bench_serving.py 61.4 KB
Newer Older
zhyncs's avatar
zhyncs committed
1
2
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/backend_request_func.py
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/benchmark_serving.py
3

Ying Sheng's avatar
Ying Sheng committed
4
"""
5
Benchmark online serving with dynamic requests.
Ying Sheng's avatar
Ying Sheng committed
6
7

Usage:
8
python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Ying Sheng's avatar
Ying Sheng committed
9

10
python3 -m sglang.bench_serving --backend sglang --dataset-name random --num-prompts 3000 --random-input 1024 --random-output 1024 --random-range-ratio 0.5
Ying Sheng's avatar
Ying Sheng committed
11
"""
zhyncs's avatar
zhyncs committed
12
13
14
15
16

import argparse
import asyncio
import json
import os
17
import pickle
zhyncs's avatar
zhyncs committed
18
19
20
21
22
23
import random
import resource
import sys
import time
import traceback
import warnings
24
from argparse import ArgumentParser
zhyncs's avatar
zhyncs committed
25
from dataclasses import dataclass, field
26
from datetime import datetime
27
from pathlib import Path
28
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple, Union
zhyncs's avatar
zhyncs committed
29
30
31
32
33
34
35
36
37
38
39
40
41

import aiohttp
import numpy as np
import requests
from tqdm.asyncio import tqdm
from transformers import (
    AutoTokenizer,
    PreTrainedTokenizer,
    PreTrainedTokenizerBase,
    PreTrainedTokenizerFast,
)

AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
42
ASSISTANT_SUFFIX = "Assistant:"
zhyncs's avatar
zhyncs committed
43

44
45
global args

zhyncs's avatar
zhyncs committed
46

Yineng Zhang's avatar
Yineng Zhang committed
47
48
49
50
51
52
# don't want to import sglang package here
def _get_bool_env_var(name: str, default: str = "false") -> bool:
    value = os.getenv(name, default)
    return value.lower() in ("true", "1")


zhyncs's avatar
zhyncs committed
53
54
55
56
57
58
59
@dataclass
class RequestFuncInput:
    prompt: str
    api_url: str
    prompt_len: int
    output_len: int
    model: str
60
    lora_name: str
61
    image_data: str
62
    extra_request_body: Dict[str, Any]
zhyncs's avatar
zhyncs committed
63
64
65
66
67
68
69
70
71
72
73


@dataclass
class RequestFuncOutput:
    generated_text: str = ""
    success: bool = False
    latency: float = 0.0
    ttft: float = 0.0  # Time to first token
    itl: List[float] = field(default_factory=list)  # List of inter-token latencies
    prompt_len: int = 0
    error: str = ""
74
    output_len: int = 0
zhyncs's avatar
zhyncs committed
75
76
77
78
79
80


def remove_prefix(text: str, prefix: str) -> str:
    return text[len(prefix) :] if text.startswith(prefix) else text


81
82
83
84
def remove_suffix(text: str, suffix: str) -> str:
    return text[: -len(suffix)] if text.endswith(suffix) else text


85
86
87
88
89
90
91
92
def get_auth_headers() -> Dict[str, str]:
    api_key = os.environ.get("OPENAI_API_KEY")
    if api_key:
        return {"Authorization": f"Bearer {api_key}"}
    else:
        return {}


93
# trt llm does not support ignore_eos
94
95
96
97
98
99
100
101
102
103
104
105
# https://github.com/triton-inference-server/tensorrtllm_backend/issues/505
async def async_request_trt_llm(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith("generate_stream")

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "accumulate_tokens": True,
            "text_input": request_func_input.prompt,
zhyncs's avatar
zhyncs committed
106
            "temperature": 0.000001,
107
108
109
            "top_p": 1.0,
            "max_tokens": request_func_input.output_len,
            "stream": True,
Ying Sheng's avatar
Ying Sheng committed
110
111
            "min_length": request_func_input.output_len,
            "end_id": 1048576,
112
            **request_func_input.extra_request_body,
113
        }
114
115
116
        if args.disable_ignore_eos:
            del payload["min_length"]
            del payload["end_id"]
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(url=api_url, json=payload) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data:")

                        data = json.loads(chunk)
                        output.generated_text += data["text_output"]
                        timestamp = time.perf_counter()
                        # First token
                        if ttft == 0.0:
Xu Song's avatar
Xu Song committed
138
                            ttft = timestamp - st
139
140
141
142
143
144
145
146
147
148
                            output.ttft = ttft

                        # Decoding phase
                        else:
                            output.itl.append(timestamp - most_recent_timestamp)

                        most_recent_timestamp = timestamp

                    output.latency = most_recent_timestamp - st
                    output.success = True
Ying Sheng's avatar
Ying Sheng committed
149
                    output.output_len = request_func_input.output_len
150
151
152
153
154
155
156
157
158
159
160
161
162
163

                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

        if pbar:
            pbar.update(1)
        return output


zhyncs's avatar
zhyncs committed
164
165
166
167
168
169
170
171
172
173
# set ignore_eos True by default
async def async_request_openai_completions(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith(
        "completions"
    ), "OpenAI Completions API URL must end with 'completions'."

Lianmin Zheng's avatar
Lianmin Zheng committed
174
175
    prompt = request_func_input.prompt

zhyncs's avatar
zhyncs committed
176
177
178
    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "model": request_func_input.model,
Lianmin Zheng's avatar
Lianmin Zheng committed
179
            "prompt": prompt,
zhyncs's avatar
zhyncs committed
180
181
182
            "temperature": 0.0,
            "best_of": 1,
            "max_tokens": request_func_input.output_len,
183
            "stream": not args.disable_stream,
184
            "ignore_eos": not args.disable_ignore_eos,
185
            **request_func_input.extra_request_body,
zhyncs's avatar
zhyncs committed
186
        }
187
        headers = get_auth_headers()
zhyncs's avatar
zhyncs committed
188
189
190
191
192

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
193
        output_len = request_func_input.output_len
zhyncs's avatar
zhyncs committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
208
                        latency = time.perf_counter() - st
zhyncs's avatar
zhyncs committed
209
                        if chunk == "[DONE]":
210
                            pass
zhyncs's avatar
zhyncs committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["choices"][0]["text"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
225
226
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)
zhyncs's avatar
zhyncs committed
227
228
229

                                most_recent_timestamp = timestamp
                                generated_text += data["choices"][0]["text"]
Lzhang-hub's avatar
Lzhang-hub committed
230
                                output_len = (data.get("usage") or {}).get(
231
232
                                    "completion_tokens", output_len
                                )
zhyncs's avatar
zhyncs committed
233
234
235
236

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
237
                    output.output_len = output_len
zhyncs's avatar
zhyncs committed
238
239
240
241
242
243
244
245
246
247
248
249
250
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
async def async_request_truss(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url

    prompt = request_func_input.prompt

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "model": request_func_input.model,
            "prompt": prompt,
            "temperature": 0.0,
            "best_of": 1,
            "max_tokens": request_func_input.output_len,
            "stream": not args.disable_stream,
            "ignore_eos": not args.disable_ignore_eos,
            **request_func_input.extra_request_body,
        }
270
        headers = get_auth_headers()
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
299
                            if data["choices"][0]["text"]:
300
301
302
303
304
305
306
307
308
309
310
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)

                                most_recent_timestamp = timestamp
311
                                generated_text += data["choices"][0]["text"]
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                    output.output_len = request_func_input.output_len
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
async def async_request_sglang_generate(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    prompt = request_func_input.prompt

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "text": prompt,
            "sampling_params": {
                "temperature": 0.0,
                "max_new_tokens": request_func_input.output_len,
                "ignore_eos": not args.disable_ignore_eos,
            },
            "stream": not args.disable_stream,
346
            "lora_path": request_func_input.lora_name,
347
348
            "return_logprob": args.return_logprob,
            "logprob_start_len": -1,
349
350
            **request_func_input.extra_request_body,
        }
351
352
353
354
355

