model_sampling.py 9.73 KB
Newer Older
1
2
import torch
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
comfyanonymous's avatar
comfyanonymous committed
3
import math
4
5
6
7
8
9
10
11
12
13

class EPS:
    def calculate_input(self, sigma, noise):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
        return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input - model_output * sigma

14
15
16
17
18
    def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
        if max_denoise:
            noise = noise * torch.sqrt(1.0 + sigma ** 2.0)
        else:
            noise = noise * sigma
comfyanonymous's avatar
comfyanonymous committed
19
20

        noise += latent_image
21
        return noise
22

23
24
25
    def inverse_noise_scaling(self, sigma, latent):
        return latent

26
27
28
29
30
class V_PREDICTION(EPS):
    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

31
32
33
34
35
class EDM(V_PREDICTION):
    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

comfyanonymous's avatar
comfyanonymous committed
36
37
38
39
40
41
42
43
44
45
46
47
48
class CONST:
    def calculate_input(self, sigma, noise):
        return noise

    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input - model_output * sigma

    def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
        return sigma * noise + (1.0 - sigma) * latent_image

    def inverse_noise_scaling(self, sigma, latent):
        return latent / (1.0 - sigma)
49
50
51
52

class ModelSamplingDiscrete(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
53

54
        if model_config is not None:
55
56
57
58
59
60
61
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

        beta_schedule = sampling_settings.get("beta_schedule", "linear")
        linear_start = sampling_settings.get("linear_start", 0.00085)
        linear_end = sampling_settings.get("linear_end", 0.012)
62
        timesteps = sampling_settings.get("timesteps", 1000)
63

64
        self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3)
65
66
67
68
69
70
71
72
73
        self.sigma_data = 1.0

    def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        if given_betas is not None:
            betas = given_betas
        else:
            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
        alphas = 1. - betas
74
        alphas_cumprod = torch.cumprod(alphas, dim=0)
75
76
77
78
79
80
81
82
83
84
85

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end

        # self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
        # self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
        # self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))

        sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
86
        self.set_sigmas(sigmas)
87

88
    def set_sigmas(self, sigmas):
89
90
        self.register_buffer('sigmas', sigmas.float())
        self.register_buffer('log_sigmas', sigmas.log().float())
91
92
93
94
95
96
97
98
99
100
101
102

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        log_sigma = sigma.log()
        dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
103
        return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
104
105

    def sigma(self, timestep):
106
        t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1))
107
108
109
110
        low_idx = t.floor().long()
        high_idx = t.ceil().long()
        w = t.frac()
        log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
111
        return log_sigma.exp().to(timestep.device)
112
113

    def percent_to_sigma(self, percent):
114
        if percent <= 0.0:
115
            return 999999999.9
116
        if percent >= 1.0:
117
            return 0.0
118
        percent = 1.0 - percent
119
        return self.sigma(torch.tensor(percent * 999.0)).item()
120

comfyanonymous's avatar
comfyanonymous committed
121
122
123
124
125
126
class ModelSamplingDiscreteEDM(ModelSamplingDiscrete):
    def timestep(self, sigma):
        return 0.25 * sigma.log()

    def sigma(self, timestep):
        return (timestep / 0.25).exp()
comfyanonymous's avatar
comfyanonymous committed
127
128
129
130
131
132
133
134
135
136
137

class ModelSamplingContinuousEDM(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
        if model_config is not None:
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

        sigma_min = sampling_settings.get("sigma_min", 0.002)
        sigma_max = sampling_settings.get("sigma_max", 120.0)
138
139
        sigma_data = sampling_settings.get("sigma_data", 1.0)
        self.set_parameters(sigma_min, sigma_max, sigma_data)
comfyanonymous's avatar
comfyanonymous committed
140

141
142
    def set_parameters(self, sigma_min, sigma_max, sigma_data):
        self.sigma_data = sigma_data
comfyanonymous's avatar
comfyanonymous committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp()

        self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers
        self.register_buffer('log_sigmas', sigmas.log())

