utils.py 45 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""Common utilities."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
import base64
17
import dataclasses
18
import io
19
import ipaddress
20
import itertools
21
import json
22
import logging
Lianmin Zheng's avatar
Lianmin Zheng committed
23
import os
24
import pickle
Lianmin Zheng's avatar
Lianmin Zheng committed
25
import random
Lianmin Zheng's avatar
Lianmin Zheng committed
26
import re
27
import resource
28
29
import shutil
import signal
Lianmin Zheng's avatar
Lianmin Zheng committed
30
import socket
31
import subprocess
Lianmin Zheng's avatar
Lianmin Zheng committed
32
import tempfile
Lianmin Zheng's avatar
Lianmin Zheng committed
33
import time
34
import warnings
35
from functools import lru_cache
36
from importlib.metadata import PackageNotFoundError, version
Lianmin Zheng's avatar
Lianmin Zheng committed
37
from io import BytesIO
38
from multiprocessing.reduction import ForkingPickler
39
from typing import Any, Callable, Dict, List, Optional, Protocol, Tuple, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
40
41

import numpy as np
42
import psutil
Lianmin Zheng's avatar
Lianmin Zheng committed
43
44
import requests
import torch
45
import torch.distributed
46
import torch.distributed as dist
47
import triton
48
import zmq
49
from fastapi.responses import ORJSONResponse
50
from packaging import version as pkg_version
Lianmin Zheng's avatar
Lianmin Zheng committed
51
from starlette.routing import Mount
52
from torch import nn
53
from torch.func import functional_call
54
from torch.library import Library
55
from torch.profiler import ProfilerActivity, profile, record_function
56
57
58
59
60
61
from triton.runtime.cache import (
    FileCacheManager,
    default_cache_dir,
    default_dump_dir,
    default_override_dir,
)
62

63
64
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
65
66
show_time_cost = False
time_infos = {}
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68


69
def is_hip() -> bool:
70
    """Return whether it is HIP on the AMD ROCm platform."""
71
72
73
    return torch.version.hip is not None


74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def is_cuda():
    return hasattr(torch, "cuda") and torch.cuda.is_available()


def is_cuda_alike():
    return is_cuda() or is_hip()


def is_hpu() -> bool:
    return hasattr(torch, "hpu") and torch.hpu.is_available()


def is_xpu() -> bool:
    return hasattr(torch, "xpu") and torch.xpu.is_available()


90
91
92
93
94
def is_flashinfer_available():
    """
    Check whether flashinfer is available.
    As of Oct. 6, 2024, it is only available on NVIDIA GPUs.
    """
95
    if not get_bool_env_var("SGLANG_IS_FLASHINFER_AVAILABLE", default="true"):
96
        return False
97
    return torch.cuda.is_available() and torch.version.cuda
98
99


100
101
102
103
104
105
106
107
def is_ipv6(address):
    try:
        ipaddress.IPv6Address(address)
        return True
    except ipaddress.AddressValueError:
        return False


Liangsheng Yin's avatar
Liangsheng Yin committed
108
109
110
111
def enable_show_time_cost():
    global show_time_cost
    show_time_cost = True

Lianmin Zheng's avatar
Lianmin Zheng committed
112

Liangsheng Yin's avatar
Liangsheng Yin committed
113
114
115
116
117
118
class TimeInfo:
    def __init__(self, name, interval=0.1, color=0, indent=0):
        self.name = name
        self.interval = interval
        self.color = color
        self.indent = indent
Lianmin Zheng's avatar
Lianmin Zheng committed
119

Liangsheng Yin's avatar
Liangsheng Yin committed
120
121
        self.acc_time = 0
        self.last_acc_time = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
122

Liangsheng Yin's avatar
Liangsheng Yin committed
123
124
125
126
127
    def check(self):
        if self.acc_time - self.last_acc_time > self.interval:
            self.last_acc_time = self.acc_time
            return True
        return False
Lianmin Zheng's avatar
Lianmin Zheng committed
128

Liangsheng Yin's avatar
Liangsheng Yin committed
129
130
131
132
    def pretty_print(self):
        print(f"\x1b[{self.color}m", end="")
        print("-" * self.indent * 2, end="")
        print(f"{self.name}: {self.acc_time:.3f}s\x1b[0m")
Lianmin Zheng's avatar
Lianmin Zheng committed
133
134


Liangsheng Yin's avatar
Liangsheng Yin committed
135
136
137
138
def mark_start(name, interval=0.1, color=0, indent=0):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
139
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
140
141
142
    if time_infos.get(name, None) is None:
        time_infos[name] = TimeInfo(name, interval, color, indent)
    time_infos[name].acc_time -= time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
143
144


Liangsheng Yin's avatar
Liangsheng Yin committed
145
146
147
148
def mark_end(name):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
149
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
150
151
152
    time_infos[name].acc_time += time.time()
    if time_infos[name].check():
        time_infos[name].pretty_print()
Lianmin Zheng's avatar
Lianmin Zheng committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173


def calculate_time(show=False, min_cost_ms=0.0):
    def wrapper(func):
        def inner_func(*args, **kwargs):
            torch.cuda.synchronize()
            if show:
                start_time = time.time()
            result = func(*args, **kwargs)
            torch.cuda.synchronize()
            if show:
                cost_time = (time.time() - start_time) * 1000
                if cost_time > min_cost_ms:
                    print(f"Function {func.__name__} took {cost_time} ms to run.")
            return result

        return inner_func

    return wrapper


174
def get_available_gpu_memory(device, gpu_id, distributed=False, empty_cache=True):
Lianmin Zheng's avatar
Lianmin Zheng committed
175
176
177
178
    """
    Get available memory for cuda:gpu_id device.
    When distributed is True, the available memory is the minimum available memory of all GPUs.
    """
Zhang, Liangang's avatar
Zhang, Liangang committed
179
180
181
182
183
184
185
186
187
188
    if device == "cuda":
        num_gpus = torch.cuda.device_count()
        assert gpu_id < num_gpus

        if torch.cuda.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.cuda.current_device()}, ",
                "which may cause useless memory allocation for torch CUDA context.",
            )