        # Add image data if available
        if request_func_input.image_data:
            payload["image_data"] = request_func_input.image_data

356
        headers = get_auth_headers()
357
358
359
360
361

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
362
        output_len = request_func_input.output_len
363
364
365
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
366
        last_output_len = 0
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue
                        # print(chunk_bytes)

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["text"]:
                                timestamp = time.perf_counter()
390
391
392
                                generated_text = data["text"]
                                output_len = data["meta_info"]["completion_tokens"]

393
394
395
396
397
398
399
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
400
401
402
403
404
405
406
                                    num_new_tokens = output_len - last_output_len
                                    if num_new_tokens == 0:
                                        continue
                                    adjust_itl = (
                                        timestamp - most_recent_timestamp
                                    ) / num_new_tokens
                                    output.itl.extend([adjust_itl] * num_new_tokens)
407
408

                                most_recent_timestamp = timestamp
Lianmin Zheng's avatar
Lianmin Zheng committed
409
                                last_output_len = output_len
410
411
412
413

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
414
                    output.output_len = output_len
415
416
417
418
419
420
421
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))
422
            print(f"{output.error=}")
423
424
425
426
427
428

    if pbar:
        pbar.update(1)
    return output


429
async def async_request_gserver(
Lianmin Zheng's avatar
Lianmin Zheng committed
430
431
432
433
434
435
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    raise NotImplementedError()


436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
async def async_request_profile(api_url: str) -> RequestFuncOutput:
    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        output = RequestFuncOutput()
        try:
            async with session.post(url=api_url) as response:
                if response.status == 200:
                    output.success = True
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    return output


zhyncs's avatar
zhyncs committed
454
def get_model(pretrained_model_name_or_path: str) -> str:
455
    if os.getenv("SGLANG_USE_MODELSCOPE", "false").lower() == "true":
zhyncs's avatar
zhyncs committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
        import huggingface_hub.constants
        from modelscope import snapshot_download

        model_path = snapshot_download(
            model_id=pretrained_model_name_or_path,
            local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
            ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"],
        )

        return model_path
    return pretrained_model_name_or_path


def get_tokenizer(
    pretrained_model_name_or_path: str,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
Lianmin Zheng's avatar
Lianmin Zheng committed
472
473
474
475
476
477
478
    if pretrained_model_name_or_path.endswith(
        ".json"
    ) or pretrained_model_name_or_path.endswith(".model"):
        from sglang.srt.hf_transformers_utils import get_tokenizer

        return get_tokenizer(pretrained_model_name_or_path)

zhyncs's avatar
zhyncs committed
479
480
481
482
483
484
485
486
487
    if pretrained_model_name_or_path is not None and not os.path.exists(
        pretrained_model_name_or_path
    ):
        pretrained_model_name_or_path = get_model(pretrained_model_name_or_path)
    return AutoTokenizer.from_pretrained(
        pretrained_model_name_or_path, trust_remote_code=True
    )


488
489
490
491
492
493
494
def get_dataset(args, tokenizer):
    if args.dataset_name == "sharegpt":
        input_requests = sample_sharegpt_requests(
            dataset_path=args.dataset_path,
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            fixed_output_len=args.sharegpt_output_len,
495
            context_len=args.sharegpt_context_len,
496
            prompt_suffix=args.prompt_suffix,
497
            apply_chat_template=args.apply_chat_template,
498
        )
499
    elif args.dataset_name.startswith("random"):
500
501
502
503
504
505
506
        input_requests = sample_random_requests(
            input_len=args.random_input_len,
            output_len=args.random_output_len,
            num_prompts=args.num_prompts,
            range_ratio=args.random_range_ratio,
            tokenizer=tokenizer,
            dataset_path=args.dataset_path,
507
            random_sample=args.dataset_name == "random",
508
509
510
        )
    elif args.dataset_name == "generated-shared-prefix":
        input_requests = sample_generated_shared_prefix_requests(
511
512
513
514
515
            num_groups=args.gsp_num_groups,
            prompts_per_group=args.gsp_prompts_per_group,
            system_prompt_len=args.gsp_system_prompt_len,
            question_len=args.gsp_question_len,
            output_len=args.gsp_output_len,
516
            tokenizer=tokenizer,
517
            args=args,
518
        )
519
520
521
522
523
524
525
    elif args.dataset_name == "mmmu":
        input_requests = sample_mmmu_requests(
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            fixed_output_len=args.random_output_len,
            random_sample=True,
        )
526
527
528
529
530
    else:
        raise ValueError(f"Unknown dataset: {args.dataset_name}")
    return input_requests


zhyncs's avatar
zhyncs committed
531
ASYNC_REQUEST_FUNCS = {
532
533
534
    "sglang": async_request_sglang_generate,
    "sglang-native": async_request_sglang_generate,
    "sglang-oai": async_request_openai_completions,
zhyncs's avatar
zhyncs committed
535
536
    "vllm": async_request_openai_completions,
    "lmdeploy": async_request_openai_completions,
537
    "trt": async_request_trt_llm,
538
    "gserver": async_request_gserver,
539
    "truss": async_request_truss,
zhyncs's avatar
zhyncs committed
540
541
542
543
544
545
546
547
}


@dataclass
class BenchmarkMetrics:
    completed: int
    total_input: int
    total_output: int
Ying Sheng's avatar
Ying Sheng committed
548
    total_output_retokenized: int
zhyncs's avatar
zhyncs committed
549
550
551
    request_throughput: float
    input_throughput: float
    output_throughput: float
Ying Sheng's avatar
Ying Sheng committed
552
    output_throughput_retokenized: float
553
554
    total_throughput: float
    total_throughput_retokenized: float
zhyncs's avatar
zhyncs committed
555
556
557
558
559
560
561
562
563
564
565
    mean_ttft_ms: float
    median_ttft_ms: float
    std_ttft_ms: float
    p99_ttft_ms: float
    mean_tpot_ms: float
    median_tpot_ms: float
    std_tpot_ms: float
    p99_tpot_ms: float
    mean_itl_ms: float
    median_itl_ms: float
    std_itl_ms: float
566
    p95_itl_ms: float
zhyncs's avatar
zhyncs committed
567
    p99_itl_ms: float
568
    max_itl_ms: float
zhyncs's avatar
zhyncs committed
569
570
    mean_e2e_latency_ms: float
    median_e2e_latency_ms: float
571
572
    std_e2e_latency_ms: float
    p99_e2e_latency_ms: float
573
    concurrency: float
zhyncs's avatar
zhyncs committed
574
575


Lianmin Zheng's avatar
Lianmin Zheng committed
576
SHAREGPT_URL = "https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json"
Lianmin Zheng's avatar
Lianmin Zheng committed
577
578


Lianmin Zheng's avatar
Lianmin Zheng committed
579
580
581
582
def download_and_cache_file(url: str, filename: Optional[str] = None):
    """Read and cache a file from a url."""
    if filename is None:
        filename = os.path.join("/tmp", url.split("/")[-1])
Lianmin Zheng's avatar
Lianmin Zheng committed
583

Lianmin Zheng's avatar
Lianmin Zheng committed
584
585
586
    # Check if the cache file already exists
    if os.path.exists(filename):
        return filename
Lianmin Zheng's avatar
Lianmin Zheng committed
587

Lianmin Zheng's avatar
Lianmin Zheng committed
588
    print(f"Downloading from {url} to {filename}")
Lianmin Zheng's avatar
Lianmin Zheng committed
589

Lianmin Zheng's avatar
Lianmin Zheng committed
590
591
592
    # Stream the response to show the progress bar
    response = requests.get(url, stream=True)
    response.raise_for_status()  # Check for request errors
Lianmin Zheng's avatar
Lianmin Zheng committed
593

Lianmin Zheng's avatar
Lianmin Zheng committed
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    # Total size of the file in bytes
    total_size = int(response.headers.get("content-length", 0))
    chunk_size = 1024  # Download in chunks of 1KB

    # Use tqdm to display the progress bar
    with open(filename, "wb") as f, tqdm(
        desc=filename,
        total=total_size,
        unit="B",
        unit_scale=True,
        unit_divisor=1024,
    ) as bar:
        for chunk in response.iter_content(chunk_size=chunk_size):
            f.write(chunk)
            bar.update(len(chunk))

    return filename
Lianmin Zheng's avatar
Lianmin Zheng committed
611
612


613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
def sample_mmmu_requests(
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    fixed_output_len: Optional[int] = None,
    random_sample: bool = True,
) -> List[Tuple[str, int, int]]:
    """
    Sample requests from the MMMU dataset using HuggingFace datasets.

