model_sampling.py 9.31 KB
Newer Older
1
2
import torch
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
comfyanonymous's avatar
comfyanonymous committed
3
import math
4
5
6
7
8
9
10
11
12
13

class EPS:
    def calculate_input(self, sigma, noise):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
        return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input - model_output * sigma

14
15
16
17
18
    def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
        if max_denoise:
            noise = noise * torch.sqrt(1.0 + sigma ** 2.0)
        else:
            noise = noise * sigma
comfyanonymous's avatar
comfyanonymous committed
19
20

        noise += latent_image
21
        return noise
22

23
24
25
    def inverse_noise_scaling(self, sigma, latent):
        return latent

26
27
28
29
30
class V_PREDICTION(EPS):
    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

31
32
33
34
35
class EDM(V_PREDICTION):
    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

comfyanonymous's avatar
comfyanonymous committed
36
37
38
39
40
41
42
43
44
45
46
47
48
class CONST:
    def calculate_input(self, sigma, noise):
        return noise

    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input - model_output * sigma

    def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
        return sigma * noise + (1.0 - sigma) * latent_image

    def inverse_noise_scaling(self, sigma, latent):
        return latent / (1.0 - sigma)
49
50
51
52

class ModelSamplingDiscrete(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
53

54
        if model_config is not None:
55
56
57
58
59
60
61
62
63
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

        beta_schedule = sampling_settings.get("beta_schedule", "linear")
        linear_start = sampling_settings.get("linear_start", 0.00085)
        linear_end = sampling_settings.get("linear_end", 0.012)

        self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3)
64
65
66
67
68
69
70
71
72
        self.sigma_data = 1.0

    def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        if given_betas is not None:
            betas = given_betas
        else:
            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
        alphas = 1. - betas
73
        alphas_cumprod = torch.cumprod(alphas, dim=0)
74
75
76
77
78
79
80
81
82
83
84

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end

        # self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
        # self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
        # self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))

        sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
85
        self.set_sigmas(sigmas)
86

87
    def set_sigmas(self, sigmas):
88
89
        self.register_buffer('sigmas', sigmas.float())
        self.register_buffer('log_sigmas', sigmas.log().float())
90
91
92
93
94
95
96
97
98
99
100
101

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        log_sigma = sigma.log()
        dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
102
        return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
103
104

    def sigma(self, timestep):
105
        t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1))
106
107
108
109
        low_idx = t.floor().long()
        high_idx = t.ceil().long()
        w = t.frac()
        log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
110
        return log_sigma.exp().to(timestep.device)
111
112

    def percent_to_sigma(self, percent):
113
        if percent <= 0.0:
114
            return 999999999.9
115
        if percent >= 1.0:
116
            return 0.0
117
        percent = 1.0 - percent
118
        return self.sigma(torch.tensor(percent * 999.0)).item()
119

comfyanonymous's avatar
comfyanonymous committed
120
121
122
123
124
125
class ModelSamplingDiscreteEDM(ModelSamplingDiscrete):
    def timestep(self, sigma):
        return 0.25 * sigma.log()

    def sigma(self, timestep):
        return (timestep / 0.25).exp()
comfyanonymous's avatar
comfyanonymous committed
126
127
128
129
130
131
132
133
134
135
136

class ModelSamplingContinuousEDM(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
        if model_config is not None:
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

        sigma_min = sampling_settings.get("sigma_min", 0.002)
        sigma_max = sampling_settings.get("sigma_max", 120.0)
137
138
        sigma_data = sampling_settings.get("sigma_data", 1.0)
        self.set_parameters(sigma_min, sigma_max, sigma_data)
comfyanonymous's avatar
comfyanonymous committed
139

140
141
    def set_parameters(self, sigma_min, sigma_max, sigma_data):
        self.sigma_data = sigma_data
comfyanonymous's avatar
comfyanonymous committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp()

        self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers
        self.register_buffer('log_sigmas', sigmas.log())

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        return 0.25 * sigma.log()

    def sigma(self, timestep):
        return (timestep / 0.25).exp()

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0
        percent = 1.0 - percent

        log_sigma_min = math.log(self.sigma_min)
        return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
comfyanonymous's avatar
comfyanonymous committed
170

comfyanonymous's avatar
comfyanonymous committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

def time_snr_shift(alpha, t):
    if alpha == 1.0:
        return t
    return alpha * t / (1 + (alpha - 1) * t)

class ModelSamplingDiscreteFlow(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
        if model_config is not None:
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

        self.set_parameters(shift=sampling_settings.get("shift", 1.0))

    def set_parameters(self, shift=1.0, timesteps=1000):
        self.shift = shift
        ts = self.sigma(torch.arange(1, timesteps + 1, 1))
        self.register_buffer('sigmas', ts)

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        return sigma * 1000

    def sigma(self, timestep):
        return time_snr_shift(self.shift, timestep / 1000)

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 1.0
        if percent >= 1.0:
            return 0.0
        return 1.0 - percent

comfyanonymous's avatar
comfyanonymous committed
213
214
215
class StableCascadeSampling(ModelSamplingDiscrete):
    def __init__(self, model_config=None):
        super().__init__()
216
217
218
219
220
221

        if model_config is not None:
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

222
223
224
225
        self.set_parameters(sampling_settings.get("shift", 1.0))

    def set_parameters(self, shift=1.0, cosine_s=8e-3):
        self.shift = shift
226
        self.cosine_s = torch.tensor(cosine_s)
comfyanonymous's avatar
comfyanonymous committed
227
        self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2
228
229

        #This part is just for compatibility with some schedulers in the codebase
230
        self.num_timesteps = 10000
231
        sigmas = torch.empty((self.num_timesteps), dtype=torch.float32)
comfyanonymous's avatar
comfyanonymous committed
232
        for x in range(self.num_timesteps):
233
            t = (x + 1) / self.num_timesteps
comfyanonymous's avatar
comfyanonymous committed
234
235
236
237
238
            sigmas[x] = self.sigma(t)

        self.set_sigmas(sigmas)

    def sigma(self, timestep):
239
240
241
242
243
244
245
246
247
        alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod)

        if self.shift != 1.0:
            var = alpha_cumprod
            logSNR = (var/(1-var)).log()
            logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift))
            alpha_cumprod = logSNR.sigmoid()

        alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999)
comfyanonymous's avatar
comfyanonymous committed
248
249
250
        return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5

    def timestep(self, sigma):
251
252
253
254
255
        var = 1 / ((sigma * sigma) + 1)
        var = var.clamp(0, 1.0)
        s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device)
        t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
        return t
comfyanonymous's avatar
comfyanonymous committed
256
257
258
259
260
261
262
263
264

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0

        percent = 1.0 - percent
        return self.sigma(torch.tensor(percent))