, _, dim_head = query.shape
    dim_head //= heads

    scale = dim_head ** -0.5
    query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
    value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)

    key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
comfyanonymous's avatar
comfyanonymous committed
141

142
143
144
145
146
147
148
    dtype = query.dtype
    upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
    if upcast_attention:
        bytes_per_token = torch.finfo(torch.float32).bits//8
    else:
        bytes_per_token = torch.finfo(query.dtype).bits//8
    batch_x_heads, q_tokens, _ = query.shape
149
    _, _, k_tokens = key.shape
150
    qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
comfyanonymous's avatar
comfyanonymous committed
151

152
    mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
comfyanonymous's avatar
comfyanonymous committed
153

154
    kv_chunk_size_min = None
155
156
157
158
159
160
161
162
163
164
165
166
    kv_chunk_size = None
    query_chunk_size = None

    for x in [4096, 2048, 1024, 512, 256]:
        count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
        if count >= k_tokens:
            kv_chunk_size = k_tokens
            query_chunk_size = x
            break

    if query_chunk_size is None:
        query_chunk_size = 512
167
168
169

    hidden_states = efficient_dot_product_attention(
        query,
170
        key,
171
172
173
174
175
176
        value,
        query_chunk_size=query_chunk_size,
        kv_chunk_size=kv_chunk_size,
        kv_chunk_size_min=kv_chunk_size_min,
        use_checkpoint=False,
        upcast_attention=upcast_attention,
177
        mask=mask,
178
179
180
181
182
183
184
185
    )

    hidden_states = hidden_states.to(dtype)

    hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
    return hidden_states

def attention_split(q, k, v, heads, mask=None):
186
187
188
189
    b, _, dim_head = q.shape
    dim_head //= heads
    scale = dim_head ** -0.5

190
    h = heads
191
192
193
194
195
196
197
198
    q, k, v = map(
        lambda t: t.unsqueeze(3)
        .reshape(b, -1, heads, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b * heads, -1, dim_head)
        .contiguous(),
        (q, k, v),
    )
199
200
201
202
203

    r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)

    mem_free_total = model_management.get_free_memory(q.device)

204
205
206
207
208
    if _ATTN_PRECISION =="fp32":
        element_size = 4
    else:
        element_size = q.element_size()

209
    gb = 1024 ** 3
210
    tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
211
    modifier = 3
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    mem_required = tensor_size * modifier
    steps = 1


    if mem_required > mem_free_total:
        steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
        # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
        #      f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")

    if steps > 64:
        max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
        raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
                            f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')

    # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
    first_op_done = False
    cleared_cache = False
    while True:
        try:
            slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
            for i in range(0, q.shape[1], slice_size):
                end = i + slice_size
                if _ATTN_PRECISION =="fp32":
                    with torch.autocast(enabled=False, device_type = 'cuda'):
                        s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
comfyanonymous's avatar
comfyanonymous committed
237
                else:
238
239
                    s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale

240
241
242
243
244
245
                if mask is not None:
                    if len(mask.shape) == 2:
                        s1 += mask[i:end]
                    else:
                        s1 += mask[:, i:end]

246
247
                s2 = s1.softmax(dim=-1).to(v.dtype)
                del s1
248
                first_op_done = True
249
250
251
252
253
254
255
256
257
258
259
260
261

                r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
                del s2
            break
        except model_management.OOM_EXCEPTION as e:
            if first_op_done == False:
                model_management.soft_empty_cache(True)
                if cleared_cache == False:
                    cleared_cache = True
                    print("out of memory error, emptying cache and trying again")
                    continue
                steps *= 2
                if steps > 64:
comfyanonymous's avatar
comfyanonymous committed
262
                    raise e
263
264
265
266
267
268
                print("out of memory error, increasing steps and trying again", steps)
            else:
                raise e

    del q, k, v

269
270
271
272
273
274
275
    r1 = (
        r1.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
    return r1
276

277
278
279
280
281
282
283
284
BROKEN_XFORMERS = False
try:
    x_vers = xformers.__version__
    #I think 0.0.23 is also broken (q with bs bigger than 65535 gives CUDA error)
    BROKEN_XFORMERS = x_vers.startswith("0.0.21") or x_vers.startswith("0.0.22") or x_vers.startswith("0.0.23")
except:
    pass

285
def attention_xformers(q, k, v, heads, mask=None):
286
287
    b, _, dim_head = q.shape
    dim_head //= heads
288
289
290
    if BROKEN_XFORMERS:
        if b * heads > 65535:
            return attention_pytorch(q, k, v, heads, mask)
291

292
293
    q, k, v = map(
        lambda t: t.unsqueeze(3)
294
        .reshape(b, -1, heads, dim_head)
295
        .permute(0, 2, 1, 3)
296
        .reshape(b * heads, -1, dim_head)
297
298
299
300
        .contiguous(),
        (q, k, v),
    )