    Args:
        num_requests: Number of requests to sample.
        tokenizer: Tokenizer to use for token counting.
        fixed_output_len: If provided, use this fixed output length for all requests.
        random_sample: Whether to randomly sample or take the first N.

    Returns:
        List of tuples (prompt, prompt_token_len, output_token_len).
    """
    try:
        import base64
        import io

        from datasets import load_dataset
    except ImportError:
        raise ImportError("Please install datasets: pip install datasets")

    print("Loading MMMU dataset from HuggingFace...")

    try:
        print("Attempting to load MMMU Math dataset...")
        mmmu_dataset = load_dataset("MMMU/MMMU", "Math", split="test")
        print(
            f"Successfully loaded MMMU Math dataset from HuggingFace with {len(mmmu_dataset)} examples"
        )
    except Exception as e:
        print(f"Failed to load MMMU Math dataset: {e}")
        raise ValueError(f"Failed to load MMMU dataset: {e}")

    # Sample from the dataset
    if len(mmmu_dataset) > num_requests:
        if random_sample:
            # Random sample
            indices = random.sample(range(len(mmmu_dataset)), num_requests)
            sample_dataset = mmmu_dataset.select(indices)
        else:
            # Take first N
            sample_dataset = mmmu_dataset.select(
                range(min(num_requests, len(mmmu_dataset)))
            )
    else:
        print(f"Dataset has less than {num_requests} examples, using all examples")
        sample_dataset = mmmu_dataset

    print(f"Selected {len(sample_dataset)} examples for benchmarking")

    # Create prompts
    filtered_dataset = []

    for i, example in enumerate(sample_dataset):
        try:
            # Extract image_1
            image = example.get("image_1")

            if image is not None:
                if hasattr(image, "save"):
                    # Convert RGBA images to RGB before encoding
                    if image.mode == "RGBA":
                        image = image.convert("RGB")

                    # Encode image to base64
                    buffered = io.BytesIO()
                    image.save(buffered, format="JPEG")
                    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
                    image_path = f"data:image/jpeg;base64,{img_str}"
                else:
                    continue

                # Extract the question
                question = example.get("question")

                # Create the prompt with image, question
                prompt = f"Question: {question}\n\nAnswer: "
                prompt = tokenizer.apply_chat_template(
                    [
                        {
                            "role": "user",
                            "content": [
                                {"type": "image_url", "image_url": {"url": image_path}},
                                {"type": "text", "text": prompt},
                            ],
                        }
                    ],
                    add_generation_prompt=True,
                    tokenize=False,
                )
                prompt = f"<image>{image_path}</image>{prompt}"

                # Calculate token lengths
                # Note: This is approximate since we're not rendering the actual image tokens
                prompt_token_ids = tokenizer.encode(prompt)
                prompt_len = (
                    len(prompt_token_ids) + 512
                )  # Add estimate for image tokens

                output_len = fixed_output_len if fixed_output_len is not None else 256

                filtered_dataset.append((prompt, prompt_len, output_len))

        except Exception as e:
            print(f"Error processing example {i}: {e}")

    print(f"\nCreated {len(filtered_dataset)} MMMU prompts")
    return filtered_dataset


zhyncs's avatar
zhyncs committed
728
729
730
731
732
def sample_sharegpt_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    fixed_output_len: Optional[int] = None,
733
    context_len: Optional[int] = None,
734
    prompt_suffix: Optional[str] = "",
735
    apply_chat_template=False,
zhyncs's avatar
zhyncs committed
736
737
738
739
) -> List[Tuple[str, int, int]]:
    if fixed_output_len is not None and fixed_output_len < 4:
        raise ValueError("output_len too small")

Lianmin Zheng's avatar
Lianmin Zheng committed
740
    # Download sharegpt if necessary
741
    if not os.path.isfile(dataset_path) and dataset_path == "":
Lianmin Zheng's avatar
Lianmin Zheng committed
742
        dataset_path = download_and_cache_file(SHAREGPT_URL)
zhyncs's avatar
zhyncs committed
743
744
745
746

    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
747

zhyncs's avatar
zhyncs committed
748
    # Filter out the conversations with less than 2 turns.
749
750
751
752
753
    dataset = [
        data
        for data in dataset
        if len(data.get("conversations", data.get("conversation", []))) >= 2
    ]
zhyncs's avatar
zhyncs committed
754
755
    # Only keep the first two turns of each conversation.
    dataset = [
756
757
758
759
        (
            data.get("conversations", data.get("conversation", []))[0]["value"],
            data.get("conversations", data.get("conversation", []))[1]["value"],
        )
zhyncs's avatar
zhyncs committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
        for data in dataset
    ]

    # Shuffle the dataset.
    random.shuffle(dataset)

    # Filter out sequences that are too long or too short
    filtered_dataset: List[Tuple[str, int, int]] = []
    for i in range(len(dataset)):
        if len(filtered_dataset) == num_requests:
            break

        # Tokenize the prompts and completions.
        prompt = dataset[i][0]
774
        if prompt_suffix:
775
776
777
778
779
            prompt = (
                remove_suffix(prompt, ASSISTANT_SUFFIX)
                + prompt_suffix
                + ASSISTANT_SUFFIX
            )
780
781
782
783
784
785
786
787
788

        if apply_chat_template:
            prompt = tokenizer.apply_chat_template(
                [{"role": "user", "content": prompt}],
                add_generation_prompt=True,
                tokenize=False,
            )
            prompt = prompt.replace(tokenizer.bos_token, "")

Lianmin Zheng's avatar
Lianmin Zheng committed
789
        prompt_token_ids = tokenizer.encode(prompt)
zhyncs's avatar
zhyncs committed
790
        completion = dataset[i][1]
Lianmin Zheng's avatar
Lianmin Zheng committed
791
        completion_token_ids = tokenizer.encode(completion)
zhyncs's avatar
zhyncs committed
792
793
794
795
        prompt_len = len(prompt_token_ids)
        output_len = (
            len(completion_token_ids) if fixed_output_len is None else fixed_output_len
        )
796

797
        if prompt_len < 2 or output_len < 2:
zhyncs's avatar
zhyncs committed
798
799
            # Prune too short sequences.
            continue
800
801

        if context_len and prompt_len + output_len > context_len:
zhyncs's avatar
zhyncs committed
802
803
            # Prune too long sequences.
            continue
804

zhyncs's avatar
zhyncs committed
805
806
        filtered_dataset.append((prompt, prompt_len, output_len))

807
808
    print(f"#Input tokens: {np.sum([x[1] for x in filtered_dataset])}")
    print(f"#Output tokens: {np.sum([x[2] for x in filtered_dataset])}")
zhyncs's avatar
zhyncs committed
809
810
811
    return filtered_dataset


812
813
814
815
816
817
def sample_random_requests(
    input_len: int,
    output_len: int,
    num_prompts: int,
    range_ratio: float,
    tokenizer: PreTrainedTokenizerBase,
Lianmin Zheng's avatar
Lianmin Zheng committed
818
    dataset_path: str,
819
    random_sample: bool = True,
820
821
) -> List[Tuple[str, int, int]]:
    input_lens = np.random.randint(
Yineng Zhang's avatar
Yineng Zhang committed
822
        max(int(input_len * range_ratio), 1),
823
824
825
826
827
828
829
830
        input_len + 1,
        size=num_prompts,
    )
    output_lens = np.random.randint(
        int(output_len * range_ratio),
        output_len + 1,
        size=num_prompts,
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
831

