bench_serving.py 39.1 KB
Newer Older
zhyncs's avatar
zhyncs committed
1
2
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/backend_request_func.py
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/benchmark_serving.py
3

Ying Sheng's avatar
Ying Sheng committed
4
"""
5
Benchmark online serving with dynamic requests.
Ying Sheng's avatar
Ying Sheng committed
6
7

Usage:
8
python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Ying Sheng's avatar
Ying Sheng committed
9

10
11
python3 -m sglang.bench_serving --backend sglang --dataset-name random --num-prompts 3000 --random-input 1024 --random-output 1024 --random-range-ratio 0.5
python3 -m sglang.bench_serving --backend sglang --dataset-name random --request-rate-range 1,2,4,8,16,32 --random-input 4096 --random-output 1024 --random-range-ratio 0.125 --multi
Ying Sheng's avatar
Ying Sheng committed
12
"""
zhyncs's avatar
zhyncs committed
13
14
15
16
17
18
19
20
21
22
23

import argparse
import asyncio
import json
import os
import random
import resource
import sys
import time
import traceback
import warnings
24
from argparse import ArgumentParser
zhyncs's avatar
zhyncs committed
25
from dataclasses import dataclass, field
26
from datetime import datetime
27
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple, Union
zhyncs's avatar
zhyncs committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41

import aiohttp
import numpy as np
import requests
from tqdm.asyncio import tqdm
from transformers import (
    AutoTokenizer,
    PreTrainedTokenizer,
    PreTrainedTokenizerBase,
    PreTrainedTokenizerFast,
)

AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)

42
43
global args

zhyncs's avatar
zhyncs committed
44
45
46
47
48
49
50
51

@dataclass
class RequestFuncInput:
    prompt: str
    api_url: str
    prompt_len: int
    output_len: int
    model: str
52
    extra_request_body: Dict[str, Any]
zhyncs's avatar
zhyncs committed
53
54
55
56
57
58
59
60
61
62
63


@dataclass
class RequestFuncOutput:
    generated_text: str = ""
    success: bool = False
    latency: float = 0.0
    ttft: float = 0.0  # Time to first token
    itl: List[float] = field(default_factory=list)  # List of inter-token latencies
    prompt_len: int = 0
    error: str = ""
64
    output_len: int = 0
zhyncs's avatar
zhyncs committed
65
66
67
68
69
70


def remove_prefix(text: str, prefix: str) -> str:
    return text[len(prefix) :] if text.startswith(prefix) else text


71
72
73
74
75
76
77
78
79
80
81
82
83
# trt llm not support ignore_eos
# https://github.com/triton-inference-server/tensorrtllm_backend/issues/505
async def async_request_trt_llm(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith("generate_stream")

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "accumulate_tokens": True,
            "text_input": request_func_input.prompt,
zhyncs's avatar
zhyncs committed
84
            "temperature": 0.000001,
85
86
87
            "top_p": 1.0,
            "max_tokens": request_func_input.output_len,
            "stream": True,
Ying Sheng's avatar
Ying Sheng committed
88
89
            "min_length": request_func_input.output_len,
            "end_id": 1048576,
90
            **request_func_input.extra_request_body,
91
        }
92
93
94
        if args.disable_ignore_eos:
            del payload["min_length"]
            del payload["end_id"]
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(url=api_url, json=payload) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data:")

                        data = json.loads(chunk)
                        output.generated_text += data["text_output"]
                        timestamp = time.perf_counter()
                        # First token
                        if ttft == 0.0:
                            ttft = time.perf_counter() - st
                            output.ttft = ttft

                        # Decoding phase
                        else:
                            output.itl.append(timestamp - most_recent_timestamp)

                        most_recent_timestamp = timestamp

                    output.latency = most_recent_timestamp - st
                    output.success = True
Ying Sheng's avatar
Ying Sheng committed
127
                    output.output_len = request_func_input.output_len
128
129
130
131
132
133
134
135
136
137
138
139
140
141

                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

        if pbar:
            pbar.update(1)
        return output


zhyncs's avatar
zhyncs committed
142
143
144
145
146
147
148
149
150
151
# set ignore_eos True by default
async def async_request_openai_completions(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith(
        "completions"
    ), "OpenAI Completions API URL must end with 'completions'."

Lianmin Zheng's avatar
Lianmin Zheng committed
152
153
    prompt = request_func_input.prompt

zhyncs's avatar
zhyncs committed
154
155
156
    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "model": request_func_input.model,
Lianmin Zheng's avatar
Lianmin Zheng committed
157
            "prompt": prompt,
zhyncs's avatar
zhyncs committed
158
159
160
            "temperature": 0.0,
            "best_of": 1,
            "max_tokens": request_func_input.output_len,
161
            "stream": not args.disable_stream,
162
            "ignore_eos": not args.disable_ignore_eos,
163
            **request_func_input.extra_request_body,
zhyncs's avatar
zhyncs committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        }
        headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
185
                        latency = time.perf_counter() - st
zhyncs's avatar
zhyncs committed
186
                        if chunk == "[DONE]":
187
                            pass
zhyncs's avatar
zhyncs committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["choices"][0]["text"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
202
203
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)
zhyncs's avatar
zhyncs committed
204
205
206
207
208
209
210