301
302
303
304
305
306
307
    if mask is not None:
        pad = 8 - q.shape[1] % 8
        mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
        mask_out[:, :, :mask.shape[-1]] = mask
        mask = mask_out[:, :, :mask.shape[-1]]

    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
308
309
310

    out = (
        out.unsqueeze(0)
311
        .reshape(b, heads, -1, dim_head)
312
        .permute(0, 2, 1, 3)
313
        .reshape(b, -1, heads * dim_head)
314
315
316
317
318
319
320
321
322
323
324
    )
    return out

def attention_pytorch(q, k, v, heads, mask=None):
    b, _, dim_head = q.shape
    dim_head //= heads
    q, k, v = map(
        lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
        (q, k, v),
    )

325
    out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
326
327
328
329
330
    out = (
        out.transpose(1, 2).reshape(b, -1, heads * dim_head)
    )
    return out

331

332
optimized_attention = attention_basic
comfyanonymous's avatar
comfyanonymous committed
333

334
335
336
337
338
339
340
341
342
343
344
345
346
if model_management.xformers_enabled():
    print("Using xformers cross attention")
    optimized_attention = attention_xformers
elif model_management.pytorch_attention_enabled():
    print("Using pytorch cross attention")
    optimized_attention = attention_pytorch
else:
    if args.use_split_cross_attention:
        print("Using split optimization for cross attention")
        optimized_attention = attention_split
    else:
        print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
        optimized_attention = attention_sub_quad
comfyanonymous's avatar
comfyanonymous committed
347

348
349
350
optimized_attention_masked = optimized_attention

def optimized_attention_for_device(device, mask=False, small_input=False):
351
352
353
354
355
    if small_input:
        if model_management.pytorch_attention_enabled():
            return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases
        else:
            return attention_basic
356
357
358

    if device == torch.device("cpu"):
        return attention_sub_quad
359

360
361
362
363
364
365
    if mask:
        return optimized_attention_masked

    return optimized_attention


366
class CrossAttention(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
367
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=ops):
368
369
370
371
372
373
374
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.heads = heads
        self.dim_head = dim_head

comfyanonymous's avatar
comfyanonymous committed
375
376
377
        self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
378

comfyanonymous's avatar
comfyanonymous committed
379
        self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
380

381
    def forward(self, x, context=None, value=None, mask=None):
382
383
384
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
385
386
387
388
389
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
390

391
392
393
394
        if mask is None:
            out = optimized_attention(q, k, v, self.heads)
        else:
            out = optimized_attention_masked(q, k, v, self.heads, mask)
395
396
        return self.to_out(out)

397

comfyanonymous's avatar
comfyanonymous committed
398
class BasicTransformerBlock(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
399
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None,
comfyanonymous's avatar
comfyanonymous committed
400
                 disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
401
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
402
403
404
405
406
407
408
409

        self.ff_in = ff_in or inner_dim is not None
        if inner_dim is None:
            inner_dim = dim

        self.is_res = inner_dim == dim

        if self.ff_in:
comfyanonymous's avatar
comfyanonymous committed
410
            self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
411
412
            self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)

comfyanonymous's avatar
comfyanonymous committed
413
        self.disable_self_attn = disable_self_attn
comfyanonymous's avatar
comfyanonymous committed
414
        self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
415
                              context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations)  # is a self-attention if not self.disable_self_attn
comfyanonymous's avatar
comfyanonymous committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)

        if disable_temporal_crossattention:
            if switch_temporal_ca_to_sa:
                raise ValueError
            else:
                self.attn2 = None
        else:
            context_dim_attn2 = None
            if not switch_temporal_ca_to_sa:
                context_dim_attn2 = context_dim

            self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2,
                                heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations)  # is self-attn if context is none
430
            self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
431

432
433
        self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
        self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
434
        self.checkpoint = checkpoint
435
436
        self.n_heads = n_heads
        self.d_head = d_head
comfyanonymous's avatar
comfyanonymous committed
437
        self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
comfyanonymous's avatar
comfyanonymous committed
438

439
440
    def forward(self, x, context=None, transformer_options={}):
        return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
comfyanonymous's avatar
comfyanonymous committed
441

442
    def _forward(self, x, context=None, transformer_options={}):
443
        extra_options = {}
444
445
        block = transformer_options.get("block", None)
        block_index = transformer_options.get("block_index", 0)
446
447
448
449
450
451
452
453
454
455
        transformer_patches = {}
        transformer_patches_replace = {}

        for k in transformer_options:
            if k == "patches":
                transformer_patches = transformer_options[k]
            elif k == "patches_replace":
                transformer_patches_replace = transformer_options[k]
            else:
                extra_options[k] = transformer_options[k]
456

