".github/vscode:/vscode.git/clone" did not exist on "2ddeaa406c9b1408dcbc0051d4d02a9dc1689ebc"
model_sampling.py 7.55 KB
Newer Older
1
2
import torch
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
comfyanonymous's avatar
comfyanonymous committed
3
import math
4
5
6
7
8
9
10
11
12
13

class EPS:
    def calculate_input(self, sigma, noise):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
        return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input - model_output * sigma

14
15
16
17
18
    def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
        if max_denoise:
            noise = noise * torch.sqrt(1.0 + sigma ** 2.0)
        else:
            noise = noise * sigma
comfyanonymous's avatar
comfyanonymous committed
19
20

        noise += latent_image
21
        return noise
22

23
24
25
    def inverse_noise_scaling(self, sigma, latent):
        return latent

26
27
28
29
30
class V_PREDICTION(EPS):
    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

31
32
33
34
35
class EDM(V_PREDICTION):
    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

36
37
38
39

class ModelSamplingDiscrete(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
40

41
        if model_config is not None:
42
43
44
45
46
47
48
49
50
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

        beta_schedule = sampling_settings.get("beta_schedule", "linear")
        linear_start = sampling_settings.get("linear_start", 0.00085)
        linear_end = sampling_settings.get("linear_end", 0.012)

        self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3)
51
52
53
54
55
56
57
58
59
        self.sigma_data = 1.0

    def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        if given_betas is not None:
            betas = given_betas
        else:
            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
        alphas = 1. - betas
60
        alphas_cumprod = torch.cumprod(alphas, dim=0)
61
62
63
64
65
66
67
68
69
70
71

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end

        # self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
        # self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
        # self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))

        sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
72
        self.set_sigmas(sigmas)
73

74
    def set_sigmas(self, sigmas):
75
76
        self.register_buffer('sigmas', sigmas.float())
        self.register_buffer('log_sigmas', sigmas.log().float())
77
78
79
80
81
82
83
84
85
86
87
88

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        log_sigma = sigma.log()
        dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
89
        return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
90
91

    def sigma(self, timestep):
92
        t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1))
93
94
95
96
        low_idx = t.floor().long()
        high_idx = t.ceil().long()
        w = t.frac()
        log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
97
        return log_sigma.exp().to(timestep.device)
98
99

    def percent_to_sigma(self, percent):
100
        if percent <= 0.0:
101
            return 999999999.9
102
        if percent >= 1.0:
103
            return 0.0
104
        percent = 1.0 - percent
105
        return self.sigma(torch.tensor(percent * 999.0)).item()
106

comfyanonymous's avatar
comfyanonymous committed
107
108
109
110
111
112
113
114
115
116
117

class ModelSamplingContinuousEDM(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
        if model_config is not None:
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

        sigma_min = sampling_settings.get("sigma_min", 0.002)
        sigma_max = sampling_settings.get("sigma_max", 120.0)
118
119
        sigma_data = sampling_settings.get("sigma_data", 1.0)
        self.set_parameters(sigma_min, sigma_max, sigma_data)
comfyanonymous's avatar
comfyanonymous committed
120

121
122
    def set_parameters(self, sigma_min, sigma_max, sigma_data):
        self.sigma_data = sigma_data
comfyanonymous's avatar
comfyanonymous committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp()

        self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers
        self.register_buffer('log_sigmas', sigmas.log())

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        return 0.25 * sigma.log()

    def sigma(self, timestep):
        return (timestep / 0.25).exp()

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0
        percent = 1.0 - percent

        log_sigma_min = math.log(self.sigma_min)
        return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
comfyanonymous's avatar
comfyanonymous committed
151
152
153
154

class StableCascadeSampling(ModelSamplingDiscrete):
    def __init__(self, model_config=None):
        super().__init__()
155
156
157
158
159
160

        if model_config is not None:
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

161
162
163
164
        self.set_parameters(sampling_settings.get("shift", 1.0))

    def set_parameters(self, shift=1.0, cosine_s=8e-3):
        self.shift = shift
165
        self.cosine_s = torch.tensor(cosine_s)
comfyanonymous's avatar
comfyanonymous committed
166
        self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2
167
168

        #This part is just for compatibility with some schedulers in the codebase
169
        self.num_timesteps = 10000
170
        sigmas = torch.empty((self.num_timesteps), dtype=torch.float32)
comfyanonymous's avatar
comfyanonymous committed
171
        for x in range(self.num_timesteps):
172
            t = (x + 1) / self.num_timesteps
comfyanonymous's avatar
comfyanonymous committed
173
174
175
176
177
            sigmas[x] = self.sigma(t)

        self.set_sigmas(sigmas)

    def sigma(self, timestep):
178
179
180
181
182
183
184
185
186
        alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod)

        if self.shift != 1.0:
            var = alpha_cumprod
            logSNR = (var/(1-var)).log()
            logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift))
            alpha_cumprod = logSNR.sigmoid()

        alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999)
comfyanonymous's avatar
comfyanonymous committed
187
188
189
        return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5

    def timestep(self, sigma):
190
191
192
193
194
        var = 1 / ((sigma * sigma) + 1)
        var = var.clamp(0, 1.0)
        s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device)
        t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
        return t
comfyanonymous's avatar
comfyanonymous committed
195
196
197
198
199
200
201
202
203

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0

        percent = 1.0 - percent
        return self.sigma(torch.tensor(percent))