                                most_recent_timestamp = timestamp
                                generated_text += data["choices"][0]["text"]

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
211
                    output.output_len = request_func_input.output_len
zhyncs's avatar
zhyncs committed
212
213
214
215
216
217
218
219
220
221
222
223
224
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
async def async_request_sglang_generate(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    prompt = request_func_input.prompt

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "text": prompt,
            "sampling_params": {
                "temperature": 0.0,
                "max_new_tokens": request_func_input.output_len,
                "ignore_eos": not args.disable_ignore_eos,
            },
            "stream": not args.disable_stream,
            **request_func_input.extra_request_body,
        }
        headers = {}

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue
                        # print(chunk_bytes)

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["text"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)

                                most_recent_timestamp = timestamp
                                generated_text = data["text"]

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                    output.output_len = request_func_input.output_len
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


304
async def async_request_gserver(
Lianmin Zheng's avatar
Lianmin Zheng committed
305
306
307
308
309
310
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    raise NotImplementedError()


zhyncs's avatar
zhyncs committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
def get_model(pretrained_model_name_or_path: str) -> str:
    if os.getenv("SGLANG_USE_MODELSCOPE", "False").lower() == "true":
        import huggingface_hub.constants
        from modelscope import snapshot_download

        model_path = snapshot_download(
            model_id=pretrained_model_name_or_path,
            local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
            ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"],
        )

        return model_path
    return pretrained_model_name_or_path


def get_tokenizer(
    pretrained_model_name_or_path: str,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
Lianmin Zheng's avatar
Lianmin Zheng committed
329
330
331
332
333
334
335
    if pretrained_model_name_or_path.endswith(
        ".json"
    ) or pretrained_model_name_or_path.endswith(".model"):
        from sglang.srt.hf_transformers_utils import get_tokenizer

        return get_tokenizer(pretrained_model_name_or_path)

zhyncs's avatar
zhyncs committed
336
337
338
339
340
341
342
343
344
345
    if pretrained_model_name_or_path is not None and not os.path.exists(
        pretrained_model_name_or_path
    ):
        pretrained_model_name_or_path = get_model(pretrained_model_name_or_path)
    return AutoTokenizer.from_pretrained(
        pretrained_model_name_or_path, trust_remote_code=True
    )


ASYNC_REQUEST_FUNCS = {
346
347
348
    "sglang": async_request_sglang_generate,
    "sglang-native": async_request_sglang_generate,
    "sglang-oai": async_request_openai_completions,
zhyncs's avatar
zhyncs committed
349
350
    "vllm": async_request_openai_completions,
    "lmdeploy": async_request_openai_completions,
351
    "trt": async_request_trt_llm,
352
    "gserver": async_request_gserver,
zhyncs's avatar
zhyncs committed
353
354
355
356
357
358
359
360
}


@dataclass
class BenchmarkMetrics:
    completed: int
    total_input: int
    total_output: int
Ying Sheng's avatar
Ying Sheng committed
361
    total_output_retokenized: int
zhyncs's avatar
zhyncs committed
362
363
364
    request_throughput: float
    input_throughput: float
    output_throughput: float
Ying Sheng's avatar
Ying Sheng committed
365
    output_throughput_retokenized: float
zhyncs's avatar
zhyncs committed
366
367
368
369
370
371
372
373
374
375
376
377
    mean_ttft_ms: float
    median_ttft_ms: float
    std_ttft_ms: float
    p99_ttft_ms: float
    mean_tpot_ms: float
    median_tpot_ms: float
    std_tpot_ms: float
    p99_tpot_ms: float
    mean_itl_ms: float
    median_itl_ms: float
    std_itl_ms: float
    p99_itl_ms: float
zhyncs's avatar
zhyncs committed
378
379
    mean_e2e_latency_ms: float
    median_e2e_latency_ms: float
zhyncs's avatar
zhyncs committed
380
381


Lianmin Zheng's avatar
Lianmin Zheng committed
382
SHAREGPT_URL = "https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json"
Lianmin Zheng's avatar
Lianmin Zheng committed
383
384


Lianmin Zheng's avatar
Lianmin Zheng committed
385
386
387
388
def download_and_cache_file(url: str, filename: Optional[str] = None):
    """Read and cache a file from a url."""
    if filename is None:
        filename = os.path.join("/tmp", url.split("/")[-1])
Lianmin Zheng's avatar
Lianmin Zheng committed
389

Lianmin Zheng's avatar
Lianmin Zheng committed
390
391
392
    # Check if the cache file already exists
    if os.path.exists(filename):
        return filename
Lianmin Zheng's avatar
Lianmin Zheng committed
393

Lianmin Zheng's avatar
Lianmin Zheng committed
394
    print(f"Downloading from {url} to {filename}")
Lianmin Zheng's avatar
Lianmin Zheng committed
395

