"docs/vscode:/vscode.git/clone" did not exist on "1ee11df8acccd9c59d0936f8faf69afac5bbb146"
model_sampling.py 5.98 KB
Newer Older
1
2
import torch
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
comfyanonymous's avatar
comfyanonymous committed
3
import math
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

class EPS:
    def calculate_input(self, sigma, noise):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
        return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input - model_output * sigma


class V_PREDICTION(EPS):
    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5


class ModelSamplingDiscrete(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
24

25
        if model_config is not None:
26
27
28
29
30
31
32
33
34
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

        beta_schedule = sampling_settings.get("beta_schedule", "linear")
        linear_start = sampling_settings.get("linear_start", 0.00085)
        linear_end = sampling_settings.get("linear_end", 0.012)

        self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3)
35
36
37
38
39
40
41
42
43
        self.sigma_data = 1.0

    def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        if given_betas is not None:
            betas = given_betas
        else:
            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
        alphas = 1. - betas
44
        alphas_cumprod = torch.cumprod(alphas, dim=0)
45
46
47
48
49
50
51
52
53
54
55

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end

        # self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
        # self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
        # self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))

        sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
56
        self.set_sigmas(sigmas)
57

58
    def set_sigmas(self, sigmas):
59
60
        self.register_buffer('sigmas', sigmas.float())
        self.register_buffer('log_sigmas', sigmas.log().float())
61
62
63
64
65
66
67
68
69
70
71
72

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        log_sigma = sigma.log()
        dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
73
        return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
74
75

    def sigma(self, timestep):
76
        t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1))
77
78
79
80
        low_idx = t.floor().long()
        high_idx = t.ceil().long()
        w = t.frac()
        log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
81
        return log_sigma.exp().to(timestep.device)
82
83

    def percent_to_sigma(self, percent):
84
        if percent <= 0.0:
85
            return 999999999.9
86
        if percent >= 1.0:
87
            return 0.0
88
        percent = 1.0 - percent
89
        return self.sigma(torch.tensor(percent * 999.0)).item()
90

comfyanonymous's avatar
comfyanonymous committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

class ModelSamplingContinuousEDM(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
        self.sigma_data = 1.0

        if model_config is not None:
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

        sigma_min = sampling_settings.get("sigma_min", 0.002)
        sigma_max = sampling_settings.get("sigma_max", 120.0)
        self.set_sigma_range(sigma_min, sigma_max)

    def set_sigma_range(self, sigma_min, sigma_max):
        sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp()

        self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers
        self.register_buffer('log_sigmas', sigmas.log())

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        return 0.25 * sigma.log()

    def sigma(self, timestep):
        return (timestep / 0.25).exp()

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0
        percent = 1.0 - percent

        log_sigma_min = math.log(self.sigma_min)
        return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
comfyanonymous's avatar
comfyanonymous committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

class StableCascadeSampling(ModelSamplingDiscrete):
    def __init__(self, model_config=None):
        super().__init__()
        self.num_timesteps = 1000
        cosine_s=8e-3
        self.cosine_s = torch.tensor([cosine_s])
        sigmas = torch.empty((self.num_timesteps), dtype=torch.float32)
        self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2
        for x in range(self.num_timesteps):
            t = x / self.num_timesteps
            sigmas[x] = self.sigma(t)

        self.set_sigmas(sigmas)

    def sigma(self, timestep):
        alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod).clamp(0.0001, 0.9999)
        return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5

    def timestep(self, sigma):
        return super().timestep(sigma) / 1000.0

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0

        percent = 1.0 - percent
        return self.sigma(torch.tensor(percent))