832
    if random_sample:
Lianmin Zheng's avatar
Lianmin Zheng committed
833
834
835
        # Sample token ids from ShareGPT and repeat/truncate them to satisfy the input_lens

        # Download sharegpt if necessary
Lianmin Zheng's avatar
Lianmin Zheng committed
836
837
        if not os.path.isfile(dataset_path):
            dataset_path = download_and_cache_file(SHAREGPT_URL)
Lianmin Zheng's avatar
Lianmin Zheng committed
838
839
840
841
842

        # Load the dataset.
        with open(dataset_path) as f:
            dataset = json.load(f)
        # Filter out the conversations with less than 2 turns.
843
844
845
846
847
        dataset = [
            data
            for data in dataset
            if len(data.get("conversations", data.get("conversation", []))) >= 2
        ]
Lianmin Zheng's avatar
Lianmin Zheng committed
848
849
        # Only keep the first two turns of each conversation.
        dataset = [
850
851
852
853
            (
                data.get("conversations", data.get("conversation", []))[0]["value"],
                data.get("conversations", data.get("conversation", []))[1]["value"],
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
854
855
856
857
858
859
860
            for data in dataset
        ]
        # Shuffle the dataset.
        random.shuffle(dataset)

        # Filter out sequences that are too long or too short
        input_requests: List[Tuple[str, int, int]] = []
861
862
863
864
865
        for data in dataset:
            i = len(input_requests)
            if i == num_prompts:
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
866
            # Tokenize the prompts and completions.
867
            prompt = data[0]
Lianmin Zheng's avatar
Lianmin Zheng committed
868
            prompt_token_ids = tokenizer.encode(prompt)
Lianmin Zheng's avatar
Lianmin Zheng committed
869
870
            prompt_len = len(prompt_token_ids)

871
872
873
874
            # Skip empty prompt
            if prompt_len == 0:
                continue

Yineng Zhang's avatar
Yineng Zhang committed
875
            if prompt_len > input_lens[i]:
Lianmin Zheng's avatar
Lianmin Zheng committed
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
                input_ids = prompt_token_ids[: input_lens[i]]
            else:
                ratio = (input_lens[i] + prompt_len - 1) // prompt_len
                input_ids = (prompt_token_ids * ratio)[: input_lens[i]]
            prompt = tokenizer.decode(input_ids)
            input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
    else:
        # Sample token ids from random integers. This can cause some NaN issues.
        offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
        input_requests = []
        for i in range(num_prompts):
            prompt = tokenizer.decode(
                [
                    (offsets[i] + i + j) % tokenizer.vocab_size
                    for j in range(input_lens[i])
                ]
            )
            input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
894
895
896
897
898
899

    print(f"#Input tokens: {np.sum(input_lens)}")
    print(f"#Output tokens: {np.sum(output_lens)}")
    return input_requests


900
901
902
903
904
905
906
def gen_prompt(tokenizer, token_num):
    """Generate a random prompt of specified token length using tokenizer vocabulary."""
    all_available_tokens = list(tokenizer.get_vocab().values())
    selected_tokens = random.choices(all_available_tokens, k=token_num)
    return tokenizer.decode(selected_tokens)


907
908
909
910
911
912
def get_gen_prefix_cache_path(args, tokenizer):
    """Create cache directory under ~/.cache/sglang/benchmark"""
    cache_dir = Path.home() / ".cache" / "sglang" / "benchmark"

    # Create a unique cache filename based on the generation parameters
    cache_key = (
913
914
        f"gen_shared_prefix_{args.gsp_num_groups}_{args.gsp_prompts_per_group}_"
        f"{args.gsp_system_prompt_len}_{args.gsp_question_len}_{args.gsp_output_len}_"
915
916
917
918
919
        f"{tokenizer.__class__.__name__}.pkl"
    )
    return cache_dir / cache_key


920
921
922
923
924
925
926
def sample_generated_shared_prefix_requests(
    num_groups: int,
    prompts_per_group: int,
    system_prompt_len: int,
    question_len: int,
    output_len: int,
    tokenizer: PreTrainedTokenizerBase,
927
    args: argparse.Namespace,
928
) -> List[Tuple[str, int, int]]:
929
930
931
932
933
934
935
    """Generate benchmark requests with shared system prompts using random tokens and caching."""
    cache_path = get_gen_prefix_cache_path(args, tokenizer)

    # Try to load from cache first
    if cache_path.exists():
        print(f"\nLoading cached generated input data from {cache_path}")
        with open(cache_path, "rb") as f:
936
937
            return pickle.load(f)

938
939
    print("\nGenerating new input data...")

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
    # Generate system prompts for each group
    system_prompts = []
    for _ in range(num_groups):
        system_prompt = gen_prompt(tokenizer, system_prompt_len)
        system_prompts.append(system_prompt)

    # Generate questions
    questions = []
    for _ in range(num_groups * prompts_per_group):
        question = gen_prompt(tokenizer, question_len)
        questions.append(question)

    # Combine system prompts with questions
    input_requests = []
    total_input_tokens = 0
    total_output_tokens = 0

957
    for group_idx in tqdm(range(num_groups), desc="Generating system prompt"):
958
        system_prompt = system_prompts[group_idx]
959
960
961
        for prompt_idx in tqdm(
            range(prompts_per_group), desc="Generating questions", leave=False
        ):
962
963
964
965
966
967
968
969
            question = questions[group_idx * prompts_per_group + prompt_idx]
            full_prompt = f"{system_prompt}\n\n{question}"
            prompt_len = len(tokenizer.encode(full_prompt))

            input_requests.append((full_prompt, prompt_len, output_len))
            total_input_tokens += prompt_len
            total_output_tokens += output_len

970
971
972
973
    # Shuffle questions
    random.shuffle(input_requests)

    # Print statistics
974
975
976
977
978
979
980
981
982
983
984
985
    print(f"\nGenerated shared prefix dataset statistics:")
    print(f"Number of groups: {num_groups}")
    print(f"Prompts per group: {prompts_per_group}")
    print(f"Total prompts: {len(input_requests)}")
    print(f"Total input tokens: {total_input_tokens}")
    print(f"Total output tokens: {total_output_tokens}")
    print(
        f"Average system prompt length: {sum(len(tokenizer.encode(sp)) for sp in system_prompts) / len(system_prompts):.1f} tokens"
    )
    print(
        f"Average question length: {sum(len(tokenizer.encode(q)) for q in questions) / len(questions):.1f} tokens\n"
    )
986
987
988
989
990
991

    # Save to cache
    cache_path.parent.mkdir(parents=True, exist_ok=True)
    print(f"Caching generated input data to {cache_path}")
    with open(cache_path, "wb") as f:
        pickle.dump(input_requests, f)
992
993
994
995

    return input_requests


zhyncs's avatar
zhyncs committed
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
async def get_request(
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
    input_requests = iter(input_requests)
    for request in input_requests:
        yield request

        if request_rate == float("inf"):
            # If the request rate is infinity, then we don't need to wait.
            continue

        # Sample the request interval from the exponential distribution.
        interval = np.random.exponential(1.0 / request_rate)
        # The next request will be sent after the interval.
        await asyncio.sleep(interval)


def calculate_metrics(
    input_requests: List[Tuple[str, int, int]],
    outputs: List[RequestFuncOutput],
    dur_s: float,
    tokenizer: PreTrainedTokenizerBase,
1019
    backend: str,
zhyncs's avatar
zhyncs committed
1020
) -> Tuple[BenchmarkMetrics, List[int]]:
Ying Sheng's avatar
Ying Sheng committed
1021
1022
    output_lens: List[int] = []
    retokenized_output_lens: List[int] = []
zhyncs's avatar
zhyncs committed
1023
1024
1025
1026
1027
    total_input = 0
    completed = 0
    itls: List[float] = []
    tpots: List[float] = []
    ttfts: List[float] = []
zhyncs's avatar
zhyncs committed
1028
    e2e_latencies: List[float] = []
zhyncs's avatar
zhyncs committed
1029
1030
    for i in range(len(outputs)):
        if outputs[i].success:
Ying Sheng's avatar
Ying Sheng committed
1031
1032
1033
            output_len = outputs[i].output_len
            output_lens.append(output_len)
            retokenized_output_len = len(
Lianmin Zheng's avatar
Lianmin Zheng committed
1034
                tokenizer.encode(outputs[i].generated_text, add_special_tokens=False)
Ying Sheng's avatar
Ying Sheng committed
1035
1036
            )
            retokenized_output_lens.append(retokenized_output_len)
zhyncs's avatar
zhyncs committed
1037
1038
1039
1040
1041
            total_input += input_requests[i][1]
            if output_len > 1:
                tpots.append((outputs[i].latency - outputs[i].ttft) / (output_len - 1))
            itls += outputs[i].itl
            ttfts.append(outputs[i].ttft)
zhyncs's avatar
zhyncs committed
1042
1043
1044

            e2e_latencies.append(outputs[i].latency)

zhyncs's avatar
zhyncs committed
1045
1046
            completed += 1
        else:
Ying Sheng's avatar
Ying Sheng committed
1047
1048
            output_lens.append(0)
            retokenized_output_lens.append(0)
zhyncs's avatar
zhyncs committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

    if completed == 0:
        warnings.warn(
            "All requests failed. This is likely due to a misconfiguration "
            "on the benchmark arguments.",
            stacklevel=2,
        )
    metrics = BenchmarkMetrics(
        completed=completed,
        total_input=total_input,
Ying Sheng's avatar
Ying Sheng committed
1059
1060
        total_output=sum(output_lens),
        total_output_retokenized=sum(retokenized_output_lens),
zhyncs's avatar
zhyncs committed
1061
1062
        request_throughput=completed / dur_s,
        input_throughput=total_input / dur_s,
Ying Sheng's avatar
Ying Sheng committed
1063
1064
        output_throughput=sum(output_lens) / dur_s,
        output_throughput_retokenized=sum(retokenized_output_lens) / dur_s,
1065
1066
1067
        total_throughput=(total_input + sum(output_lens)) / dur_s,
        total_throughput_retokenized=(total_input + sum(retokenized_output_lens))
        / dur_s,
zhyncs's avatar
zhyncs committed
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
        mean_ttft_ms=np.mean(ttfts or 0)
        * 1000,  # ttfts is empty if streaming is not supported by backend
        median_ttft_ms=np.median(ttfts or 0) * 1000,
        std_ttft_ms=np.std(ttfts or 0) * 1000,
        p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
        mean_tpot_ms=np.mean(tpots or 0) * 1000,
        median_tpot_ms=np.median(tpots or 0) * 1000,
        std_tpot_ms=np.std(tpots or 0) * 1000,
        p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
        mean_itl_ms=np.mean(itls or 0) * 1000,
        median_itl_ms=np.median(itls or 0) * 1000,
        std_itl_ms=np.std(itls or 0) * 1000,
1080
        p95_itl_ms=np.percentile(itls or 0, 95) * 1000,
zhyncs's avatar
zhyncs committed
1081
        p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
1082
        max_itl_ms=np.max(itls or 0) * 1000,
zhyncs's avatar
zhyncs committed
1083
1084
        mean_e2e_latency_ms=np.mean(e2e_latencies) * 1000,
        median_e2e_latency_ms=np.median(e2e_latencies) * 1000,
1085
1086
        std_e2e_latency_ms=np.std(e2e_latencies) * 1000,
        p99_e2e_latency_ms=np.percentile(e2e_latencies, 99) * 1000,
1087
        concurrency=np.sum(e2e_latencies) / dur_s,
zhyncs's avatar
zhyncs committed
1088
1089
    )

Ying Sheng's avatar
Ying Sheng committed
1090
    return metrics, output_lens
zhyncs's avatar
zhyncs committed
1091
1092
1093
1094
1095


async def benchmark(
    backend: str,
    api_url: str,
1096
    base_url: str,
zhyncs's avatar
zhyncs committed
1097
1098
1099
1100
    model_id: str,
    tokenizer: PreTrainedTokenizerBase,
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
1101
    max_concurrency: Optional[int],
zhyncs's avatar
zhyncs committed
1102
    disable_tqdm: bool,
1103
    lora_names: List[str],
1104
    extra_request_body: Dict[str, Any],
1105
    profile: bool,
1106
    pd_seperated: bool = False,
Yineng Zhang's avatar
Yineng Zhang committed
1107
    flush_cache: bool = False,
1108
    warmup_requests: int = 1,
zhyncs's avatar
zhyncs committed
1109
1110
1111
1112
1113
1114
):
    if backend in ASYNC_REQUEST_FUNCS:
        request_func = ASYNC_REQUEST_FUNCS[backend]
    else:
        raise ValueError(f"Unknown backend: {backend}")

1115
    # Limit concurrency
1116
1117
1118
1119
1120
1121
1122
1123
1124
    # From https://github.com/vllm-project/vllm/pull/9390
    semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None

    async def limited_request_func(request_func_input, pbar):
        if semaphore is None:
            return await request_func(request_func_input=request_func_input, pbar=pbar)
        async with semaphore:
            return await request_func(request_func_input=request_func_input, pbar=pbar)

1125
    # Warmup
1126
    print(f"Starting warmup with {warmup_requests} sequences...")
1127
1128

    # Use the first request for all warmup iterations
zhyncs's avatar
zhyncs committed
1129
    test_prompt, test_prompt_len, test_output_len = input_requests[0]
1130
    if lora_names is not None and len(lora_names) != 0:
1131
1132
1133
1134
        lora_name = lora_names[0]
    else:
        lora_name = None

1135
1136
1137
1138
1139
1140
1141
1142
1143
    if "<image>" in test_prompt:
        import re

        image_match = re.search(r"<image>(.*?)</image>(.*)", test_prompt)
        image_data = image_match.group(1) if image_match else None
        test_prompt = image_match.group(2) if image_match else test_prompt
    else:
        image_data = None

1144
    # Create the test input once
zhyncs's avatar
zhyncs committed
1145
1146
1147
1148
1149
    test_input = RequestFuncInput(
        model=model_id,
        prompt=test_prompt,
        api_url=api_url,
        prompt_len=test_prompt_len,
1150
        output_len=min(test_output_len, 32),
1151
        lora_name=lora_name,
1152
        image_data=image_data,
1153
        extra_request_body=extra_request_body,
zhyncs's avatar
zhyncs committed
1154
    )
1155
1156
1157

    # Run warmup requests
    warmup_tasks = []
1158
    for _ in range(warmup_requests):
1159
1160
1161
1162
1163
1164
1165
        warmup_tasks.append(
            asyncio.create_task(request_func(request_func_input=test_input))
        )

    warmup_outputs = await asyncio.gather(*warmup_tasks)

    # Check if at least one warmup request succeeded
1166
    if warmup_requests > 0 and not any(output.success for output in warmup_outputs):
zhyncs's avatar
zhyncs committed
1167
        raise ValueError(
1168
1169
            "Warmup failed - Please make sure benchmark arguments "
            f"are correctly specified. Error: {warmup_outputs[0].error}"
zhyncs's avatar
zhyncs committed
1170
1171
        )
    else:
1172
1173
1174
        print(
            f"Warmup completed with {args.warmup_requests} sequences. Starting main benchmark run..."
        )
zhyncs's avatar
zhyncs committed
1175

1176
    # Flush cache
Yineng Zhang's avatar
Yineng Zhang committed
1177
    if ("sglang" in backend and _get_bool_env_var("SGLANG_IS_IN_CI")) or flush_cache:
1178
        requests.post(base_url + "/flush_cache", headers=get_auth_headers())
1179
1180

    time.sleep(1.0)
1181

1182
    # Start profiler
1183
1184
1185
1186
1187
1188
1189
1190
    if profile:
        print("Starting profiler...")
        profile_output = await async_request_profile(
            api_url=base_url + "/start_profile"
        )
        if profile_output.success:
            print("Profiler started")

zhyncs's avatar
zhyncs committed
1191
1192
    pbar = None if disable_tqdm else tqdm(total=len(input_requests))

1193
    # Run all requests
zhyncs's avatar
zhyncs committed
1194
1195
1196
1197
    benchmark_start_time = time.perf_counter()
    tasks: List[asyncio.Task] = []
    async for request in get_request(input_requests, request_rate):
        prompt, prompt_len, output_len = request
1198
        if lora_names is not None and len(lora_names) != 0:
1199
1200
1201
1202
1203
            idx = random.randint(0, len(lora_names) - 1)
            lora_name = lora_names[idx]
        else:
            lora_name = None

1204
1205
1206
1207
1208
1209
1210
1211
1212
        if "<image>" in prompt:
            import re

            image_match = re.search(r"<image>(.*?)</image>(.*)", prompt)
            image_data = image_match.group(1) if image_match else None
            prompt = image_match.group(2) if image_match else prompt
        else:
            image_data = None

zhyncs's avatar
zhyncs committed
1213
1214
1215
1216
1217
1218
        request_func_input = RequestFuncInput(
            model=model_id,
            prompt=prompt,
            api_url=api_url,
            prompt_len=prompt_len,
            output_len=output_len,
1219
            lora_name=lora_name,
1220
            image_data=image_data,
1221
            extra_request_body=extra_request_body,
zhyncs's avatar
zhyncs committed
1222
1223
1224
        )
        tasks.append(
            asyncio.create_task(
1225
                limited_request_func(request_func_input=request_func_input, pbar=pbar)
zhyncs's avatar
zhyncs committed
1226
1227
1228
1229
            )
        )
    outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)

1230
    # Stop profiler
1231
1232
1233
1234
1235
1236
    if profile:
        print("Stopping profiler...")
        profile_output = await async_request_profile(api_url=base_url + "/stop_profile")
        if profile_output.success:
            print("Profiler stopped")

zhyncs's avatar
zhyncs committed
1237
1238
1239
    if pbar is not None:
        pbar.close()

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
    if "sglang" in backend:
        server_info = requests.get(base_url + "/get_server_info")
        if pd_seperated:
            accept_length = server_info.json()["decode"][0].get(
                "avg_spec_accept_length", None
            )
        else:
            accept_length = server_info.json().get("avg_spec_accept_length", None)
    else:
        accept_length = None

1251
    # Compute metrics and print results
zhyncs's avatar
zhyncs committed
1252
    benchmark_duration = time.perf_counter() - benchmark_start_time
Ying Sheng's avatar
Ying Sheng committed
1253
    metrics, output_lens = calculate_metrics(
zhyncs's avatar
zhyncs committed
1254
1255
1256
1257
        input_requests=input_requests,
        outputs=outputs,
        dur_s=benchmark_duration,
        tokenizer=tokenizer,
1258
        backend=backend,
zhyncs's avatar
zhyncs committed
1259
1260
1261
    )

    print("\n{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
1262
    print("{:<40} {:<10}".format("Backend:", backend))
zhyncs's avatar
zhyncs committed
1263
    print("{:<40} {:<10}".format("Traffic request rate:", request_rate))
1264
1265
1266
1267
1268
1269
    print(
        "{:<40} {:<10}".format(
            "Max reqeuest concurrency:",
            max_concurrency if max_concurrency else "not set",
        )
    )
zhyncs's avatar
zhyncs committed
1270
1271
1272
1273
    print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
    print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
    print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
    print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
Ying Sheng's avatar
Ying Sheng committed
1274
1275
1276
1277
1278
    print(
        "{:<40} {:<10}".format(
            "Total generated tokens (retokenized):", metrics.total_output_retokenized
        )
    )
zhyncs's avatar
zhyncs committed
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
    print(
        "{:<40} {:<10.2f}".format(
            "Request throughput (req/s):", metrics.request_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Input token throughput (tok/s):", metrics.input_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Output token throughput (tok/s):", metrics.output_throughput
        )
    )
1294
1295
1296
1297
1298
    print(
        "{:<40} {:<10.2f}".format(
            "Total token throughput (tok/s):", metrics.total_throughput
        )
    )
1299
    print("{:<40} {:<10.2f}".format("Concurrency:", metrics.concurrency))
1300
1301
    if accept_length:
        print("{:<40} {:<10.2f}".format("Accept length:", accept_length))
zhyncs's avatar
zhyncs committed
1302
1303
1304
1305
1306
1307
1308
1309
1310
    print("{s:{c}^{n}}".format(s="End-to-End Latency", n=50, c="-"))
    print(
        "{:<40} {:<10.2f}".format("Mean E2E Latency (ms):", metrics.mean_e2e_latency_ms)
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Median E2E Latency (ms):", metrics.median_e2e_latency_ms
        )
    )
zhyncs's avatar
zhyncs committed
1311
1312
1313
1314
    print("{s:{c}^{n}}".format(s="Time to First Token", n=50, c="-"))
    print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
    print("{:<40} {:<10.2f}".format("Median TTFT (ms):", metrics.median_ttft_ms))
    print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
1315
    print("{s:{c}^{n}}".format(s="Inter-Token Latency", n=50, c="-"))
zhyncs's avatar
zhyncs committed
1316
1317
    print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))
    print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))
1318
    print("{:<40} {:<10.2f}".format("P95 ITL (ms):", metrics.p95_itl_ms))
zhyncs's avatar
zhyncs committed
1319
    print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms))
1320
    print("{:<40} {:<10.2f}".format("Max ITL (ms):", metrics.max_itl_ms))
zhyncs's avatar
zhyncs committed
1321
1322
    print("=" * 50)

zhyncs's avatar
zhyncs committed
1323
1324
1325
1326
1327
1328
    if (
        metrics.median_ttft_ms is not None
        and metrics.mean_itl_ms is not None
        and metrics.output_throughput is not None
    ):
        result = {
1329
            # Arguments
zhyncs's avatar
zhyncs committed
1330
1331
1332
            "backend": args.backend,
            "dataset_name": args.dataset_name,
            "request_rate": request_rate,
1333
            "max_concurrency": max_concurrency,
1334
1335
1336
1337
1338
1339
1340
            "sharegpt_output_len": args.sharegpt_output_len,
            "random_input_len": args.random_input_len,
            "random_output_len": args.random_output_len,
            "random_range_ratio": args.random_range_ratio,
            # Results
            "duration": benchmark_duration,
            "completed": metrics.completed,
1341
1342
1343
            "total_input_tokens": metrics.total_input,
            "total_output_tokens": metrics.total_output,
            "total_output_tokens_retokenized": metrics.total_output_retokenized,
1344
1345
1346
            "request_throughput": metrics.request_throughput,
            "input_throughput": metrics.input_throughput,
            "output_throughput": metrics.output_throughput,
1347
1348
            "mean_e2e_latency_ms": metrics.mean_e2e_latency_ms,
            "median_e2e_latency_ms": metrics.median_e2e_latency_ms,
1349
1350
            "std_e2e_latency_ms": metrics.std_e2e_latency_ms,
            "p99_e2e_latency_ms": metrics.p99_e2e_latency_ms,
1351
            "mean_ttft_ms": metrics.mean_ttft_ms,
1352
            "median_ttft_ms": metrics.median_ttft_ms,
1353
1354
1355
1356
1357
1358
            "std_ttft_ms": metrics.std_ttft_ms,
            "p99_ttft_ms": metrics.p99_ttft_ms,
            "mean_tpot_ms": metrics.mean_tpot_ms,
            "median_tpot_ms": metrics.median_tpot_ms,
            "std_tpot_ms": metrics.std_tpot_ms,
            "p99_tpot_ms": metrics.p99_tpot_ms,
1359
            "mean_itl_ms": metrics.mean_itl_ms,
1360
            "median_itl_ms": metrics.median_itl_ms,
1361
            "std_itl_ms": metrics.std_itl_ms,
1362
            "p95_itl_ms": metrics.p95_itl_ms,
1363
            "p99_itl_ms": metrics.p99_itl_ms,
1364
            "concurrency": metrics.concurrency,
1365
            "accept_length": accept_length,
zhyncs's avatar
zhyncs committed
1366
1367
1368
1369
        }
    else:
        print(f"Error running benchmark for request rate: {request_rate}")
        print("-" * 30)
1370