Lianmin Zheng's avatar
Lianmin Zheng committed
396
397
398
    # Stream the response to show the progress bar
    response = requests.get(url, stream=True)
    response.raise_for_status()  # Check for request errors
Lianmin Zheng's avatar
Lianmin Zheng committed
399

Lianmin Zheng's avatar
Lianmin Zheng committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    # Total size of the file in bytes
    total_size = int(response.headers.get("content-length", 0))
    chunk_size = 1024  # Download in chunks of 1KB

    # Use tqdm to display the progress bar
    with open(filename, "wb") as f, tqdm(
        desc=filename,
        total=total_size,
        unit="B",
        unit_scale=True,
        unit_divisor=1024,
    ) as bar:
        for chunk in response.iter_content(chunk_size=chunk_size):
            f.write(chunk)
            bar.update(len(chunk))

    return filename
Lianmin Zheng's avatar
Lianmin Zheng committed
417
418


zhyncs's avatar
zhyncs committed
419
420
421
422
423
424
425
426
427
def sample_sharegpt_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, int, int]]:
    if fixed_output_len is not None and fixed_output_len < 4:
        raise ValueError("output_len too small")

Lianmin Zheng's avatar
Lianmin Zheng committed
428
    # Download sharegpt if necessary
Lianmin Zheng's avatar
Lianmin Zheng committed
429
430
    if not os.path.isfile(dataset_path):
        dataset_path = download_and_cache_file(SHAREGPT_URL)
zhyncs's avatar
zhyncs committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
    dataset = [data for data in dataset if len(data["conversations"]) >= 2]
    # Only keep the first two turns of each conversation.
    dataset = [
        (data["conversations"][0]["value"], data["conversations"][1]["value"])
        for data in dataset
    ]

    # Shuffle the dataset.
    random.shuffle(dataset)

    # Filter out sequences that are too long or too short
    filtered_dataset: List[Tuple[str, int, int]] = []
    for i in range(len(dataset)):
        if len(filtered_dataset) == num_requests:
            break

        # Tokenize the prompts and completions.
        prompt = dataset[i][0]
Lianmin Zheng's avatar
Lianmin Zheng committed
454
        prompt_token_ids = tokenizer.encode(prompt)
zhyncs's avatar
zhyncs committed
455
        completion = dataset[i][1]
Lianmin Zheng's avatar
Lianmin Zheng committed
456
        completion_token_ids = tokenizer.encode(completion)
zhyncs's avatar
zhyncs committed
457
458
459
460
461
462
463
        prompt_len = len(prompt_token_ids)
        output_len = (
            len(completion_token_ids) if fixed_output_len is None else fixed_output_len
        )
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
            continue
Lianmin Zheng's avatar
Lianmin Zheng committed
464
465
466
        if prompt_len > 1024 or (
            prompt_len + output_len > 2048 and fixed_output_len is None
        ):
zhyncs's avatar
zhyncs committed
467
468
469
470
            # Prune too long sequences.
            continue
        filtered_dataset.append((prompt, prompt_len, output_len))

471
472
    print(f"#Input tokens: {np.sum([x[1] for x in filtered_dataset])}")
    print(f"#Output tokens: {np.sum([x[2] for x in filtered_dataset])}")
zhyncs's avatar
zhyncs committed
473
474
475
    return filtered_dataset


476
477
478
479
480
481
def sample_random_requests(
    input_len: int,
    output_len: int,
    num_prompts: int,
    range_ratio: float,
    tokenizer: PreTrainedTokenizerBase,
Lianmin Zheng's avatar
Lianmin Zheng committed
482
    dataset_path: str,
483
484
485
) -> List[Tuple[str, int, int]]:

    input_lens = np.random.randint(
Yineng Zhang's avatar
Yineng Zhang committed
486
        max(int(input_len * range_ratio), 1),
487
488
489
490
491
492
493
494
        input_len + 1,
        size=num_prompts,
    )
    output_lens = np.random.randint(
        int(output_len * range_ratio),
        output_len + 1,
        size=num_prompts,
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
495
496
497
498
499

    if True:
        # Sample token ids from ShareGPT and repeat/truncate them to satisfy the input_lens

        # Download sharegpt if necessary
Lianmin Zheng's avatar
Lianmin Zheng committed
500
501
        if not os.path.isfile(dataset_path):
            dataset_path = download_and_cache_file(SHAREGPT_URL)
Lianmin Zheng's avatar
Lianmin Zheng committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

        # Load the dataset.
        with open(dataset_path) as f:
            dataset = json.load(f)
        # Filter out the conversations with less than 2 turns.
        dataset = [data for data in dataset if len(data["conversations"]) >= 2]
        # Only keep the first two turns of each conversation.
        dataset = [
            (data["conversations"][0]["value"], data["conversations"][1]["value"])
            for data in dataset
        ]

