README.md 17.1 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
<div align="center">
2
<img src="https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png" alt="logo" width="400"></img>
Lianmin Zheng's avatar
Lianmin Zheng committed
3
4
5
6
</div>

--------------------------------------------------------------------------------

Lianmin Zheng's avatar
Lianmin Zheng committed
7
| [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/) | [**Paper**](https://arxiv.org/abs/2312.07104) | [**Slack**](https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2ngly9muu-t37XiH87qvD~6rVBTkTEHw) |
Lianmin Zheng's avatar
Lianmin Zheng committed
8

Ying Sheng's avatar
Ying Sheng committed
9
10
SGLang is a fast serving framework for large language models and vision language models.
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
Lianmin Zheng's avatar
Lianmin Zheng committed
11

12
The core features include:
Ying Sheng's avatar
Ying Sheng committed
13
- **Fast Backend Runtime**: Efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, flashinfer kernels, and quantization (AWQ/FP8/GPTQ/Marlin).
Lianmin Zheng's avatar
Lianmin Zheng committed
14
- **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
Lianmin Zheng's avatar
Lianmin Zheng committed
15

Ying Sheng's avatar
Ying Sheng committed
16
## News
Ying Sheng's avatar
Ying Sheng committed
17
18
19
- [2024/07] 🔥 Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
- [2024/04] SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
- [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
Ying Sheng's avatar
Ying Sheng committed
20

Ying Sheng's avatar
Ying Sheng committed
21
22
23
<details>
<summary>More</summary>

Ying Sheng's avatar
Ying Sheng committed
24
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
Ying Sheng's avatar
Ying Sheng committed
25
26
27
28
- [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).

</details>

Lianmin Zheng's avatar
Lianmin Zheng committed
29
30
31
## Contents
- [Install](#install)
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
Ying Sheng's avatar
Ying Sheng committed
32
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
33
34
35
36
37
38
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
39
40
### Method 1: With pip
```
41
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
42
pip install "sglang[all]"
Lianmin Zheng's avatar
Lianmin Zheng committed
43

Lianmin Zheng's avatar
Lianmin Zheng committed
44
45
46
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
```
47

Lianmin Zheng's avatar
Lianmin Zheng committed
48
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
49
```
50
git clone https://github.com/sgl-project/sglang.git
Lianmin Zheng's avatar
Lianmin Zheng committed
51
52
cd sglang

Lianmin Zheng's avatar
Lianmin Zheng committed
53
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
54
55
pip install -e "python[all]"

Lianmin Zheng's avatar
Lianmin Zheng committed
56
57
58
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
```
59

Lianmin Zheng's avatar
Lianmin Zheng committed
60
### Method 3: Using docker
Ying Sheng's avatar
Ying Sheng committed
61
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](docker).
Ying Sheng's avatar
Ying Sheng committed
62
Repalce `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
Ying Sheng's avatar
Ying Sheng committed
63

Liangsheng Yin's avatar
Liangsheng Yin committed
64
65
66
67
```bash
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
68
    --env "HF_TOKEN=<secret>" \
Liangsheng Yin's avatar
Liangsheng Yin committed
69
70
    --ipc=host \
    lmsysorg/sglang:latest \
Ying Sheng's avatar
Ying Sheng committed
71
    python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --host 0.0.0.0 --port 30000
Liangsheng Yin's avatar
Liangsheng Yin committed
72
73
```

Lianmin Zheng's avatar
Lianmin Zheng committed
74
### Common Notes
Lianmin Zheng's avatar
Lianmin Zheng committed
75
76
- If you cannot install FlashInfer, check out its [installation](https://docs.flashinfer.ai/installation.html#) page. If you still cannot install it, you can use the slower Triton kernels by adding `--disable-flashinfer` when launching the server.
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Ying Sheng's avatar
Ying Sheng committed
77

Ying Sheng's avatar
Ying Sheng committed
78
79
80
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is an efficient serving engine.

Ying Sheng's avatar
Ying Sheng committed
81
### Quick Start
Ying Sheng's avatar
Ying Sheng committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
```

Send a request
```
curl http://localhost:30000/generate \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Once upon a time,",
    "sampling_params": {
      "max_new_tokens": 16,
      "temperature": 0
    }
  }'
```
Learn more about the argument format [here](docs/sampling_params.md).

### OpenAI Compatible API
In addition, the server supports OpenAI-compatible APIs.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")

# Text completion
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
```

Ying Sheng's avatar
Ying Sheng committed
131
It supports streaming, vision, and most features of the Chat/Completions/Models endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
Ying Sheng's avatar
Ying Sheng committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