189
190
        if empty_cache:
            torch.cuda.empty_cache()
Zhang, Liangang's avatar
Zhang, Liangang committed
191
192
193
194
195
196
197
198
199
200
201
        free_gpu_memory, _ = torch.cuda.mem_get_info(gpu_id)

    elif device == "xpu":
        num_gpus = torch.xpu.device_count()
        assert gpu_id < num_gpus

        if torch.xpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.xpu.current_device()}, ",
                "which may cause useless memory allocation for torch XPU context.",
            )
202
203
204

        if empty_cache:
            torch.xpu.empty_cache()
Zhang, Liangang's avatar
Zhang, Liangang committed
205
206
207
        used_memory = torch.xpu.memory_allocated()
        total_gpu_memory = torch.xpu.get_device_properties(gpu_id).total_memory
        free_gpu_memory = total_gpu_memory - used_memory
Lianmin Zheng's avatar
Lianmin Zheng committed
208

209
210
211
212
213
214
215
216
217
218
219
220
    elif device == "hpu":
        num_gpus = torch.hpu.device_count()
        assert gpu_id < num_gpus

        if torch.hpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.hpu.current_device()}, ",
                "which may cause useless memory allocation for torch HPU context.",
            )

        free_gpu_memory, total_gpu_memory = torch.hpu.mem_get_info()

Lianmin Zheng's avatar
Lianmin Zheng committed
221
222
    if distributed:
        tensor = torch.tensor(free_gpu_memory, dtype=torch.float32).to(
Zhang, Liangang's avatar
Zhang, Liangang committed
223
            torch.device(device, gpu_id)
Lianmin Zheng's avatar
Lianmin Zheng committed
224
225
226
227
228
229
230
        )
        torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.MIN)
        free_gpu_memory = tensor.item()

    return free_gpu_memory / (1 << 30)


231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
def is_pin_memory_available() -> bool:
    return torch.cuda.is_available()


_CPU_OFFLOAD_BYTES = 0
_CPU_OFFLOAD_MAX_BYTES = 0


def set_cpu_offload_max_bytes(max_bytes: int) -> None:
    global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
    _CPU_OFFLOAD_BYTES = 0
    _CPU_OFFLOAD_MAX_BYTES = max_bytes


def maybe_offload_to_cpu(module: torch.nn.Module) -> torch.nn.Module:
    device = next(module.parameters()).device

    if device == torch.device("cpu"):
        return module

    global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
    if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
        return module

    pin_memory = is_pin_memory_available()
    # offload parameters to CPU
    # use pin_memory if possible, which helps cudagraph capture speed
    offloaded_parameters = False
    for p in module.parameters():
        if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
            # we use per-parameter offloading
            # one module might have some parameters offloaded and some not
            break

        # `torch.empty_like` does not support `pin_memory` argument
        cpu_data = torch.empty_strided(
            size=p.data.size(),
            stride=p.data.stride(),
            dtype=p.data.dtype,
            layout=p.data.layout,
            device="cpu",
            pin_memory=pin_memory,
        )
        cpu_data.copy_(p.data)
        p.data = cpu_data
        _CPU_OFFLOAD_BYTES += p.data.numel() * p.data.element_size()
        offloaded_parameters = True

    if offloaded_parameters:
        original_forward = module.forward

        def forward(*args, **kwargs):
            module.forward = original_forward
            device_state = {
                # here we blindly call `to(device)`
                # if the parameter is already on the device, it will be a no-op
                k: v.to(device, non_blocking=True)
                for k, v in module.state_dict().items()
            }
            output = functional_call(module, device_state, args=args, kwargs=kwargs)
            module.forward = forward
            return output

        module.forward = forward

    return module


class LayerFn(Protocol):

    def __call__(self, layer_id: int, prefix: str) -> torch.nn.Module: ...


def make_layers(
    num_hidden_layers: int,
    layer_fn: LayerFn,
    prefix: str = "",
) -> Tuple[int, int, torch.nn.ModuleList]:
    """Make a list of layers with the given layer function"""
    modules = torch.nn.ModuleList(
        [
            maybe_offload_to_cpu(layer_fn(idx=idx, prefix=f"{prefix}.{idx}"))
            for idx in range(num_hidden_layers)
        ]
    )
    return modules


Lianmin Zheng's avatar
Lianmin Zheng committed
319
def set_random_seed(seed: int) -> None:
320
    """Set the random seed for all libraries."""
Lianmin Zheng's avatar
Lianmin Zheng committed
321
    random.seed(seed)
322
    np.random.seed(seed)
Lianmin Zheng's avatar
Lianmin Zheng committed
323
324
325
326
327
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)


328
def is_port_available(port):
329
    """Return whether a port is available."""
330
331
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        try:
332
            s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
333
            s.bind(("", port))
334
            s.listen(1)
335
336
337
            return True
        except socket.error:
            return False
TianYu GUO's avatar
TianYu GUO committed
338
339
        except OverflowError:
            return False
340
341


Yuanhan Zhang's avatar
Yuanhan Zhang committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
def decode_video_base64(video_base64):
    from PIL import Image