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        return 0.25 * sigma.log()

    def sigma(self, timestep):
        return (timestep / 0.25).exp()

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0
        percent = 1.0 - percent

        log_sigma_min = math.log(self.sigma_min)
        return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
comfyanonymous's avatar
comfyanonymous committed
171

comfyanonymous's avatar
comfyanonymous committed
172

173
174
175
176
177
178
179
180
class ModelSamplingContinuousV(ModelSamplingContinuousEDM):
    def timestep(self, sigma):
        return sigma.atan() / math.pi * 2

    def sigma(self, timestep):
        return (timestep * math.pi / 2).tan()


comfyanonymous's avatar
comfyanonymous committed
181
182
183
184
185
186
187
188
189
190
191
192
193
def time_snr_shift(alpha, t):
    if alpha == 1.0:
        return t
    return alpha * t / (1 + (alpha - 1) * t)

class ModelSamplingDiscreteFlow(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
        if model_config is not None:
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

194
        self.set_parameters(shift=sampling_settings.get("shift", 1.0), multiplier=sampling_settings.get("multiplier", 1000))
comfyanonymous's avatar
comfyanonymous committed
195

196
    def set_parameters(self, shift=1.0, timesteps=1000, multiplier=1000):
comfyanonymous's avatar
comfyanonymous committed
197
        self.shift = shift
198
199
        self.multiplier = multiplier
        ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps) * multiplier)
comfyanonymous's avatar
comfyanonymous committed
200
201
202
203
204
205
206
207
208
209
210
        self.register_buffer('sigmas', ts)

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
211
        return sigma * self.multiplier
comfyanonymous's avatar
comfyanonymous committed
212
213

    def sigma(self, timestep):
214
        return time_snr_shift(self.shift, timestep / self.multiplier)
comfyanonymous's avatar
comfyanonymous committed
215
216
217
218
219
220
221
222

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 1.0
        if percent >= 1.0:
            return 0.0
        return 1.0 - percent

comfyanonymous's avatar
comfyanonymous committed
223
224
225
class StableCascadeSampling(ModelSamplingDiscrete):
    def __init__(self, model_config=None):
        super().__init__()
226
227
228
229
230
231

        if model_config is not None:
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

232
233
234
235
        self.set_parameters(sampling_settings.get("shift", 1.0))

    def set_parameters(self, shift=1.0, cosine_s=8e-3):
        self.shift = shift
236
        self.cosine_s = torch.tensor(cosine_s)
comfyanonymous's avatar
comfyanonymous committed
237
        self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2
238
239

        #This part is just for compatibility with some schedulers in the codebase
240
        self.num_timesteps = 10000
241
        sigmas = torch.empty((self.num_timesteps), dtype=torch.float32)
comfyanonymous's avatar
comfyanonymous committed
242
        for x in range(self.num_timesteps):
243
            t = (x + 1) / self.num_timesteps
comfyanonymous's avatar
comfyanonymous committed
244
245
246
247
248
            sigmas[x] = self.sigma(t)

        self.set_sigmas(sigmas)

    def sigma(self, timestep):
249
250
251
252
253
254
255
256
257
        alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod)

        if self.shift != 1.0:
            var = alpha_cumprod
            logSNR = (var/(1-var)).log()
            logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift))
            alpha_cumprod = logSNR.sigmoid()

        alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999)
comfyanonymous's avatar
comfyanonymous committed
258
259
260
        return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5

    def timestep(self, sigma):
261
262
263
264
265
        var = 1 / ((sigma * sigma) + 1)
        var = var.clamp(0, 1.0)
        s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device)
        t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
        return t
comfyanonymous's avatar
comfyanonymous committed
266
267
268
269
270
271
272
273
274

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0

        percent = 1.0 - percent
        return self.sigma(torch.tensor(percent))