zhyncs's avatar
zhyncs committed
1371
1372
1373
1374
1375
    # Determine output file name
    if args.output_file:
        output_file_name = args.output_file
    else:
        now = datetime.now().strftime("%m%d")
1376
        if args.dataset_name.startswith("random"):
zhyncs's avatar
zhyncs committed
1377
            output_file_name = f"{args.backend}_{now}_{args.num_prompts}_{args.random_input_len}_{args.random_output_len}.jsonl"
1378
        else:
zhyncs's avatar
zhyncs committed
1379
            output_file_name = f"{args.backend}_{now}_{args.num_prompts}_sharegpt.jsonl"
1380

zhyncs's avatar
zhyncs committed
1381
1382
1383
    # Append results to a JSONL file
    with open(output_file_name, "a") as file:
        file.write(json.dumps(result) + "\n")
1384

1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
    result.update(
        {
            "input_lens": [output.prompt_len for output in outputs],
            "output_lens": output_lens,
            "ttfts": [output.ttft for output in outputs],
            "itls": [output.itl for output in outputs],
            "generated_texts": [output.generated_text for output in outputs],
            "errors": [output.error for output in outputs],
        }
    )
zhyncs's avatar
zhyncs committed
1395
1396
1397
    return result


1398
1399
1400
1401
1402
1403
1404
1405
1406
def check_chat_template(model_path):
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        return "chat_template" in tokenizer.init_kwargs
    except Exception as e:
        print(f"Fail to load tokenizer config with error={e}")
        return False


1407
1408
1409
1410
1411
1412
def set_global_args(args_: argparse.Namespace):
    """Set the global args."""
    global args
    args = args_


1413
1414
1415
1416
def run_benchmark(args_: argparse.Namespace):
    global args
    args = args_

1417
1418
1419
1420
    # Set default value for max_concurrency if not present
    if not hasattr(args, "max_concurrency"):
        args.max_concurrency = None

1421
1422
1423
1424
    # Set default value for warmup_requests if not present
    if not hasattr(args, "warmup_requests"):
        args.warmup_requests = 1

1425
1426
    print(f"benchmark_args={args}")

Lianmin Zheng's avatar
Lianmin Zheng committed
1427
    # Set global environments
1428
    set_ulimit()
zhyncs's avatar
zhyncs committed
1429
1430
1431
    random.seed(args.seed)
    np.random.seed(args.seed)

1432
1433
1434
1435
    extra_request_body = {}
    if args.extra_request_body:
        extra_request_body = json.loads(args.extra_request_body)

Lianmin Zheng's avatar
Lianmin Zheng committed
1436
    # Set url
zhyncs's avatar
zhyncs committed
1437
1438
1439
    if args.port is None:
        args.port = {
            "sglang": 30000,
1440
1441
            "sglang-native": 30000,
            "sglang-oai": 30000,
zhyncs's avatar
zhyncs committed
1442
1443
            "lmdeploy": 23333,
            "vllm": 8000,
1444
            "trt": 8000,
1445
            "gserver": 9988,
1446
            "truss": 8080,
zhyncs's avatar
zhyncs committed
1447
1448
1449
1450
1451
1452
1453
1454
        }.get(args.backend, 30000)

    model_url = (
        f"{args.base_url}/v1/models"
        if args.base_url
        else f"http://{args.host}:{args.port}/v1/models"
    )

1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
    if args.backend in ["sglang", "sglang-native"]:
        api_url = (
            f"{args.base_url}/generate"
            if args.base_url
            else f"http://{args.host}:{args.port}/generate"
        )
    elif args.backend in ["sglang-oai", "vllm", "lmdeploy"]:
        api_url = (
            f"{args.base_url}/v1/completions"
            if args.base_url
            else f"http://{args.host}:{args.port}/v1/completions"
        )
    elif args.backend == "trt":
1468
1469
1470
1471
1472
1473
1474
1475
        api_url = (
            f"{args.base_url}/v2/models/ensemble/generate_stream"
            if args.base_url
            else f"http://{args.host}:{args.port}/v2/models/ensemble/generate_stream"
        )
        if args.model is None:
            print("Please provide a model using `--model` when using `trt` backend.")
            sys.exit(1)
1476
    elif args.backend == "gserver":
Lianmin Zheng's avatar
Lianmin Zheng committed
1477
1478
        api_url = args.base_url if args.base_url else f"{args.host}:{args.port}"
        args.model = args.model or "default"
1479
1480
1481
1482
1483
1484
    elif args.backend == "truss":
        api_url = (
            f"{args.base_url}/v1/models/model:predict"
            if args.base_url
            else f"http://{args.host}:{args.port}/v1/models/model:predict"
        )
1485
1486
1487
    base_url = (
        f"http://{args.host}:{args.port}" if args.base_url is None else args.base_url
    )
1488

Lianmin Zheng's avatar
Lianmin Zheng committed
1489
    # Get model name
zhyncs's avatar
zhyncs committed
1490
    if args.model is None:
1491
1492
1493
1494
1495
        if args.backend == "truss":
            print(
                "Please provide a model with `--model` when using truss backend. e.g. --model meta-llama/Llama-3.1-8B-Instruct"
            )
            sys.exit(1)
zhyncs's avatar
zhyncs committed
1496
        try:
1497
            response = requests.get(model_url, headers=get_auth_headers())
zhyncs's avatar
zhyncs committed
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
            model_list = response.json().get("data", [])
            args.model = model_list[0]["id"] if model_list else None
        except Exception as e:
            print(f"Failed to fetch model from {model_url}. Error: {e}")
            print(
                "Please specify the correct host and port using `--host` and `--port`."
            )
            sys.exit(1)

    if args.model is None:
        print("No model specified or found. Please provide a model using `--model`.")
        sys.exit(1)

1511
1512
1513
1514
1515
1516
    if not check_chat_template(args.model):
        print(
            "\nWARNING It is recommended to use the `Chat` or `Instruct` model for benchmarking.\n"
            "Because when the tokenizer counts the output tokens, if there is gibberish, it might count incorrectly.\n"
        )

zhyncs's avatar
zhyncs committed
1517
1518
    print(f"{args}\n")

Lianmin Zheng's avatar
Lianmin Zheng committed
1519
    # Read dataset
zhyncs's avatar
zhyncs committed
1520
1521
1522
1523
    backend = args.backend
    model_id = args.model
    tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
    tokenizer = get_tokenizer(tokenizer_id)
1524
    input_requests = get_dataset(args, tokenizer)
zhyncs's avatar
zhyncs committed
1525

Yineng Zhang's avatar
Yineng Zhang committed
1526
1527
1528
1529
    # compatible with SimpleNamespace
    if not hasattr(args, "flush_cache"):
        args.flush_cache = False

1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
    return asyncio.run(
        benchmark(
            backend=backend,
            api_url=api_url,
            base_url=base_url,
            model_id=model_id,
            tokenizer=tokenizer,
            input_requests=input_requests,
            request_rate=args.request_rate,
            max_concurrency=args.max_concurrency,
            disable_tqdm=args.disable_tqdm,
1541
            lora_names=args.lora_name,
1542
1543
1544
            extra_request_body=extra_request_body,
            profile=args.profile,
            pd_seperated=args.pd_seperated,
Yineng Zhang's avatar
Yineng Zhang committed
1545
            flush_cache=args.flush_cache,
Lianmin Zheng's avatar
Lianmin Zheng committed
1546
        )
1547
    )
zhyncs's avatar
zhyncs committed
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560


def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
            print(f"Fail to set RLIMIT_NOFILE: {e}")