### Additional Server Arguments
- Add `--tp 2` to enable tensor parallelism. If it indicates `peer access is not supported between these two devices`, add `--enable-p2p-check` option.
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --tp 2
```
- Add `--dp 2` to enable data parallelism. It can also be used together with tp. Data parallelism is better for throughput if there is enough memory.
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --dp 2 --tp 2
```
- If you see out-of-memory errors during serving, please try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --mem-fraction-static 0.7
```
- See [hyperparameter_tuning.md](docs/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
147
- Add `--nnodes 2` to run tensor parallelism on multiple nodes. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port.
Ying Sheng's avatar
Ying Sheng committed
148
149
```
# Node 0
150
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 0
Ying Sheng's avatar
Ying Sheng committed
151
152

# Node 1
153
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
Ying Sheng's avatar
Ying Sheng committed
154
155
```
- If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/custom_chat_template.md).
156
- To enable fp8 quantization, you can add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
157
- To enable experimental torch.compile support, you can add `--enable-torch-compile`. It accelerates small models on small batch sizes.
Ying Sheng's avatar
Ying Sheng committed
158

159
160
161
### Run Llama 3.1 405B

```bash
Ying Sheng's avatar
Ying Sheng committed
162
163
164
165
## Run 405B (fp8) on a single node
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8

## Run 405B (fp16) on two nodes
Yineng Zhang's avatar
Yineng Zhang committed
166
# replace the `172.16.4.52:20000` with your own first node ip address and port, disable CUDA Graph temporarily
Ying Sheng's avatar
Ying Sheng committed
167

168
169
170
171
172
173
174
# on the first node
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph --mem-frac 0.75

# on the second
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph --mem-frac 0.75
```

Ying Sheng's avatar
Ying Sheng committed
175
176
### Supported Models

177
- Llama / Llama 2 / Llama 3 / Llama 3.1
Ying Sheng's avatar
Ying Sheng committed
178
179
180
- Mistral / Mixtral
- Gemma / Gemma 2
- Qwen / Qwen 2 / Qwen 2 MoE
181
- DeepSeek / DeepSeek 2
Ying Sheng's avatar
Ying Sheng committed
182
- LLaVA 1.5 / 1.6
Ying Sheng's avatar
Ying Sheng committed
183
184
185
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.6-vicuna-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.6-34b --tokenizer-path liuhaotian/llava-v1.6-34b-tokenizer --port 30000`
Ying Sheng's avatar
Ying Sheng committed
186
- LLaVA-NeXT-Video
Ying Sheng's avatar
Ying Sheng committed
187
  - see [examples/usage/llava_video](examples/usage/llava_video)
Ying Sheng's avatar
Ying Sheng committed
188
189
190
191
192
193
194
195
- Yi-VL
  - see [srt_example_yi_vl.py](examples/quick_start/srt_example_yi_vl.py).
- StableLM
- Command-R
- DBRX
- Grok
- ChatGLM
- InternLM 2
zhyncs's avatar
zhyncs committed
196
- Mistral NeMo
Ying Sheng's avatar
Ying Sheng committed
197
198
199

Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/model_support.md).

Ying Sheng's avatar
Ying Sheng committed
200
201
### Benchmark Performance

Ying Sheng's avatar
Ying Sheng committed
202
- Benchmark a single static batch by running the following command without launching a server. The arguments are the same as those for `launch_server.py`. This is not a dynamic batching server, so it may run out of memory for a batch size that can run successfully with a real server. This is because a real server will truncate the prefill into several batches/chunks, while this unit test does not do this.
Ying Sheng's avatar
Ying Sheng committed
203
204
205
206
207
208
209
210
  ```
  python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 32 --input-len 256 --output-len 32
  ```
- Benchmark online serving. Launch a server first and run the following command.
  ```
  python3 -m sglang.bench_serving --backend sglang --num-prompt 10
  ```

Ying Sheng's avatar
Ying Sheng committed
211
212
213
214
## Frontend: Structured Generation Language (SGLang)
The frontend language can be used with local models or API models.

### Quick Start
Lianmin Zheng's avatar
Lianmin Zheng committed
215
216
The example below shows how to use sglang to answer a mulit-turn question.

Ying Sheng's avatar
Ying Sheng committed
217
#### Using Local Models
218
First, launch a server with
Lianmin Zheng's avatar
Lianmin Zheng committed
219
```
Ying Sheng's avatar
Ying Sheng committed
220
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
221
222
```

223
224
Then, connect to the server and answer a multi-turn question.

Lianmin Zheng's avatar
Lianmin Zheng committed
225
```python
226
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
Lianmin Zheng's avatar
Lianmin Zheng committed
227
228
229
230
231
232
233
234
235

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

236
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
Lianmin Zheng's avatar
Lianmin Zheng committed
237
238
239
240
241
242
243
244