    # Decode the base64 string
    video_bytes = base64.b64decode(video_base64)

    # Placeholder for the start indices of each PNG image
    img_starts = []

    frame_format = "PNG"  # str(os.getenv('FRAME_FORMAT', "JPEG"))

    assert frame_format in [
        "PNG",
        "JPEG",
    ], "FRAME_FORMAT must be either 'PNG' or 'JPEG'"

    if frame_format == "PNG":
        # Find each PNG start signature to isolate images
        i = 0
        while i < len(video_bytes) - 7:  # Adjusted for the length of the PNG signature
            # Check if we found the start of a PNG file
            if (
                video_bytes[i] == 0x89
                and video_bytes[i + 1] == 0x50
                and video_bytes[i + 2] == 0x4E
                and video_bytes[i + 3] == 0x47
                and video_bytes[i + 4] == 0x0D
                and video_bytes[i + 5] == 0x0A
                and video_bytes[i + 6] == 0x1A
                and video_bytes[i + 7] == 0x0A
            ):
                img_starts.append(i)
                i += 8  # Skip the PNG signature
            else:
                i += 1
    else:
        # Find each JPEG start (0xFFD8) to isolate images
        i = 0
        while (
            i < len(video_bytes) - 1
        ):  # Adjusted for the length of the JPEG SOI signature
            # Check if we found the start of a JPEG file
            if video_bytes[i] == 0xFF and video_bytes[i + 1] == 0xD8:
                img_starts.append(i)
                # Move to the next byte to continue searching for the next image start
                i += 2
            else:
                i += 1

    frames = []
    for start_idx in img_starts:
        # Assuming each image is back-to-back, the end of one image is the start of another
        # The last image goes until the end of the byte string
        end_idx = (
            img_starts[img_starts.index(start_idx) + 1]
            if img_starts.index(start_idx) + 1 < len(img_starts)
            else len(video_bytes)
        )
        img_bytes = video_bytes[start_idx:end_idx]

        # Convert bytes to a PIL Image
        img = Image.open(BytesIO(img_bytes))

        # Convert PIL Image to a NumPy array
        frame = np.array(img)

        # Append the frame to the list of frames
        frames.append(frame)

    # Ensure there's at least one frame to avoid errors with np.stack
    if frames:
        return np.stack(frames, axis=0), img.size
    else:
        return np.array([]), (
            0,
            0,
        )  # Return an empty array and size tuple if no frames were found
Lianmin Zheng's avatar
Lianmin Zheng committed
419
420


421
def load_image(image_file: Union[str, bytes]):
Lianmin Zheng's avatar
Lianmin Zheng committed
422
423
    from PIL import Image

Yuanhan Zhang's avatar
Yuanhan Zhang committed
424
    image = image_size = None
Lianmin Zheng's avatar
Lianmin Zheng committed
425

426
427
428
    if isinstance(image_file, bytes):
        image = Image.open(BytesIO(image_file))
    elif image_file.startswith("http://") or image_file.startswith("https://"):
Lianmin Zheng's avatar
Lianmin Zheng committed
429
430
431
432
433
434
        timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
        response = requests.get(image_file, timeout=timeout)
        image = Image.open(BytesIO(response.content))
    elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")):
        image = Image.open(image_file)
    elif image_file.startswith("data:"):
435
        image_file = image_file.split(",")[1]
Lianmin Zheng's avatar
Lianmin Zheng committed
436
        image = Image.open(BytesIO(base64.b64decode(image_file)))
Yuanhan Zhang's avatar
Yuanhan Zhang committed
437
438
439
    elif image_file.startswith("video:"):
        image_file = image_file.replace("video:", "")
        image, image_size = decode_video_base64(image_file)
440
    elif isinstance(image_file, str):
Lianmin Zheng's avatar
Lianmin Zheng committed
441
        image = Image.open(BytesIO(base64.b64decode(image_file)))
442
443
    else:
        raise ValueError(f"Invalid image: {image}")
Lianmin Zheng's avatar
Lianmin Zheng committed
444

Yuanhan Zhang's avatar
Yuanhan Zhang committed
445
    return image, image_size
446
447


448
449
450
451
def suppress_other_loggers():
    from vllm.logger import logger as vllm_default_logger

    vllm_default_logger.setLevel(logging.WARN)
452
453
454
    logging.getLogger("vllm.distributed.device_communicators.pynccl").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
455
456
457
    logging.getLogger("vllm.distributed.device_communicators.shm_broadcast").setLevel(
        logging.WARN
    )
458

459
460
461
462
    warnings.filterwarnings(
        "ignore", category=UserWarning, message="The given NumPy array is not writable"
    )

463

464
def assert_pkg_version(pkg: str, min_version: str, message: str):
465
466
467
468
    try:
        installed_version = version(pkg)
        if pkg_version.parse(installed_version) < pkg_version.parse(min_version):
            raise Exception(
469
                f"{pkg} is installed with version {installed_version}, which "
Ying Sheng's avatar
Ying Sheng committed
470
                f"is less than the minimum required version {min_version}. " + message
471
472
            )
    except PackageNotFoundError:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
473
        raise Exception(
Ying Sheng's avatar
Ying Sheng committed
474
475
            f"{pkg} with minimum required version {min_version} is not installed. "
            + message
Yuanhan Zhang's avatar
Yuanhan Zhang committed
476
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
477
478


479
480
481
482
483
def kill_process_tree(parent_pid, include_parent: bool = True, skip_pid: int = None):
    """Kill the process and all its child processes."""
    if parent_pid is None:
        parent_pid = os.getpid()
        include_parent = False
Lianmin Zheng's avatar
Lianmin Zheng committed
484

485
    try:
486
        itself = psutil.Process(parent_pid)
487
488
489
    except psutil.NoSuchProcess:
        return

Lianmin Zheng's avatar
Lianmin Zheng committed
490
    children = itself.children(recursive=True)
491
    for child in children:
492
493
        if child.pid == skip_pid:
            continue
494
495
496
497
498
        try:
            child.kill()
        except psutil.NoSuchProcess:
            pass

499
    if include_parent:
500
        try:
Lianmin Zheng's avatar
Lianmin Zheng committed
501
            itself.kill()
502
503
504

            # Sometime processes cannot be killed with SIGKILL (e.g, PID=1 launched by kubernetes),
            # so we send an additional signal to kill them.
505
            itself.send_signal(signal.SIGQUIT)
506
507
508
509
        except psutil.NoSuchProcess:
            pass


510
def monkey_patch_vllm_p2p_access_check(gpu_id: int):
511
512
513
514
515
    """
    Monkey patch the slow p2p access check in vllm.
    NOTE: We assume the p2p access is always allowed, which can be wrong for some setups.
    """

516
    import vllm.distributed.device_communicators.custom_all_reduce_utils as tgt
Liangsheng Yin's avatar
Liangsheng Yin committed
517

518
    setattr(tgt, "gpu_p2p_access_check", lambda *arg, **kwargs: True)
519

Lianmin Zheng's avatar
Lianmin Zheng committed
520
521
522
523
524
    # Suppress the warnings from this delete function when using sglang.bench_one_batch
    from vllm.distributed.device_communicators.custom_all_reduce import CustomAllreduce

    setattr(CustomAllreduce, "__del__", lambda *args, **kwargs: None)

525

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
vllm_all_gather_backup = None


def monkey_patch_vllm_all_gather(reverse: bool = False):
    """Monkey patch all-gather to remove in-place operations."""
    from torch.distributed import _functional_collectives as funcol
    from vllm.distributed.parallel_state import GroupCoordinator

    global vllm_all_gather_backup
    if vllm_all_gather_backup is None:
        vllm_all_gather_backup = GroupCoordinator.all_gather

    def all_gather(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor:
        world_size = self.world_size
        # Bypass the function if we are using only 1 GPU.
        if world_size == 1:
            return input_
        assert (
            -input_.dim() <= dim < input_.dim()
        ), f"Invalid dim ({dim}) for input tensor with shape {input_.size()}"
        if dim < 0:
            # Convert negative dim to positive.
            dim += input_.dim()
        input_size = input_.size()
        # Allocate output tensor.
        output_tensor = torch.empty(
            (world_size,) + input_size, dtype=input_.dtype, device=input_.device
        )

        output_tensor = funcol.all_gather_tensor(
            input_, gather_dim=0, group=self.device_group
        ).view((world_size,) + input_size)

        # Reshape
        output_tensor = output_tensor.movedim(0, dim)
        output_tensor = output_tensor.reshape(
            input_size[:dim] + (world_size * input_size[dim],) + input_size[dim + 1 :]
        )
        return output_tensor

    if reverse:
        setattr(GroupCoordinator, "all_gather", vllm_all_gather_backup)
    else:
        setattr(GroupCoordinator, "all_gather", all_gather)


572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
def monkey_patch_vllm_gguf_config():
    from vllm.model_executor.layers.linear import LinearBase
    from vllm.model_executor.layers.quantization.gguf import (
        GGUFConfig,
        GGUFEmbeddingMethod,
        GGUFLinearMethod,
    )

    from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding

    def get_quant_method_with_embedding_replaced(
        self, layer: torch.nn.Module, prefix: str
    ) -> Optional["QuantizeMethodBase"]:
        if isinstance(layer, LinearBase):
            return GGUFLinearMethod(self)
        elif isinstance(layer, VocabParallelEmbedding):
            # patch to own VocabParallelEmbedding
            return GGUFEmbeddingMethod(self)
        return None

    setattr(GGUFConfig, "get_quant_method", get_quant_method_with_embedding_replaced)


595
596
597
598
599
600
def maybe_set_triton_cache_manager() -> None:
    """Set environment variable to tell Triton to use a
    custom cache manager"""
    cache_manger = os.environ.get("TRITON_CACHE_MANAGER", None)
    if cache_manger is None:
        manager = "sglang.srt.utils:CustomCacheManager"
601
        logger.debug("Setting Triton cache manager to: %s", manager)
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
        os.environ["TRITON_CACHE_MANAGER"] = manager


class CustomCacheManager(FileCacheManager):
    # Adapted from: https://github.com/tdoublep/vllm/blob/3307522289fdfefe323b6c00d0db696651989a2f/vllm/triton_utils/custom_cache_manager.py
    def __init__(self, key, override=False, dump=False):

        self.key = key
        self.lock_path = None
        if dump:
            self.cache_dir = default_dump_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
            self.lock_path = os.path.join(self.cache_dir, "lock")
            os.makedirs(self.cache_dir, exist_ok=True)
        elif override:
            self.cache_dir = default_override_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
        else:
            # create cache directory if it doesn't exist
            self.cache_dir = (
                os.getenv("TRITON_CACHE_DIR", "").strip() or default_cache_dir()
            )
            if self.cache_dir:
                self.cache_dir = f"{self.cache_dir}_{os.getpid()}"
                self.cache_dir = os.path.join(self.cache_dir, self.key)
                self.lock_path = os.path.join(self.cache_dir, "lock")
                os.makedirs(self.cache_dir, exist_ok=True)
            else:
                raise RuntimeError("Could not create or locate cache dir")


633
634
635
636
637
638
639
640
def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
641
            logger.warning(f"Fail to set RLIMIT_NOFILE: {e}")
642
643


644
def add_api_key_middleware(app, api_key: str):
645
646
647
648
649
650
651
    @app.middleware("http")
    async def authentication(request, call_next):
        if request.method == "OPTIONS":
            return await call_next(request)
        if request.url.path.startswith("/health"):
            return await call_next(request)
        if request.headers.get("Authorization") != "Bearer " + api_key:
652
            return ORJSONResponse(content={"error": "Unauthorized"}, status_code=401)
653
        return await call_next(request)
654
655


656
def prepare_model_and_tokenizer(model_path: str, tokenizer_path: str):
657
    if get_bool_env_var("SGLANG_USE_MODELSCOPE"):
658
659
660
        if not os.path.exists(model_path):
            from modelscope import snapshot_download

661
662
            model_path = snapshot_download(model_path)
            tokenizer_path = snapshot_download(
663
664
                tokenizer_path, ignore_patterns=["*.bin", "*.safetensors"]
            )
665
    return model_path, tokenizer_path
666
667
668
669


def configure_logger(server_args, prefix: str = ""):
    format = f"[%(asctime)s{prefix}] %(message)s"
Lianmin Zheng's avatar
Lianmin Zheng committed
670
    # format = f"[%(asctime)s.%(msecs)03d{prefix}] %(message)s"
671
672
673
    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format=format,
674
        datefmt="%Y-%m-%d %H:%M:%S",
675
676
        force=True,
    )
677
678
679
680
681
682
683
684
685
686
687


# source: https://github.com/vllm-project/vllm/blob/93b38bea5dd03e1b140ca997dfaadef86f8f1855/vllm/lora/utils.py#L9
def replace_submodule(
    model: nn.Module, module_name: str, new_module: nn.Module
) -> nn.Module:
    """Replace a submodule in a model with a new module."""
    parent = model.get_submodule(".".join(module_name.split(".")[:-1]))
    target_name = module_name.split(".")[-1]
    setattr(parent, target_name, new_module)
    return new_module
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707


def set_weight_attrs(
    weight: torch.Tensor,
    weight_attrs: Optional[Dict[str, Any]],
):
    """Set attributes on a weight tensor.

    This method is used to set attributes on a weight tensor. This method
    will not overwrite existing attributes.

    Args:
        weight: The weight tensor.
        weight_attrs: A dictionary of attributes to set on the weight tensor.
    """
    if weight_attrs is None:
        return
    for key, value in weight_attrs.items():
        assert not hasattr(weight, key), f"Overwriting existing tensor attribute: {key}"
        setattr(weight, key, value)
708
709
710


def broadcast_pyobj(
711
712
713
    data: List[Any],
    rank: int,
    dist_group: Optional[torch.distributed.ProcessGroup] = None,
714
    src: int = 0,
715
716
717
718
719
720
):
    """Broadcast inputs from rank=0 to all other ranks with torch.dist backend."""

    if rank == 0:
        if len(data) == 0:
            tensor_size = torch.tensor([0], dtype=torch.long)
721
            dist.broadcast(tensor_size, src=src, group=dist_group)
722
723
724
        else:
            serialized_data = pickle.dumps(data)
            size = len(serialized_data)
725
726
727
            tensor_data = torch.ByteTensor(
                np.frombuffer(serialized_data, dtype=np.uint8)
            )
728
729
            tensor_size = torch.tensor([size], dtype=torch.long)

730
731
            dist.broadcast(tensor_size, src=src, group=dist_group)
            dist.broadcast(tensor_data, src=src, group=dist_group)
732
733
734
        return data
    else:
        tensor_size = torch.tensor([0], dtype=torch.long)
735
        dist.broadcast(tensor_size, src=src, group=dist_group)
736
737
738
739
740
741
        size = tensor_size.item()

        if size == 0:
            return []

        tensor_data = torch.empty(size, dtype=torch.uint8)
742
        dist.broadcast(tensor_data, src=src, group=dist_group)
743

744
        serialized_data = bytes(tensor_data.cpu().numpy())
745
746
        data = pickle.loads(serialized_data)
        return data
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777


step_counter = 0


def pytorch_profile(name, func, *args, data_size=-1):
    """
    Args:
        name (string): the name of recorded function.
        func: the function to be profiled.
        args: the arguments of the profiled function.
        data_size (int): some measurement of the computation complexity.
            Usually, it could be the batch size.
    """
    global step_counter
    os.makedirs("trace", exist_ok=True)
    with profile(
        activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
        # schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=2),
        # on_trace_ready=tensorboard_trace_handler('./log_dir'),
        record_shapes=True,
        profile_memory=True,
        with_stack=True,
    ) as prof:
        with record_function(name):
            with open(f"trace/size_{step_counter}.json", "w") as f:
                json.dump({"size": data_size}, f)
            result = func(*args)
    prof.export_chrome_trace(f"trace/{name}_{step_counter}.json")
    step_counter += 1
    return result
778
779
780
781
782
783
784


def first_rank_print(*args, **kwargs):
    if torch.cuda.current_device() == 0:
        print(*args, **kwargs)
    else:
        pass
785
786
787


def get_zmq_socket(context: zmq.Context, socket_type: zmq.SocketType, endpoint: str):
788
789
790
791
792
793
794
795
    mem = psutil.virtual_memory()
    total_mem = mem.total / 1024**3
    available_mem = mem.available / 1024**3
    if total_mem > 32 and available_mem > 16:
        buf_size = int(0.5 * 1024**3)
    else:
        buf_size = -1

796
797
798
    socket = context.socket(socket_type)
    if socket_type == zmq.PUSH:
        socket.setsockopt(zmq.SNDHWM, 0)
799
        socket.setsockopt(zmq.SNDBUF, buf_size)
800
801
802
        socket.connect(f"ipc://{endpoint}")
    elif socket_type == zmq.PULL:
        socket.setsockopt(zmq.RCVHWM, 0)
803
        socket.setsockopt(zmq.RCVBUF, buf_size)
804
805
806
807
808
        socket.bind(f"ipc://{endpoint}")
    else:
        raise ValueError(f"Unsupported socket type: {socket_type}")

    return socket
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849


def dump_to_file(dirpath, name, value):
    from vllm.distributed import get_tensor_model_parallel_rank

    if get_tensor_model_parallel_rank() != 0:
        return

    os.makedirs(dirpath, exist_ok=True)
    if value.dtype is torch.bfloat16:
        value = value.float()
    value = value.cpu().numpy()
    output_filename = os.path.join(dirpath, f"pytorch_dump_{name}.npy")
    logger.info(f"Dump a tensor to {output_filename}. Shape = {value.shape}")
    np.save(output_filename, value)


def is_triton_3():
    return triton.__version__.startswith("3.")


def maybe_torch_compile(*args, **kwargs):
    """
    torch.compile does not work for triton 2.2.0, which is needed in xlm1's jax.
    Therefore, we disable it here.
    """

    def decorator(func):
        if is_triton_3():
            return torch.compile(*args, **kwargs)(func)
        return func

    return decorator


def delete_directory(dirpath):
    try:
        # This will remove the directory and all its contents
        shutil.rmtree(dirpath)
    except OSError as e:
        print(f"Warning: {dirpath} : {e.strerror}")
Lianmin Zheng's avatar
Lianmin Zheng committed
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875


# Temporary directory for prometheus multiprocess mode
# Cleaned up automatically when this object is garbage collected
prometheus_multiproc_dir: tempfile.TemporaryDirectory


def set_prometheus_multiproc_dir():
    # Set prometheus multiprocess directory
    # sglang uses prometheus multiprocess mode
    # we need to set this before importing prometheus_client
    # https://prometheus.github.io/client_python/multiprocess/
    global prometheus_multiproc_dir

    if "PROMETHEUS_MULTIPROC_DIR" in os.environ:
        logger.debug("User set PROMETHEUS_MULTIPROC_DIR detected.")
        prometheus_multiproc_dir = tempfile.TemporaryDirectory(
            dir=os.environ["PROMETHEUS_MULTIPROC_DIR"]
        )
    else:
        prometheus_multiproc_dir = tempfile.TemporaryDirectory()
        os.environ["PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
    logger.debug(f"PROMETHEUS_MULTIPROC_DIR: {os.environ['PROMETHEUS_MULTIPROC_DIR']}")


def add_prometheus_middleware(app):
876
    # We need to import prometheus_client after setting the env variable `PROMETHEUS_MULTIPROC_DIR`
Lianmin Zheng's avatar
Lianmin Zheng committed
877
878
879
880
881
882
883
884
885
    from prometheus_client import CollectorRegistry, make_asgi_app, multiprocess

    registry = CollectorRegistry()
    multiprocess.MultiProcessCollector(registry)
    metrics_route = Mount("/metrics", make_asgi_app(registry=registry))

    # Workaround for 307 Redirect for /metrics
    metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
    app.routes.append(metrics_route)
886
887


888
889
890
891
892
893
894
895
896
def bind_port(port):
    """Bind to a specific port, assuming it's available."""
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)  # Allows address reuse
    sock.bind(("", port))
    sock.listen(1)
    return sock


HAI's avatar
HAI committed
897
898
899
900
def get_amdgpu_memory_capacity():
    try:
        # Run rocm-smi and capture the output
        result = subprocess.run(
901
            [
HAI's avatar
HAI committed
902
                "rocminfo | grep 'gfx' -A 100 | grep 'Pool 1' -A 5 | grep 'Size:' | awk '{print $2}'"
903
            ],
HAI's avatar
HAI committed
904
905
906
907
908
909
910
911
912
913
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            shell=True,
            text=True,
        )
        if result.returncode != 0:
            raise RuntimeError(f"rocm-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values in MiB
        memory_values = [
914
            float(mem.split("(")[0].strip()) / 1024
HAI's avatar
HAI committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
            for mem in result.stdout.strip().split("\n")
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "rocm-smi not found. Ensure AMD ROCm drivers are installed and accessible."
        )


def get_nvgpu_memory_capacity():
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
    try:
        # Run nvidia-smi and capture the output
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.total", "--format=csv,noheader,nounits"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
        )

        if result.returncode != 0:
            raise RuntimeError(f"nvidia-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values
        memory_values = [
            float(mem)
            for mem in result.stdout.strip().split("\n")
            if re.match(r"^\d+(\.\d+)?$", mem.strip())
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "nvidia-smi not found. Ensure NVIDIA drivers are installed and accessible."
        )
960
961


962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
def get_hpu_memory_capacity():
    try:
        # Run hl-smi and capture the output
        result = subprocess.run(
            ["hl-smi --query | grep 'Total'"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            shell=True,
            text=True,
        )

        if result.returncode != 0:
            raise RuntimeError(f"hl-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values in MiB
        memory_values = [
            float(mem.split(" ")[-2]) for mem in result.stdout.strip().split("\n")
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "hl-smi not found. Ensure Habana drivers are installed and accessible."
        )


993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
# Copy from pytorch and OpenRLHF to allow creating multiple main groups.
# https://github.com/pytorch/pytorch/blob/main/torch/distributed/distributed_c10d.py
# https://github.com/OpenRLHF/OpenRLHF/blob/main/openrlhf/utils/distributed_util.py
def init_custom_process_group(
    backend=None,
    init_method=None,
    timeout=None,
    world_size=-1,
    rank=-1,
    store=None,
    group_name=None,
    pg_options=None,
):
    from torch.distributed.distributed_c10d import (
        Backend,
        PrefixStore,
        _new_process_group_helper,
        _world,
        default_pg_timeout,
        rendezvous,
    )

    assert (store is None) or (
        init_method is None
    ), "Cannot specify both init_method and store."

    if store is not None:
        assert world_size > 0, "world_size must be positive if using store"
        assert rank >= 0, "rank must be non-negative if using store"
    elif init_method is None:
        init_method = "env://"

    if backend:
        backend = Backend(backend)
    else:
        backend = Backend("undefined")

    if timeout is None:
        timeout = default_pg_timeout

    # backward compatible API
    if store is None:
        rendezvous_iterator = rendezvous(init_method, rank, world_size, timeout=timeout)
        store, rank, world_size = next(rendezvous_iterator)
        store.set_timeout(timeout)

        # Use a PrefixStore to avoid accidental overrides of keys used by
        # different systems (e.g. RPC) in case the store is multi-tenant.
        store = PrefixStore(group_name, store)

    # NOTE: The pg_options parameter was renamed into backend_options in PyTorch 2.6.0
    # https://github.com/pytorch/pytorch/commit/a0c7029a75628cd5fa8df83c0de0ea98ee7fd844
    # We need to determine the appropriate parameter name based on PyTorch version
    pg_options_param_name = (
        "backend_options" if str(torch.__version__) >= "2.6" else "pg_options"
    )
    pg, _ = _new_process_group_helper(
        world_size,
        rank,
        [],
        backend,
        store,
        group_name=group_name,
        **{pg_options_param_name: pg_options},
        timeout=timeout,
    )