1561
1562
1563
1564
1565
1566
1567
class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, [])
        for lora_name in values:
            getattr(namespace, self.dest).append(lora_name)


zhyncs's avatar
zhyncs committed
1568
if __name__ == "__main__":
1569
    parser = ArgumentParser(description="Benchmark the online serving throughput.")
zhyncs's avatar
zhyncs committed
1570
1571
1572
1573
    parser.add_argument(
        "--backend",
        type=str,
        choices=list(ASYNC_REQUEST_FUNCS.keys()),
1574
        default="sglang",
zhyncs's avatar
zhyncs committed
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
        help="Must specify a backend, depending on the LLM Inference Engine.",
    )
    parser.add_argument(
        "--base-url",
        type=str,
        default=None,
        help="Server or API base url if not using http host and port.",
    )
    parser.add_argument(
        "--host", type=str, default="0.0.0.0", help="Default host is 0.0.0.0."
    )
    parser.add_argument(
        "--port",
        type=int,
        help="If not set, the default port is configured according to its default value for different LLM Inference Engines.",
    )
    parser.add_argument(
1592
1593
1594
        "--dataset-name",
        type=str,
        default="sharegpt",
1595
        choices=["sharegpt", "random", "random-ids", "generated-shared-prefix", "mmmu"],
1596
1597
1598
1599
        help="Name of the dataset to benchmark on.",
    )
    parser.add_argument(
        "--dataset-path", type=str, default="", help="Path to the dataset."
zhyncs's avatar
zhyncs committed
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
    )
    parser.add_argument(
        "--model",
        type=str,
        help="Name or path of the model. If not set, the default model will request /v1/models for conf.",
    )
    parser.add_argument(
        "--tokenizer",
        type=str,
        help="Name or path of the tokenizer. If not set, using the model conf.",
    )
    parser.add_argument(
        "--num-prompts",
        type=int,
        default=1000,
        help="Number of prompts to process. Default is 1000.",
    )
    parser.add_argument(
        "--sharegpt-output-len",
        type=int,
        default=None,
        help="Output length for each request. Overrides the output length from the ShareGPT dataset.",
    )
1623
1624
1625
1626
1627
1628
    parser.add_argument(
        "--sharegpt-context-len",
        type=int,
        default=None,
        help="The context length of the model for the ShareGPT dataset. Requests longer than the context length will be dropped.",
    )
1629
1630
1631
    parser.add_argument(
        "--random-input-len",
        type=int,
1632
        default=1024,
1633
1634
1635
1636
        help="Number of input tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-output-len",
1637
        default=1024,
1638
1639
1640
1641
1642
1643
        type=int,
        help="Number of output tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-range-ratio",
        type=float,
Yineng Zhang's avatar
Yineng Zhang committed
1644
        default=0.0,
1645
1646
1647
        help="Range of sampled ratio of input/output length, "
        "used only for random dataset.",
    )
zhyncs's avatar
zhyncs committed
1648
1649
1650
    parser.add_argument(
        "--request-rate",
        type=float,
1651
        default=float("inf"),
zhyncs's avatar
zhyncs committed
1652
        help="Number of requests per second. If this is inf, then all the requests are sent at time 0. "
min-xu-et's avatar
min-xu-et committed
1653
        "Otherwise, we use Poisson process to synthesize the request arrival times. Default is inf.",
zhyncs's avatar
zhyncs committed
1654
    )
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
    parser.add_argument(
        "--max-concurrency",
        type=int,
        default=None,
        help="Maximum number of concurrent requests. This can be used "
        "to help simulate an environment where a higher level component "
        "is enforcing a maximum number of concurrent requests. While the "
        "--request-rate argument controls the rate at which requests are "
        "initiated, this argument will control how many are actually allowed "
        "to execute at a time. This means that when used in combination, the "
        "actual request rate may be lower than specified with --request-rate, "
        "if the server is not processing requests fast enough to keep up.",
    )
1668
    parser.add_argument("--output-file", type=str, help="Output JSONL file name.")
1669
1670
1671
1672
1673
    parser.add_argument(
        "--disable-tqdm",
        action="store_true",
        help="Specify to disable tqdm progress bar.",
    )
1674
1675
1676
1677
1678
    parser.add_argument(
        "--disable-stream",
        action="store_true",
        help="Disable streaming mode.",
    )
1679
    parser.add_argument(
1680
        "--return-logprob",
1681
        action="store_true",
1682
        help="Return logprob.",
1683
    )
1684
    parser.add_argument("--seed", type=int, default=1, help="The random seed.")
1685
    parser.add_argument(
1686
        "--disable-ignore-eos",
1687
        action="store_true",
1688
        help="Disable ignoring EOS.",
1689
    )
1690
1691
1692
1693
1694
1695
1696
    parser.add_argument(
        "--extra-request-body",
        metavar='{"key1": "value1", "key2": "value2"}',
        type=str,
        help="Append given JSON object to the request payload. You can use this to specify"
        "additional generate params like sampling params.",
    )
1697
1698
1699
1700
1701
    parser.add_argument(
        "--apply-chat-template",
        action="store_true",
        help="Apply chat template",
    )
1702
1703
1704
1705
1706
1707
1708
1709
1710
    parser.add_argument(
        "--profile",
        action="store_true",
        help="Use Torch Profiler. The endpoint must be launched with "
        "SGLANG_TORCH_PROFILER_DIR to enable profiler.",
    )
    parser.add_argument(
        "--lora-name",
        type=str,
1711
        nargs="*",
1712
        default=None,
1713
1714
        action=LoRAPathAction,
        help="The names of LoRA adapters. You can provide a list of names in the format {name} {name} {name}...",
1715
    )
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
    parser.add_argument(
        "--prompt-suffix",
        type=str,
        default="",
        help="Suffix applied to the end of all user prompts, followed by assistant prompt suffix.",
    )
    parser.add_argument(
        "--pd-seperated",
        action="store_true",
        help="Benchmark PD disaggregation server",
    )
Yineng Zhang's avatar
Yineng Zhang committed
1727
1728
1729
1730
1731
    parser.add_argument(
        "--flush-cache",
        action="store_true",
        help="Flush the cache before running the benchmark",
    )
1732
1733
1734
1735
1736
1737
    parser.add_argument(
        "--warmup-requests",
        type=int,
        default=1,
        help="Number of warmup requests to run before the benchmark",
    )
1738
1739
1740

    group = parser.add_argument_group("generated-shared-prefix dataset arguments")
    group.add_argument(
1741
        "--gsp-num-groups",
1742
1743
1744
1745
1746
        type=int,
        default=64,
        help="Number of system prompt groups for generated-shared-prefix dataset",
    )
    group.add_argument(
1747
        "--gsp-prompts-per-group",
1748
1749
1750
1751
1752
        type=int,
        default=16,
        help="Number of prompts per system prompt group for generated-shared-prefix dataset",
    )
    group.add_argument(
1753
        "--gsp-system-prompt-len",
1754
1755
1756
1757
1758
        type=int,
        default=2048,
        help="Target length in tokens for system prompts in generated-shared-prefix dataset",
    )
    group.add_argument(
1759
        "--gsp-question-len",
1760
1761
1762
1763
1764
        type=int,
        default=128,
        help="Target length in tokens for questions in generated-shared-prefix dataset",
    )
    group.add_argument(
1765
        "--gsp-output-len",
1766
1767
1768
1769
        type=int,
        default=256,
        help="Target length in tokens for outputs in generated-shared-prefix dataset",
    )
zhyncs's avatar
zhyncs committed
1770
    args = parser.parse_args()
1771
    run_benchmark(args)