model_sampling.py 7.22 KB
Newer Older
1
2
import torch
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
comfyanonymous's avatar
comfyanonymous committed
3
import math
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

class EPS:
    def calculate_input(self, sigma, noise):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
        return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input - model_output * sigma


class V_PREDICTION(EPS):
    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

20
21
22
23
24
class EDM(V_PREDICTION):
    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

25
26
27
28

class ModelSamplingDiscrete(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
29

30
        if model_config is not None:
31
32
33
34
35
36
37
38
39
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

        beta_schedule = sampling_settings.get("beta_schedule", "linear")
        linear_start = sampling_settings.get("linear_start", 0.00085)
        linear_end = sampling_settings.get("linear_end", 0.012)

        self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3)
40
41
42
43
44
45
46
47
48
        self.sigma_data = 1.0

    def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        if given_betas is not None:
            betas = given_betas
        else:
            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
        alphas = 1. - betas
49
        alphas_cumprod = torch.cumprod(alphas, dim=0)
50
51
52
53
54
55
56
57
58
59
60

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end

        # self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
        # self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
        # self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))

        sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
61
        self.set_sigmas(sigmas)
62

63
    def set_sigmas(self, sigmas):
64
65
        self.register_buffer('sigmas', sigmas.float())
        self.register_buffer('log_sigmas', sigmas.log().float())
66
67
68
69
70
71
72
73
74
75
76
77

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        log_sigma = sigma.log()
        dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
78
        return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
79
80

    def sigma(self, timestep):
81
        t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1))
82
83
84
85
        low_idx = t.floor().long()
        high_idx = t.ceil().long()
        w = t.frac()
        log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
86
        return log_sigma.exp().to(timestep.device)
87
88

    def percent_to_sigma(self, percent):
89
        if percent <= 0.0:
90
            return 999999999.9
91
        if percent >= 1.0:
92
            return 0.0
93
        percent = 1.0 - percent
94
        return self.sigma(torch.tensor(percent * 999.0)).item()
95

comfyanonymous's avatar
comfyanonymous committed
96
97
98
99
100
101
102
103
104
105
106

class ModelSamplingContinuousEDM(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
        if model_config is not None:
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

        sigma_min = sampling_settings.get("sigma_min", 0.002)
        sigma_max = sampling_settings.get("sigma_max", 120.0)
107
108
        sigma_data = sampling_settings.get("sigma_data", 1.0)
        self.set_parameters(sigma_min, sigma_max, sigma_data)
comfyanonymous's avatar
comfyanonymous committed
109

110
111
    def set_parameters(self, sigma_min, sigma_max, sigma_data):
        self.sigma_data = sigma_data
comfyanonymous's avatar
comfyanonymous committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp()

        self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers
        self.register_buffer('log_sigmas', sigmas.log())

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        return 0.25 * sigma.log()

    def sigma(self, timestep):
        return (timestep / 0.25).exp()

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0
        percent = 1.0 - percent

        log_sigma_min = math.log(self.sigma_min)
        return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
comfyanonymous's avatar
comfyanonymous committed
140
141
142
143

class StableCascadeSampling(ModelSamplingDiscrete):
    def __init__(self, model_config=None):
        super().__init__()
144
145
146
147
148
149

        if model_config is not None:
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

150
151
152
153
        self.set_parameters(sampling_settings.get("shift", 1.0))

    def set_parameters(self, shift=1.0, cosine_s=8e-3):
        self.shift = shift
154
        self.cosine_s = torch.tensor(cosine_s)
comfyanonymous's avatar
comfyanonymous committed
155
        self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2
156
157

        #This part is just for compatibility with some schedulers in the codebase
158
        self.num_timesteps = 10000
159
        sigmas = torch.empty((self.num_timesteps), dtype=torch.float32)
comfyanonymous's avatar
comfyanonymous committed
160
        for x in range(self.num_timesteps):
161
            t = (x + 1) / self.num_timesteps
comfyanonymous's avatar
comfyanonymous committed
162
163
164
165
166
            sigmas[x] = self.sigma(t)

        self.set_sigmas(sigmas)

    def sigma(self, timestep):
167
168
169
170
171
172
173
174
175
        alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod)

        if self.shift != 1.0:
            var = alpha_cumprod
            logSNR = (var/(1-var)).log()
            logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift))
            alpha_cumprod = logSNR.sigmoid()

        alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999)
comfyanonymous's avatar
comfyanonymous committed
176
177
178
        return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5

    def timestep(self, sigma):
179
180
181
182
183
        var = 1 / ((sigma * sigma) + 1)
        var = var.clamp(0, 1.0)
        s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device)
        t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
        return t
comfyanonymous's avatar
comfyanonymous committed
184
185
186
187
188
189
190
191
192

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0

        percent = 1.0 - percent
        return self.sigma(torch.tensor(percent))