    _world.pg_group_ranks[pg] = {i: i for i in range(world_size)}

    return pg


1065
1066
def crash_on_warnings():
    # Crash on warning if we are running CI tests
1067
    return get_bool_env_var("SGLANG_IS_IN_CI")
1068
1069


1070
1071
1072
1073
1074
def print_warning_once(msg: str) -> None:
    # Set the stacklevel to 2 to print the caller's line info
    logger.warning(msg, stacklevel=2)


1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
def get_device_name(device_id: int = 0) -> str:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        return torch.cuda.get_device_name(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        return torch.xpu.get_device_name(device_id)

    if hasattr(torch, "hpu") and torch.hpu.is_available():
        return torch.hpu.get_device_name(device_id)


1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
def get_device_capability(device_id: int = 0) -> Tuple[int, int]:
    major, minor = None, None
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        major, minor = torch.cuda.get_device_capability(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        major, minor, *_ = torch.xpu.get_device_capability(device_id)["version"].split(
            "."
        )
        major, minor = int(major), int(minor)

    # TODO(HandH1998): `get_device_capability` is not supported by `torch.hpu` for now.
    # Update this once the support is available.
    if hasattr(torch, "hpu") and torch.hpu.is_available():
        try:
            major, minor = torch.hpu.get_device_capability(device_id)
        except Exception as e:
            raise RuntimeError(
                f"An error occurred while getting device capability of hpu: {e}."
            ) from e

    return major, minor


1110
1111
1112
1113
1114
1115
1116
def get_compiler_backend() -> str:
    if hasattr(torch, "hpu") and torch.hpu.is_available():
        return "hpu_backend"

    return "inductor"


1117
1118
1119
sglang_lib = Library("sglang", "FRAGMENT")  # noqa


1120
1121
1122
1123
1124
1125
# Some backends use pytorch version < 2.4.0 which doesn't
# support `torch.library.custom_op`.
def supports_custom_op() -> bool:
    return hasattr(torch.library, "custom_op")


1126
1127
1128
1129
1130
1131
1132
def direct_register_custom_op(
    op_name: str,
    op_func: Callable,
    mutates_args: List[str],
    fake_impl: Optional[Callable] = None,
    target_lib: Optional[Library] = None,
):
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
    """
    `torch.library.custom_op` can have significant overhead because it
    needs to consider complicated dispatching logic. This function
    directly registers a custom op and dispatches it to the CUDA backend.
    See https://gist.github.com/youkaichao/ecbea9ec9fc79a45d2adce1784d7a9a5
    for more details.

    By default, the custom op is registered to the vLLM library. If you
    want to register it to a different library, you can pass the library
    object to the `target_lib` argument.

    IMPORTANT: the lifetime of the operator is tied to the lifetime of the
    library object. If you want to bind the operator to a different library,
    make sure the library object is alive when the operator is used.
    """
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
    import torch.library

    if hasattr(torch.library, "infer_schema"):
        schema_str = torch.library.infer_schema(op_func, mutates_args=mutates_args)
    else:
        # for pytorch 2.4
        import torch._custom_op.impl

        schema_str = torch._custom_op.impl.infer_schema(op_func, mutates_args)

    my_lib = target_lib or sglang_lib
    my_lib.define(op_name + schema_str)
    my_lib.impl(op_name, op_func, "CUDA")
    if fake_impl is not None:
        my_lib._register_fake(op_name, fake_impl)
1163
1164


1165
def set_gpu_proc_affinity(
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
    tp_size: int,
    nnodes: int,
    gpu_id: int,
):
    # current process
    pid = os.getpid()
    p = psutil.Process(pid)

    tp_size_per_node = tp_size // nnodes

    # total physical cores
    total_pcores = psutil.cpu_count(logical=False)
    # physical cores per TP (N.B. more Cores than GPUs on node)
    num_cores_bind = total_pcores // tp_size_per_node

    # able to handle multiple DP per node
    start_cpu_id = (gpu_id * num_cores_bind) % total_pcores
    end_cpu_id = start_cpu_id + num_cores_bind

    if psutil.cpu_count() != psutil.cpu_count(logical=False):
        # HT on
        upper_cpu_ids = [id for id in range(start_cpu_id, end_cpu_id)]
        lower_cpu_ids = [id + total_pcores for id in range(start_cpu_id, end_cpu_id)]
        bind_cpu_ids = list(itertools.chain(upper_cpu_ids, lower_cpu_ids))
    else:
        # HT off
        bind_cpu_ids = [id for id in range(start_cpu_id, end_cpu_id)]

    # set cpu_affinity to current process
    p.cpu_affinity(bind_cpu_ids)
    logger.info(f"Process {pid} gpu_id {gpu_id} is running on CPUs: {p.cpu_affinity()}")
1197
1198
1199
1200
1201


def get_bool_env_var(name: str, default: str = "false") -> bool:
    value = os.getenv(name, default)
    return value.lower() in ("true", "1")
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242


@lru_cache(maxsize=8)
def _cuda_device_count_stateless(cuda_visible_devices: Optional[str] = None) -> int:
    # Note: cuda_visible_devices is not used, but we keep it as an argument for
    # LRU Cache purposes.

    # Code below is based on
    # https://github.com/pytorch/pytorch/blob/
    # c1cd946818442aca8c7f812b16d187ce1586c3bc/
    # torch/cuda/__init__.py#L831C1-L831C17
    import torch.version

    if not torch.cuda._is_compiled():
        return 0
    if is_hip():
        # ROCm uses amdsmi instead of nvml for stateless device count
        # This requires a sufficiently modern version of Torch 2.4.0
        raw_count = (
            torch.cuda._device_count_amdsmi()
            if (hasattr(torch.cuda, "_device_count_amdsmi"))
            else -1
        )
    else:
        raw_count = torch.cuda._device_count_nvml()
    r = torch._C._cuda_getDeviceCount() if raw_count < 0 else raw_count
    return r


# Adapted from https://github.com/vllm-project/vllm/blob/a6221a144af772fd1a68fe7e627935dc53e81738/vllm/utils.py
def cuda_device_count_stateless() -> int:
    """Get number of CUDA devices, caching based on the value of
    CUDA_VISIBLE_DEVICES at the time of call.