457
458
459
        extra_options["n_heads"] = self.n_heads
        extra_options["dim_head"] = self.d_head

comfyanonymous's avatar
comfyanonymous committed
460
461
462
463
464
465
        if self.ff_in:
            x_skip = x
            x = self.ff_in(self.norm_in(x))
            if self.is_res:
                x += x_skip

466
        n = self.norm1(x)
467
468
469
470
471
472
473
474
475
476
477
478
        if self.disable_self_attn:
            context_attn1 = context
        else:
            context_attn1 = None
        value_attn1 = None

        if "attn1_patch" in transformer_patches:
            patch = transformer_patches["attn1_patch"]
            if context_attn1 is None:
                context_attn1 = n
            value_attn1 = context_attn1
            for p in patch:
479
                n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
480

comfyanonymous's avatar
comfyanonymous committed
481
482
483
484
        if block is not None:
            transformer_block = (block[0], block[1], block_index)
        else:
            transformer_block = None
485
486
487
488
489
490
491
492
493
494
495
496
497
498
        attn1_replace_patch = transformer_patches_replace.get("attn1", {})
        block_attn1 = transformer_block
        if block_attn1 not in attn1_replace_patch:
            block_attn1 = block

        if block_attn1 in attn1_replace_patch:
            if context_attn1 is None:
                context_attn1 = n
                value_attn1 = n
            n = self.attn1.to_q(n)
            context_attn1 = self.attn1.to_k(context_attn1)
            value_attn1 = self.attn1.to_v(value_attn1)
            n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
            n = self.attn1.to_out(n)
499
        else:
500
            n = self.attn1(n, context=context_attn1, value=value_attn1)
501

502
503
504
505
506
        if "attn1_output_patch" in transformer_patches:
            patch = transformer_patches["attn1_output_patch"]
            for p in patch:
                n = p(n, extra_options)

507
        x += n
508
509
510
        if "middle_patch" in transformer_patches:
            patch = transformer_patches["middle_patch"]
            for p in patch:
511
                x = p(x, extra_options)
512

comfyanonymous's avatar
comfyanonymous committed
513
514
515
516
517
518
519
520
521
        if self.attn2 is not None:
            n = self.norm2(x)
            if self.switch_temporal_ca_to_sa:
                context_attn2 = n
            else:
                context_attn2 = context
            value_attn2 = None
            if "attn2_patch" in transformer_patches:
                patch = transformer_patches["attn2_patch"]
522
                value_attn2 = context_attn2
comfyanonymous's avatar
comfyanonymous committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
                for p in patch:
                    n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)

            attn2_replace_patch = transformer_patches_replace.get("attn2", {})
            block_attn2 = transformer_block
            if block_attn2 not in attn2_replace_patch:
                block_attn2 = block

            if block_attn2 in attn2_replace_patch:
                if value_attn2 is None:
                    value_attn2 = context_attn2
                n = self.attn2.to_q(n)
                context_attn2 = self.attn2.to_k(context_attn2)
                value_attn2 = self.attn2.to_v(value_attn2)
                n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
                n = self.attn2.to_out(n)
            else:
                n = self.attn2(n, context=context_attn2, value=value_attn2)
541

542
543
544
545
546
        if "attn2_output_patch" in transformer_patches:
            patch = transformer_patches["attn2_output_patch"]
            for p in patch:
                n = p(n, extra_options)

547
        x += n
comfyanonymous's avatar
comfyanonymous committed
548
549
550
551
552
553
        if self.is_res:
            x_skip = x
        x = self.ff(self.norm3(x))
        if self.is_res:
            x += x_skip

comfyanonymous's avatar
comfyanonymous committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
        return x


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    NEW: use_linear for more efficiency instead of the 1x1 convs
    """
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None,
                 disable_self_attn=False, use_linear=False,
comfyanonymous's avatar
comfyanonymous committed
569
                 use_checkpoint=True, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
570
571
        super().__init__()
        if exists(context_dim) and not isinstance(context_dim, list):
572
            context_dim = [context_dim] * depth
comfyanonymous's avatar
comfyanonymous committed
573
574
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
575
        self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
576
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
577
            self.proj_in = operations.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
578
579
580
                                     inner_dim,
                                     kernel_size=1,
                                     stride=1,
581
                                     padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
582
        else:
comfyanonymous's avatar
comfyanonymous committed
583
            self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
584
585
586

        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
comfyanonymous's avatar
comfyanonymous committed
587
                                   disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
588
589
590
                for d in range(depth)]
        )
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
591
            self.proj_out = operations.Conv2d(inner_dim,in_channels,
comfyanonymous's avatar
comfyanonymous committed
592
593
                                                  kernel_size=1,
                                                  stride=1,
594
                                                  padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
595
        else:
comfyanonymous's avatar
comfyanonymous committed
596
            self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
597
598
        self.use_linear = use_linear