        # Shuffle the dataset.
        random.shuffle(dataset)

        # Filter out sequences that are too long or too short
        input_requests: List[Tuple[str, int, int]] = []
        for i in range(num_prompts):
            # Tokenize the prompts and completions.
            prompt = dataset[i][0]
Lianmin Zheng's avatar
Lianmin Zheng committed
522
            prompt_token_ids = tokenizer.encode(prompt)
Lianmin Zheng's avatar
Lianmin Zheng committed
523
524
            prompt_len = len(prompt_token_ids)

Yineng Zhang's avatar
Yineng Zhang committed
525
            if prompt_len > input_lens[i]:
Lianmin Zheng's avatar
Lianmin Zheng committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
                input_ids = prompt_token_ids[: input_lens[i]]
            else:
                ratio = (input_lens[i] + prompt_len - 1) // prompt_len
                input_ids = (prompt_token_ids * ratio)[: input_lens[i]]
            prompt = tokenizer.decode(input_ids)
            input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
    else:
        # Sample token ids from random integers. This can cause some NaN issues.
        offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
        input_requests = []
        for i in range(num_prompts):
            prompt = tokenizer.decode(
                [
                    (offsets[i] + i + j) % tokenizer.vocab_size
                    for j in range(input_lens[i])
                ]
            )
            input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
544
545
546
547
548
549

    print(f"#Input tokens: {np.sum(input_lens)}")
    print(f"#Output tokens: {np.sum(output_lens)}")
    return input_requests


zhyncs's avatar
zhyncs committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
async def get_request(
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
    input_requests = iter(input_requests)
    for request in input_requests:
        yield request

        if request_rate == float("inf"):
            # If the request rate is infinity, then we don't need to wait.
            continue

        # Sample the request interval from the exponential distribution.
        interval = np.random.exponential(1.0 / request_rate)
        # The next request will be sent after the interval.
        await asyncio.sleep(interval)


def calculate_metrics(
    input_requests: List[Tuple[str, int, int]],
    outputs: List[RequestFuncOutput],
    dur_s: float,
    tokenizer: PreTrainedTokenizerBase,
573
    backend: str,
zhyncs's avatar
zhyncs committed
574
) -> Tuple[BenchmarkMetrics, List[int]]:
Ying Sheng's avatar
Ying Sheng committed
575
576
    output_lens: List[int] = []
    retokenized_output_lens: List[int] = []
zhyncs's avatar
zhyncs committed
577
578
579
580
581
    total_input = 0
    completed = 0
    itls: List[float] = []
    tpots: List[float] = []
    ttfts: List[float] = []
zhyncs's avatar
zhyncs committed
582
    e2e_latencies: List[float] = []
zhyncs's avatar
zhyncs committed
583
584
    for i in range(len(outputs)):
        if outputs[i].success:
Ying Sheng's avatar
Ying Sheng committed
585
586
587
            output_len = outputs[i].output_len
            output_lens.append(output_len)
            retokenized_output_len = len(
Lianmin Zheng's avatar
Lianmin Zheng committed
588
                tokenizer.encode(outputs[i].generated_text, add_special_tokens=False)
Ying Sheng's avatar
Ying Sheng committed
589
590
            )
            retokenized_output_lens.append(retokenized_output_len)
zhyncs's avatar
zhyncs committed
591
592
593
594
595
            total_input += input_requests[i][1]
            if output_len > 1:
                tpots.append((outputs[i].latency - outputs[i].ttft) / (output_len - 1))
            itls += outputs[i].itl
            ttfts.append(outputs[i].ttft)
zhyncs's avatar
zhyncs committed
596
597
598

            e2e_latencies.append(outputs[i].latency)

zhyncs's avatar
zhyncs committed
599
600
            completed += 1
        else:
Ying Sheng's avatar
Ying Sheng committed
601
602
            output_lens.append(0)
            retokenized_output_lens.append(0)
zhyncs's avatar
zhyncs committed
603
604
605
606
607
608
609
610
611
612

    if completed == 0:
        warnings.warn(
            "All requests failed. This is likely due to a misconfiguration "
            "on the benchmark arguments.",
            stacklevel=2,
        )
    metrics = BenchmarkMetrics(
        completed=completed,
        total_input=total_input,
Ying Sheng's avatar
Ying Sheng committed
613
614
        total_output=sum(output_lens),
        total_output_retokenized=sum(retokenized_output_lens),
zhyncs's avatar
zhyncs committed
615
616
        request_throughput=completed / dur_s,
        input_throughput=total_input / dur_s,
Ying Sheng's avatar
Ying Sheng committed
617
618
        output_throughput=sum(output_lens) / dur_s,
        output_throughput_retokenized=sum(retokenized_output_lens) / dur_s,
zhyncs's avatar
zhyncs committed
619
620
621
622
623
624
625
626
627
628
629
630
631
        mean_ttft_ms=np.mean(ttfts or 0)
        * 1000,  # ttfts is empty if streaming is not supported by backend
        median_ttft_ms=np.median(ttfts or 0) * 1000,
        std_ttft_ms=np.std(ttfts or 0) * 1000,
        p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
        mean_tpot_ms=np.mean(tpots or 0) * 1000,
        median_tpot_ms=np.median(tpots or 0) * 1000,
        std_tpot_ms=np.std(tpots or 0) * 1000,
        p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
        mean_itl_ms=np.mean(itls or 0) * 1000,
        median_itl_ms=np.median(itls or 0) * 1000,
        std_itl_ms=np.std(itls or 0) * 1000,
        p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
zhyncs's avatar
zhyncs committed
632
633
        mean_e2e_latency_ms=np.mean(e2e_latencies) * 1000,
        median_e2e_latency_ms=np.median(e2e_latencies) * 1000,
zhyncs's avatar
zhyncs committed
634
635
    )