    This should be used instead of torch.cuda.device_count()
    unless CUDA_VISIBLE_DEVICES has already been set to the desired
    value."""

    # This can be removed and simply replaced with torch.cuda.get_device_count
    # after https://github.com/pytorch/pytorch/pull/122815 is released.
    return _cuda_device_count_stateless(os.environ.get("CUDA_VISIBLE_DEVICES", None))
1243
1244


1245
1246
1247
1248
1249
def dataclass_to_string_truncated(data, max_length=2048):
    if isinstance(data, str):
        if len(data) > max_length:
            half_length = max_length // 2
            return f'"{data[:half_length]} ... {data[-half_length:]}"'
1250
        else:
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
            return f'"{data}"'
    elif isinstance(data, (list, tuple)):
        if len(data) > max_length:
            half_length = max_length // 2
            return str(data[:half_length]) + " ... " + str(data[-half_length:])
        else:
            return str(data)
    elif isinstance(data, dict):
        return (
            "{"
            + ", ".join(
                f"{k}: {dataclass_to_string_truncated(v, max_length)}"
                for k, v in data.items()
            )
            + "}"
        )
    elif dataclasses.is_dataclass(data):
        fields = dataclasses.fields(data)
        return (
            f"{data.__class__.__name__}("
            + ", ".join(
                f"{f.name}={dataclass_to_string_truncated(getattr(data, f.name), max_length)}"
                for f in fields
            )
            + ")"
        )
1277
    else:
1278
        return str(data)
Tanjiro's avatar
Tanjiro committed
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340


TOOLS_TAG_LIST = ["<|plugin|>", "<function=", "<tool_call>", "<|python_tag|>"]


def parse_tool_response(text, tools, **kwargs):
    """Parse model response containing tool information.

    Args:
        text(str): model response in string format
        tools(List): tools from user request
    """
    if "<|plugin|>" in text:  # internlm2
        text, action = text.split("<|action_start|><|plugin|>")
        action = action.split("<|action_end|>".strip())[0]
        action = action[action.find("{") :]
        action = json.loads(action)
        name, parameters = action["name"], json.dumps(
            action.get("parameters", action.get("arguments", {})), ensure_ascii=False
        )
        call_info_list = [(name, parameters)]
    elif "<function=" in text:  # llama3.1
        action, _ = text.split("</function>")
        parameters = action[action.find("{") :]
        name = action.split("<function=")[1].split(">{")[0]
        call_info_list = [(name, parameters)]
    elif "<tool_call>" in text and "</tool_call>" in text:  # qwen2.5
        # get tool_call in text
        pattern = r"<tool_call>(.*?)</tool_call>"
        match_result_list = re.findall(pattern, text, re.DOTALL)
        call_info_list = []
        for match_result in match_result_list:
            action = json.loads(match_result)
            call_info_list.append(
                (action["name"], json.dumps(action["arguments"], ensure_ascii=False))
            )
        # get text outside of tags
        if not text.startswith("<tool_call>"):
            text = text[: text.find("<tool_call>")]
        elif not text.endswith("</tool_call>"):
            text = text[text.rfind("</tool_call>") + len("</tool_call>") :]
        else:
            text = ""
    elif "<|python_tag|>" in text:  # llama3.2
        _, action = text.split("<|python_tag|>")
        action = json.loads(action)
        name, parameters = action["name"], json.dumps(
            action.get("parameters", action.get("arguments", {})), ensure_ascii=False
        )
        call_info_list = [(name, parameters)]
    else:
        raise RuntimeError(f"Unexpected model response: {text}")

    call_info_list = [
        (
            [tool.function.name for tool in tools].index(call_info[0]),
            call_info[0],
            call_info[1],
        )
        for call_info in call_info_list
    ]
    return text, call_info_list
1341
1342


1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
def permute_weight(x: torch.Tensor) -> torch.Tensor:
    b_ = x.shape[0]
    n_ = x.shape[1]
    k_ = x.shape[2]

    x_ = x
    if x.dtype == torch.bfloat16 or x.dtype == torch.float16:
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 32), 4, 8)
    elif x.dtype == torch.float8_e4m3fnuz or x.dtype == torch.int8:
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 64), 4, 16)
    else:
        return x_

    x_ = x_.permute(0, 1, 3, 4, 2, 5)
    x_ = x_.contiguous()
    x_ = x_.view(*x.shape)
    return x_


1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
class MultiprocessingSerializer:
    @staticmethod
    def serialize(obj):
        buf = io.BytesIO()
        ForkingPickler(buf).dump(obj)
        buf.seek(0)
        return buf.read()

    @staticmethod
    def deserialize(data):
        return ForkingPickler.loads(data)
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396


def debug_timing(func):
    # todo: replace with a more organized instrumentation
    def wrapper(*args, **kwargs):
        if logger.isEnabledFor(logging.DEBUG):
            tic = torch.cuda.Event(enable_timing=True)
            toc = torch.cuda.Event(enable_timing=True)
            tic.record()
            result = func(*args, **kwargs)
            toc.record()
            torch.cuda.synchronize()  # Ensure all CUDA operations are complete
            elapsed = tic.elapsed_time(toc)
            indices = kwargs.get("indices", args[1] if len(args) > 1 else None)
            num_tokens = len(indices) if indices is not None else 0
            throughput = num_tokens / elapsed * 1000 if elapsed > 0 else 0
            logger.debug(
                f"Transfer time: {elapsed} ms, throughput: {throughput} tokens/s"
            )
            return result
        else:
            return func(*args, **kwargs)

    return wrapper
bjmsong's avatar
bjmsong committed
1397
1398
1399
1400
1401
1402


def nullable_str(val: str):
    if not val or val == "None":
        return None
    return val