599
    def forward(self, x, context=None, transformer_options={}):
comfyanonymous's avatar
comfyanonymous committed
600
601
        # note: if no context is given, cross-attention defaults to self-attention
        if not isinstance(context, list):
602
            context = [context] * len(self.transformer_blocks)
comfyanonymous's avatar
comfyanonymous committed
603
604
605
606
607
608
609
610
611
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
612
            transformer_options["block_index"] = i
613
            x = block(x, context=context[i], transformer_options=transformer_options)
comfyanonymous's avatar
comfyanonymous committed
614
615
616
617
618
619
620
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in

comfyanonymous's avatar
comfyanonymous committed
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642

class SpatialVideoTransformer(SpatialTransformer):
    def __init__(
        self,
        in_channels,
        n_heads,
        d_head,
        depth=1,
        dropout=0.0,
        use_linear=False,
        context_dim=None,
        use_spatial_context=False,
        timesteps=None,
        merge_strategy: str = "fixed",
        merge_factor: float = 0.5,
        time_context_dim=None,
        ff_in=False,
        checkpoint=False,
        time_depth=1,
        disable_self_attn=False,
        disable_temporal_crossattention=False,
        max_time_embed_period: int = 10000,
comfyanonymous's avatar
comfyanonymous committed
643
        dtype=None, device=None, operations=ops
comfyanonymous's avatar
comfyanonymous committed
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
    ):
        super().__init__(
            in_channels,
            n_heads,
            d_head,
            depth=depth,
            dropout=dropout,
            use_checkpoint=checkpoint,
            context_dim=context_dim,
            use_linear=use_linear,
            disable_self_attn=disable_self_attn,
            dtype=dtype, device=device, operations=operations
        )
        self.time_depth = time_depth
        self.depth = depth
        self.max_time_embed_period = max_time_embed_period

        time_mix_d_head = d_head
        n_time_mix_heads = n_heads

        time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)

        inner_dim = n_heads * d_head
        if use_spatial_context:
            time_context_dim = context_dim

        self.time_stack = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    n_time_mix_heads,
                    time_mix_d_head,
                    dropout=dropout,
                    context_dim=time_context_dim,
                    # timesteps=timesteps,
                    checkpoint=checkpoint,
                    ff_in=ff_in,
                    inner_dim=time_mix_inner_dim,
                    disable_self_attn=disable_self_attn,
                    disable_temporal_crossattention=disable_temporal_crossattention,
                    dtype=dtype, device=device, operations=operations
                )
                for _ in range(self.depth)
            ]
        )

        assert len(self.time_stack) == len(self.transformer_blocks)

        self.use_spatial_context = use_spatial_context
        self.in_channels = in_channels

        time_embed_dim = self.in_channels * 4
        self.time_pos_embed = nn.Sequential(
            operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device),
        )

        self.time_mixer = AlphaBlender(
            alpha=merge_factor, merge_strategy=merge_strategy
        )

    def forward(
        self,
        x: torch.Tensor,
        context: Optional[torch.Tensor] = None,
        time_context: Optional[torch.Tensor] = None,
        timesteps: Optional[int] = None,
        image_only_indicator: Optional[torch.Tensor] = None,
        transformer_options={}
    ) -> torch.Tensor:
        _, _, h, w = x.shape
        x_in = x
        spatial_context = None
        if exists(context):
            spatial_context = context

        if self.use_spatial_context:
            assert (
                context.ndim == 3
            ), f"n dims of spatial context should be 3 but are {context.ndim}"

            if time_context is None:
                time_context = context
            time_context_first_timestep = time_context[::timesteps]
            time_context = repeat(
                time_context_first_timestep, "b ... -> (b n) ...", n=h * w
            )
        elif time_context is not None and not self.use_spatial_context:
            time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
            if time_context.ndim == 2:
                time_context = rearrange(time_context, "b c -> b 1 c")

        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        if self.use_linear:
            x = self.proj_in(x)

        num_frames = torch.arange(timesteps, device=x.device)
        num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
        num_frames = rearrange(num_frames, "b t -> (b t)")
        t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype)
        emb = self.time_pos_embed(t_emb)
        emb = emb[:, None, :]

        for it_, (block, mix_block) in enumerate(
            zip(self.transformer_blocks, self.time_stack)
        ):
            transformer_options["block_index"] = it_
            x = block(
                x,
                context=spatial_context,
                transformer_options=transformer_options,
            )

            x_mix = x
            x_mix = x_mix + emb

            B, S, C = x_mix.shape
            x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
            x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
            x_mix = rearrange(
                x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
            )

            x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator)

        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        if not self.use_linear:
            x = self.proj_out(x)
        out = x + x_in
        return out