Ying Sheng's avatar
Ying Sheng committed
636
    return metrics, output_lens
zhyncs's avatar
zhyncs committed
637
638
639
640
641
642
643
644
645
646


async def benchmark(
    backend: str,
    api_url: str,
    model_id: str,
    tokenizer: PreTrainedTokenizerBase,
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
    disable_tqdm: bool,
647
    extra_request_body: Dict[str, Any],
zhyncs's avatar
zhyncs committed
648
649
650
651
652
653
654
655
656
657
658
659
660
661
):
    if backend in ASYNC_REQUEST_FUNCS:
        request_func = ASYNC_REQUEST_FUNCS[backend]
    else:
        raise ValueError(f"Unknown backend: {backend}")

    print("Starting initial single prompt test run...")
    test_prompt, test_prompt_len, test_output_len = input_requests[0]
    test_input = RequestFuncInput(
        model=model_id,
        prompt=test_prompt,
        api_url=api_url,
        prompt_len=test_prompt_len,
        output_len=test_output_len,
662
        extra_request_body=extra_request_body,
zhyncs's avatar
zhyncs committed
663
664
665
666
667
668
669
670
671
672
    )
    test_output = await request_func(request_func_input=test_input)
    if not test_output.success:
        raise ValueError(
            "Initial test run failed - Please make sure benchmark arguments "
            f"are correctly specified. Error: {test_output.error}"
        )
    else:
        print("Initial test run completed. Starting main benchmark run...")

673
674
    time.sleep(1.5)

zhyncs's avatar
zhyncs committed
675
676
677
678
679
680
681
682
683
684
685
686
    pbar = None if disable_tqdm else tqdm(total=len(input_requests))

    benchmark_start_time = time.perf_counter()
    tasks: List[asyncio.Task] = []
    async for request in get_request(input_requests, request_rate):
        prompt, prompt_len, output_len = request
        request_func_input = RequestFuncInput(
            model=model_id,
            prompt=prompt,
            api_url=api_url,
            prompt_len=prompt_len,
            output_len=output_len,
687
            extra_request_body=extra_request_body,
zhyncs's avatar
zhyncs committed
688
689
690
691
692
693
694
695
696
697
698
699
700
        )
        tasks.append(
            asyncio.create_task(
                request_func(request_func_input=request_func_input, pbar=pbar)
            )
        )
    outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)

    if pbar is not None:
        pbar.close()

    benchmark_duration = time.perf_counter() - benchmark_start_time

Ying Sheng's avatar
Ying Sheng committed
701
    metrics, output_lens = calculate_metrics(
zhyncs's avatar
zhyncs committed
702
703
704
705
        input_requests=input_requests,
        outputs=outputs,
        dur_s=benchmark_duration,
        tokenizer=tokenizer,
706
        backend=backend,
zhyncs's avatar
zhyncs committed
707
708
709
    )

    print("\n{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
710
    print("{:<40} {:<10}".format("Backend:", backend))
zhyncs's avatar
zhyncs committed
711
712
713
714
715
    print("{:<40} {:<10}".format("Traffic request rate:", request_rate))
    print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
    print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
    print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
    print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
Ying Sheng's avatar
Ying Sheng committed
716
717
718
719
720
    print(
        "{:<40} {:<10}".format(
            "Total generated tokens (retokenized):", metrics.total_output_retokenized
        )
    )
zhyncs's avatar
zhyncs committed
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
    print(
        "{:<40} {:<10.2f}".format(
            "Request throughput (req/s):", metrics.request_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Input token throughput (tok/s):", metrics.input_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Output token throughput (tok/s):", metrics.output_throughput
        )
    )
zhyncs's avatar
zhyncs committed
736
737
738
739
740
741
742
743
744
    print("{s:{c}^{n}}".format(s="End-to-End Latency", n=50, c="-"))
    print(
        "{:<40} {:<10.2f}".format("Mean E2E Latency (ms):", metrics.mean_e2e_latency_ms)
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Median E2E Latency (ms):", metrics.median_e2e_latency_ms
        )
    )
zhyncs's avatar
zhyncs committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
    print("{s:{c}^{n}}".format(s="Time to First Token", n=50, c="-"))
    print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
    print("{:<40} {:<10.2f}".format("Median TTFT (ms):", metrics.median_ttft_ms))
    print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
    print(
        "{s:{c}^{n}}".format(s="Time per Output Token (excl. 1st token)", n=50, c="-")
    )
    print("{:<40} {:<10.2f}".format("Mean TPOT (ms):", metrics.mean_tpot_ms))
    print("{:<40} {:<10.2f}".format("Median TPOT (ms):", metrics.median_tpot_ms))
    print("{:<40} {:<10.2f}".format("P99 TPOT (ms):", metrics.p99_tpot_ms))
    print("{s:{c}^{n}}".format(s="Inter-token Latency", n=50, c="-"))
    print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))
    print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))
    print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms))
    print("=" * 50)

zhyncs's avatar
zhyncs committed
761
762
763
764
765
766
767
768
769
    if (
        metrics.median_ttft_ms is not None
        and metrics.mean_itl_ms is not None
        and metrics.output_throughput is not None
    ):
        result = {
            "backend": args.backend,
            "dataset_name": args.dataset_name,
            "request_rate": request_rate,
770
771
772
773
774
775
776
777
            "total_input_tokens": metrics.total_input,
            "total_output_tokens": metrics.total_output,
            "total_output_tokens_retokenized": metrics.total_output_retokenized,
            "mean_e2e_latency_ms": metrics.mean_e2e_latency_ms,
            "median_e2e_latency_ms": metrics.median_e2e_latency_ms,
            "median_ttft_ms": metrics.median_ttft_ms,
            "median_itl_ms": metrics.median_itl_ms,
            "output_throughput": metrics.output_throughput,
zhyncs's avatar
zhyncs committed
778
779
780
781
            "sharegpt_output_len": args.sharegpt_output_len,
            "random_input_len": args.random_input_len,
            "random_output_len": args.random_output_len,
            "random_range_ratio": args.random_range_ratio,
782
783
            "duration": benchmark_duration,
            "completed": metrics.completed,
zhyncs's avatar
zhyncs committed
784
785
786
787
        }
    else:
        print(f"Error running benchmark for request rate: {request_rate}")
        print("-" * 30)
788

zhyncs's avatar
zhyncs committed
789
790
791
792
793
794
795
    # Determine output file name
    if args.output_file:
        output_file_name = args.output_file
    else:
        now = datetime.now().strftime("%m%d")
        if args.dataset_name == "random":
            output_file_name = f"{args.backend}_{now}_{args.num_prompts}_{args.random_input_len}_{args.random_output_len}.jsonl"
796
        else:
zhyncs's avatar
zhyncs committed
797
            output_file_name = f"{args.backend}_{now}_{args.num_prompts}_sharegpt.jsonl"
798

zhyncs's avatar
zhyncs committed
799
800
801
    # Append results to a JSONL file
    with open(output_file_name, "a") as file:
        file.write(json.dumps(result) + "\n")
802

zhyncs's avatar
zhyncs committed
803
804
805
806
807
    result = {
        "duration": benchmark_duration,
        "completed": metrics.completed,
        "total_input_tokens": metrics.total_input,
        "total_output_tokens": metrics.total_output,
Ying Sheng's avatar
Ying Sheng committed
808
        "total_output_tokens_retokenized": metrics.total_output_retokenized,
zhyncs's avatar
zhyncs committed
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
        "request_throughput": metrics.request_throughput,
        "input_throughput": metrics.input_throughput,
        "output_throughput": metrics.output_throughput,
        "mean_ttft_ms": metrics.mean_ttft_ms,
        "median_ttft_ms": metrics.median_ttft_ms,
        "std_ttft_ms": metrics.std_ttft_ms,
        "p99_ttft_ms": metrics.p99_ttft_ms,
        "mean_tpot_ms": metrics.mean_tpot_ms,
        "median_tpot_ms": metrics.median_tpot_ms,
        "std_tpot_ms": metrics.std_tpot_ms,
        "p99_tpot_ms": metrics.p99_tpot_ms,
        "mean_itl_ms": metrics.mean_itl_ms,
        "median_itl_ms": metrics.median_itl_ms,
        "std_itl_ms": metrics.std_itl_ms,
        "p99_itl_ms": metrics.p99_itl_ms,
        "input_lens": [output.prompt_len for output in outputs],
Ying Sheng's avatar
Ying Sheng committed
825
        "output_lens": output_lens,
zhyncs's avatar
zhyncs committed
826
827
828
829
        "ttfts": [output.ttft for output in outputs],
        "itls": [output.itl for output in outputs],
        "generated_texts": [output.generated_text for output in outputs],
        "errors": [output.error for output in outputs],
zhyncs's avatar
zhyncs committed
830
831
        "mean_e2e_latency_ms": metrics.mean_e2e_latency_ms,
        "median_e2e_latency_ms": metrics.median_e2e_latency_ms,
zhyncs's avatar
zhyncs committed
832
833
834
835
    }
    return result


836
def parse_request_rate_range(request_rate_range):
zhyncs's avatar
zhyncs committed
837
838
839
840
841
    if len(request_rate_range.split(",")) == 3:
        start, stop, step = map(int, request_rate_range.split(","))
        return list(range(start, stop, step))
    else:
        return list(map(int, request_rate_range.split(",")))
842
843


844
845
846
847
848
849
850
851
852
def check_chat_template(model_path):
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        return "chat_template" in tokenizer.init_kwargs
    except Exception as e:
        print(f"Fail to load tokenizer config with error={e}")
        return False


853
854
855
856
def run_benchmark(args_: argparse.Namespace):
    global args
    args = args_

Lianmin Zheng's avatar
Lianmin Zheng committed
857
    # Set global environments
858
    set_ulimit()
zhyncs's avatar
zhyncs committed
859
860
861
    random.seed(args.seed)
    np.random.seed(args.seed)

862
863
864
865
    extra_request_body = {}
    if args.extra_request_body:
        extra_request_body = json.loads(args.extra_request_body)

Lianmin Zheng's avatar
Lianmin Zheng committed
866
    # Set url
zhyncs's avatar
zhyncs committed
867
868
869
    if args.port is None:
        args.port = {
            "sglang": 30000,
870
871
            "sglang-native": 30000,
            "sglang-oai": 30000,
zhyncs's avatar
zhyncs committed
872
873
            "lmdeploy": 23333,
            "vllm": 8000,
874
            "trt": 8000,
875
            "gserver": 9988,
zhyncs's avatar
zhyncs committed
876
877
878
879
880
881
882
883
        }.get(args.backend, 30000)

    model_url = (
        f"{args.base_url}/v1/models"
        if args.base_url
        else f"http://{args.host}:{args.port}/v1/models"
    )

884
885
886
887
888
889
890
891
892
893
894
895
896
    if args.backend in ["sglang", "sglang-native"]:
        api_url = (
            f"{args.base_url}/generate"
            if args.base_url
            else f"http://{args.host}:{args.port}/generate"
        )
    elif args.backend in ["sglang-oai", "vllm", "lmdeploy"]:
        api_url = (
            f"{args.base_url}/v1/completions"
            if args.base_url
            else f"http://{args.host}:{args.port}/v1/completions"
        )
    elif args.backend == "trt":
897
898
899
900
901
902
903
904
        api_url = (
            f"{args.base_url}/v2/models/ensemble/generate_stream"
            if args.base_url
            else f"http://{args.host}:{args.port}/v2/models/ensemble/generate_stream"
        )
        if args.model is None:
            print("Please provide a model using `--model` when using `trt` backend.")
            sys.exit(1)
905
    elif args.backend == "gserver":
Lianmin Zheng's avatar
Lianmin Zheng committed
906
907
        api_url = args.base_url if args.base_url else f"{args.host}:{args.port}"
        args.model = args.model or "default"
908

Lianmin Zheng's avatar
Lianmin Zheng committed
909
    # Get model name
zhyncs's avatar
zhyncs committed
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
    if args.model is None:
        try:
            response = requests.get(model_url)
            model_list = response.json().get("data", [])
            args.model = model_list[0]["id"] if model_list else None
        except Exception as e:
            print(f"Failed to fetch model from {model_url}. Error: {e}")
            print(
                "Please specify the correct host and port using `--host` and `--port`."
            )
            sys.exit(1)

    if args.model is None:
        print("No model specified or found. Please provide a model using `--model`.")
        sys.exit(1)

926
927
928
929
930
931
    if not check_chat_template(args.model):
        print(
            "\nWARNING It is recommended to use the `Chat` or `Instruct` model for benchmarking.\n"
            "Because when the tokenizer counts the output tokens, if there is gibberish, it might count incorrectly.\n"
        )

zhyncs's avatar
zhyncs committed
932
933
    print(f"{args}\n")

Lianmin Zheng's avatar
Lianmin Zheng committed
934
    # Read dataset
zhyncs's avatar
zhyncs committed
935
936
937
938
939
940
    backend = args.backend
    model_id = args.model
    tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model

    tokenizer = get_tokenizer(tokenizer_id)

941
    if args.dataset_name == "sharegpt":
942
        assert args.random_input_len is None and args.random_output_len is None
943
944
945
946
947
948
949
        input_requests = sample_sharegpt_requests(
            dataset_path=args.dataset_path,
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            fixed_output_len=args.sharegpt_output_len,
        )
    elif args.dataset_name == "random":
950
        assert args.random_input_len is not None and args.random_output_len is not None
951
952
953
954
955
956
        input_requests = sample_random_requests(
            input_len=args.random_input_len,
            output_len=args.random_output_len,
            num_prompts=args.num_prompts,
            range_ratio=args.random_range_ratio,
            tokenizer=tokenizer,
Lianmin Zheng's avatar
Lianmin Zheng committed
957
            dataset_path=args.dataset_path,
958
959
960
        )
    else:
        raise ValueError(f"Unknown dataset: {args.dataset_name}")
zhyncs's avatar
zhyncs committed
961

Lianmin Zheng's avatar
Lianmin Zheng committed
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
    if not args.multi:
        return asyncio.run(
            benchmark(
                backend=backend,
                api_url=api_url,
                model_id=model_id,
                tokenizer=tokenizer,
                input_requests=input_requests,
                request_rate=args.request_rate,
                disable_tqdm=args.disable_tqdm,
                extra_request_body=extra_request_body,
            )
        )
    else:
        # Benchmark multiple rps. TODO: use a fixed duration to compute num_prompts
977
978
979
980
981
982
983
984
985
986
987
988
        request_rates = parse_request_rate_range(args.request_rate_range)

        for rate in request_rates:
            asyncio.run(
                benchmark(
                    backend=backend,
                    api_url=api_url,
                    model_id=model_id,
                    tokenizer=tokenizer,
                    input_requests=input_requests,
                    request_rate=rate,
                    disable_tqdm=args.disable_tqdm,
989
                    extra_request_body=extra_request_body,
990
991
                )
            )
zhyncs's avatar
zhyncs committed
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005


def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
            print(f"Fail to set RLIMIT_NOFILE: {e}")


if __name__ == "__main__":
1006
    parser = ArgumentParser(description="Benchmark the online serving throughput.")
zhyncs's avatar
zhyncs committed
1007
1008
1009
1010
    parser.add_argument(
        "--backend",
        type=str,
        choices=list(ASYNC_REQUEST_FUNCS.keys()),
1011
        default="sglang",
zhyncs's avatar
zhyncs committed
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
        help="Must specify a backend, depending on the LLM Inference Engine.",
    )
    parser.add_argument(
        "--base-url",
        type=str,
        default=None,
        help="Server or API base url if not using http host and port.",
    )
    parser.add_argument(
        "--host", type=str, default="0.0.0.0", help="Default host is 0.0.0.0."
    )
    parser.add_argument(
        "--port",
        type=int,
        help="If not set, the default port is configured according to its default value for different LLM Inference Engines.",
    )
    parser.add_argument(
1029
1030
1031
1032
1033
1034
1035
1036
        "--dataset-name",
        type=str,
        default="sharegpt",
        choices=["sharegpt", "random"],
        help="Name of the dataset to benchmark on.",
    )
    parser.add_argument(
        "--dataset-path", type=str, default="", help="Path to the dataset."
zhyncs's avatar
zhyncs committed
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
    )
    parser.add_argument(
        "--model",
        type=str,
        help="Name or path of the model. If not set, the default model will request /v1/models for conf.",
    )
    parser.add_argument(
        "--tokenizer",
        type=str,
        help="Name or path of the tokenizer. If not set, using the model conf.",
    )
    parser.add_argument(
        "--num-prompts",
        type=int,
        default=1000,
        help="Number of prompts to process. Default is 1000.",
    )
    parser.add_argument(
        "--sharegpt-output-len",
        type=int,
        default=None,
        help="Output length for each request. Overrides the output length from the ShareGPT dataset.",
    )
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
    parser.add_argument(
        "--random-input-len",
        type=int,
        help="Number of input tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-output-len",
        type=int,
        help="Number of output tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-range-ratio",
        type=float,
Yineng Zhang's avatar
Yineng Zhang committed
1073
        default=0.0,
1074
1075
1076
        help="Range of sampled ratio of input/output length, "
        "used only for random dataset.",
    )
zhyncs's avatar
zhyncs committed
1077
1078
1079
    parser.add_argument(
        "--request-rate",
        type=float,
1080
        default=float("inf"),
zhyncs's avatar
zhyncs committed
1081
        help="Number of requests per second. If this is inf, then all the requests are sent at time 0. "
min-xu-et's avatar
min-xu-et committed
1082
        "Otherwise, we use Poisson process to synthesize the request arrival times. Default is inf.",
zhyncs's avatar
zhyncs committed
1083
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
1084
    parser.add_argument("--seed", type=int, default=1, help="The random seed.")
1085
1086
1087
1088
1089
1090
1091
1092
1093
    parser.add_argument(
        "--multi",
        action="store_true",
        help="Use request rate range rather than single value.",
    )
    parser.add_argument(
        "--request-rate-range",
        type=str,
        default="2,34,2",
zhyncs's avatar
zhyncs committed
1094
        help="Range of request rates in the format start,stop,step. Default is 2,34,2. It also supports a list of request rates, requiring the parameters to not equal three.",
1095
1096
    )
    parser.add_argument("--output-file", type=str, help="Output JSONL file name.")
1097
1098
1099
1100
1101
    parser.add_argument(
        "--disable-tqdm",
        action="store_true",
        help="Specify to disable tqdm progress bar.",
    )
1102
1103
1104
1105
1106
    parser.add_argument(
        "--disable-stream",
        action="store_true",
        help="Disable streaming mode.",
    )
1107
1108
1109
1110
1111
    parser.add_argument(
        "--disable-ignore-eos",
        action="store_true",
        help="Disable ignoring EOS.",
    )
1112
1113
1114
1115
1116
1117
1118
    parser.add_argument(
        "--extra-request-body",
        metavar='{"key1": "value1", "key2": "value2"}',
        type=str,
        help="Append given JSON object to the request payload. You can use this to specify"
        "additional generate params like sampling params.",
    )
zhyncs's avatar
zhyncs committed
1119
    args = parser.parse_args()
1120
    run_benchmark(args)