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
245
246

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
247
248
```

Ying Sheng's avatar
Ying Sheng committed
249
#### Using OpenAI Models
250
Set the OpenAI API Key
Lianmin Zheng's avatar
Lianmin Zheng committed
251
```
252
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
253
254
```

255
Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
256
```python
257
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
Lianmin Zheng's avatar
Lianmin Zheng committed
258
259
260
261
262
263
264
265
266

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

267
set_default_backend(OpenAI("gpt-3.5-turbo"))
Lianmin Zheng's avatar
Lianmin Zheng committed
268
269
270
271
272
273
274
275

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
276
277

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
278
279
```

Ying Sheng's avatar
Ying Sheng committed
280
#### More Examples
Lianmin Zheng's avatar
Lianmin Zheng committed
281

282
Anthropic and VertexAI (Gemini) models are also supported.
Lianmin Zheng's avatar
Lianmin Zheng committed
283
284
You can find more examples at [examples/quick_start](examples/quick_start).

Ying Sheng's avatar
Ying Sheng committed
285
### Language Feature
Lianmin Zheng's avatar
Lianmin Zheng committed
286
287
288
289
290
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
291
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
292
293
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
294
The system will manage the state, chat template, parallelism and batching for you.
Lianmin Zheng's avatar
Lianmin Zheng committed
295

296
297
The complete code for the examples below can be found at [readme_examples.py](examples/usage/readme_examples.py)

Ying Sheng's avatar
Ying Sheng committed
298
#### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
299
300
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
301
302
```python
@sgl.function
303
304
305
def tool_use(s, question):
    s += "To answer this question: " + question + ". "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
Lianmin Zheng's avatar
Lianmin Zheng committed
306
307
308

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
309
310
    elif s["tool"] == "search engine":
        s += "The key word to search is" + sgl.gen("word")
Lianmin Zheng's avatar
Lianmin Zheng committed
311
```
Lianmin Zheng's avatar
Lianmin Zheng committed
312

Ying Sheng's avatar
Ying Sheng committed
313
#### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
314
315
316
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
317
318
319
320
321
322
323
324
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
325
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
326
327
328
329
330
331
332
333
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
334

Ying Sheng's avatar
Ying Sheng committed
335
#### Multi Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
336
337
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
338
339
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
340
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
341
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
342
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
343
344
```

345
346
See also [srt_example_llava.py](examples/quick_start/srt_example_llava.py).

Ying Sheng's avatar
Ying Sheng committed
347
#### Constrained Decoding
348
349
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
350

Lianmin Zheng's avatar
Lianmin Zheng committed
351
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
352
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
353
354
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
355
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
356
357
358
359
360
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
361

Ying Sheng's avatar
Ying Sheng committed
362
#### JSON Decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
363
Use `regex` to specify a JSON schema with a regular expression.
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

```python
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

@sgl.function
def character_gen(s, name):
Lianmin Zheng's avatar
Lianmin Zheng committed
385
    s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
386
387
388
    s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
389
See also [json_decode.py](examples/usage/json_decode.py) for an additional example on specifying formats with Pydantic models.
390

Ying Sheng's avatar
Ying Sheng committed
391
#### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
392
393
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
394
395
396
397
398
399
400
401
402
403
404
405
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
406
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
407
408
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
409

Ying Sheng's avatar
Ying Sheng committed
410
#### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
411
412
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
413
414
415
416
417
418
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

419
state = text_qa.run(
Lianmin Zheng's avatar
Lianmin Zheng committed
420
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
421
422
423
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
424

Lianmin Zheng's avatar
Lianmin Zheng committed
425
426
427
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
428

Ying Sheng's avatar
Ying Sheng committed
429
#### Tips and Implementation Details
430
431
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
Lianmin Zheng's avatar
Lianmin Zheng committed
432

Lianmin Zheng's avatar
Lianmin Zheng committed
433

Ying Sheng's avatar
Ying Sheng committed
434
435
436
## Benchmark And Performance
![8b_throughput](https://lmsys.org/images/blog/sglang_llama3/8b_throughput.svg)
![70b_fp8_throughput](https://lmsys.org/images/blog/sglang_llama3/70b_fp8_throughput.svg)
Lianmin Zheng's avatar
Lianmin Zheng committed
437

Ying Sheng's avatar
Ying Sheng committed
438
Learn more at this [blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/).
Lianmin Zheng's avatar
Lianmin Zheng committed
439

Lianmin Zheng's avatar
Lianmin Zheng committed
440
## Roadmap
Ying Sheng's avatar
Ying Sheng committed
441
[Development Roadmap (2024 Q3)](https://github.com/sgl-project/sglang/issues/634)
Lianmin Zheng's avatar
Lianmin Zheng committed
442
443

## Citation And Acknowledgment
Ying Sheng's avatar
Ying Sheng committed
444
445
Please cite our paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.
We also learned from the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql).