bench_serving.py 54 KB
Newer Older
zhyncs's avatar
zhyncs committed
1
2
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/backend_request_func.py
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/benchmark_serving.py
3

Ying Sheng's avatar
Ying Sheng committed
4
"""
5
Benchmark online serving with dynamic requests.
Ying Sheng's avatar
Ying Sheng committed
6
7

Usage:
8
python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Ying Sheng's avatar
Ying Sheng committed
9

10
python3 -m sglang.bench_serving --backend sglang --dataset-name random --num-prompts 3000 --random-input 1024 --random-output 1024 --random-range-ratio 0.5
Ying Sheng's avatar
Ying Sheng committed
11
"""
zhyncs's avatar
zhyncs committed
12
13
14
15
16

import argparse
import asyncio
import json
import os
17
import pickle
zhyncs's avatar
zhyncs committed
18
19
20
21
22
23
import random
import resource
import sys
import time
import traceback
import warnings
24
from argparse import ArgumentParser
zhyncs's avatar
zhyncs committed
25
from dataclasses import dataclass, field
26
from datetime import datetime
27
from pathlib import Path
28
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple, Union
zhyncs's avatar
zhyncs committed
29
30
31
32
33
34
35
36
37
38
39
40
41

import aiohttp
import numpy as np
import requests
from tqdm.asyncio import tqdm
from transformers import (
    AutoTokenizer,
    PreTrainedTokenizer,
    PreTrainedTokenizerBase,
    PreTrainedTokenizerFast,
)

AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
42
ASSISTANT_SUFFIX = "Assistant:"
zhyncs's avatar
zhyncs committed
43

44
45
global args

zhyncs's avatar
zhyncs committed
46
47
48
49
50
51
52
53

@dataclass
class RequestFuncInput:
    prompt: str
    api_url: str
    prompt_len: int
    output_len: int
    model: str
54
    lora_name: str
55
    extra_request_body: Dict[str, Any]
zhyncs's avatar
zhyncs committed
56
57
58
59
60
61
62
63
64
65
66


@dataclass
class RequestFuncOutput:
    generated_text: str = ""
    success: bool = False
    latency: float = 0.0
    ttft: float = 0.0  # Time to first token
    itl: List[float] = field(default_factory=list)  # List of inter-token latencies
    prompt_len: int = 0
    error: str = ""
67
    output_len: int = 0
zhyncs's avatar
zhyncs committed
68
69
70
71
72
73


def remove_prefix(text: str, prefix: str) -> str:
    return text[len(prefix) :] if text.startswith(prefix) else text


74
75
76
77
def remove_suffix(text: str, suffix: str) -> str:
    return text[: -len(suffix)] if text.endswith(suffix) else text


78
79
80
81
82
83
84
85
def get_auth_headers() -> Dict[str, str]:
    api_key = os.environ.get("OPENAI_API_KEY")
    if api_key:
        return {"Authorization": f"Bearer {api_key}"}
    else:
        return {}


86
# trt llm does not support ignore_eos
87
88
89
90
91
92
93
94
95
96
97
98
# https://github.com/triton-inference-server/tensorrtllm_backend/issues/505
async def async_request_trt_llm(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith("generate_stream")

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "accumulate_tokens": True,
            "text_input": request_func_input.prompt,
zhyncs's avatar
zhyncs committed
99
            "temperature": 0.000001,
100
101
102
            "top_p": 1.0,
            "max_tokens": request_func_input.output_len,
            "stream": True,
Ying Sheng's avatar
Ying Sheng committed
103
104
            "min_length": request_func_input.output_len,
            "end_id": 1048576,
105
            **request_func_input.extra_request_body,
106
        }
107
108
109
        if args.disable_ignore_eos:
            del payload["min_length"]
            del payload["end_id"]
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(url=api_url, json=payload) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data:")

                        data = json.loads(chunk)
                        output.generated_text += data["text_output"]
                        timestamp = time.perf_counter()
                        # First token
                        if ttft == 0.0:
                            ttft = time.perf_counter() - st
                            output.ttft = ttft

                        # Decoding phase
                        else:
                            output.itl.append(timestamp - most_recent_timestamp)

                        most_recent_timestamp = timestamp

                    output.latency = most_recent_timestamp - st
                    output.success = True
Ying Sheng's avatar
Ying Sheng committed
142
                    output.output_len = request_func_input.output_len
143
144
145
146
147
148
149
150
151
152
153
154
155
156

                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

        if pbar:
            pbar.update(1)
        return output


zhyncs's avatar
zhyncs committed
157
158
159
160
161
162
163
164
165
166
# set ignore_eos True by default
async def async_request_openai_completions(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith(
        "completions"
    ), "OpenAI Completions API URL must end with 'completions'."

Lianmin Zheng's avatar
Lianmin Zheng committed
167
168
    prompt = request_func_input.prompt

zhyncs's avatar
zhyncs committed
169
170
171
    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "model": request_func_input.model,
Lianmin Zheng's avatar
Lianmin Zheng committed
172
            "prompt": prompt,
zhyncs's avatar
zhyncs committed
173
174
175
            "temperature": 0.0,
            "best_of": 1,
            "max_tokens": request_func_input.output_len,
176
            "stream": not args.disable_stream,
177
            "ignore_eos": not args.disable_ignore_eos,
178
            **request_func_input.extra_request_body,
zhyncs's avatar
zhyncs committed
179
        }
180
        headers = get_auth_headers()
zhyncs's avatar
zhyncs committed
181
182
183
184
185

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
186
        output_len = request_func_input.output_len
zhyncs's avatar
zhyncs committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
201
                        latency = time.perf_counter() - st
zhyncs's avatar
zhyncs committed
202
                        if chunk == "[DONE]":
203
                            pass
zhyncs's avatar
zhyncs committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["choices"][0]["text"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
218
219
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)
zhyncs's avatar
zhyncs committed
220
221
222

                                most_recent_timestamp = timestamp
                                generated_text += data["choices"][0]["text"]
Lzhang-hub's avatar
Lzhang-hub committed
223
                                output_len = (data.get("usage") or {}).get(
224
225
                                    "completion_tokens", output_len
                                )
zhyncs's avatar
zhyncs committed
226
227
228
229

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
230
                    output.output_len = output_len
zhyncs's avatar
zhyncs committed
231
232
233
234
235
236
237
238
239
240
241
242
243
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
async def async_request_truss(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url

    prompt = request_func_input.prompt

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "model": request_func_input.model,
            "prompt": prompt,
            "temperature": 0.0,
            "best_of": 1,
            "max_tokens": request_func_input.output_len,
            "stream": not args.disable_stream,
            "ignore_eos": not args.disable_ignore_eos,
            **request_func_input.extra_request_body,
        }
263
        headers = get_auth_headers()
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["choices"][0]["delta"]["content"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)

                                most_recent_timestamp = timestamp
                                generated_text += data["choices"][0]["delta"]["content"]

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                    output.output_len = request_func_input.output_len
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
async def async_request_sglang_generate(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    prompt = request_func_input.prompt

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "text": prompt,
            "sampling_params": {
                "temperature": 0.0,
                "max_new_tokens": request_func_input.output_len,
                "ignore_eos": not args.disable_ignore_eos,
            },
            "stream": not args.disable_stream,
339
            "lora_path": request_func_input.lora_name,
340
341
            "return_logprob": args.return_logprob,
            "logprob_start_len": -1,
342
343
            **request_func_input.extra_request_body,
        }
344
        headers = get_auth_headers()
345
346
347
348
349

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
350
        output_len = request_func_input.output_len
351
352
353
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
354
        last_output_len = 0
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue
                        # print(chunk_bytes)

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["text"]:
                                timestamp = time.perf_counter()
378
379
380
                                generated_text = data["text"]
                                output_len = data["meta_info"]["completion_tokens"]

381
382
383
384
385
386
387
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
388
389
390
391
392
393
394
                                    num_new_tokens = output_len - last_output_len
                                    if num_new_tokens == 0:
                                        continue
                                    adjust_itl = (
                                        timestamp - most_recent_timestamp
                                    ) / num_new_tokens
                                    output.itl.extend([adjust_itl] * num_new_tokens)
395
396

                                most_recent_timestamp = timestamp
Lianmin Zheng's avatar
Lianmin Zheng committed
397
                                last_output_len = output_len
398
399
400
401

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
402
                    output.output_len = output_len
403
404
405
406
407
408
409
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))
410
            print(f"{output.error=}")
411
412
413
414
415
416

    if pbar:
        pbar.update(1)
    return output


417
async def async_request_gserver(
Lianmin Zheng's avatar
Lianmin Zheng committed
418
419
420
421
422
423
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    raise NotImplementedError()


424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
async def async_request_profile(api_url: str) -> RequestFuncOutput:
    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        output = RequestFuncOutput()
        try:
            async with session.post(url=api_url) as response:
                if response.status == 200:
                    output.success = True
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    return output


zhyncs's avatar
zhyncs committed
442
def get_model(pretrained_model_name_or_path: str) -> str:
443
    if os.getenv("SGLANG_USE_MODELSCOPE", "false").lower() == "true":
zhyncs's avatar
zhyncs committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
        import huggingface_hub.constants
        from modelscope import snapshot_download

        model_path = snapshot_download(
            model_id=pretrained_model_name_or_path,
            local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
            ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"],
        )

        return model_path
    return pretrained_model_name_or_path


def get_tokenizer(
    pretrained_model_name_or_path: str,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
Lianmin Zheng's avatar
Lianmin Zheng committed
460
461
462
463
464
465
466
    if pretrained_model_name_or_path.endswith(
        ".json"
    ) or pretrained_model_name_or_path.endswith(".model"):
        from sglang.srt.hf_transformers_utils import get_tokenizer

        return get_tokenizer(pretrained_model_name_or_path)

zhyncs's avatar
zhyncs committed
467
468
469
470
471
472
473
474
475
    if pretrained_model_name_or_path is not None and not os.path.exists(
        pretrained_model_name_or_path
    ):
        pretrained_model_name_or_path = get_model(pretrained_model_name_or_path)
    return AutoTokenizer.from_pretrained(
        pretrained_model_name_or_path, trust_remote_code=True
    )


476
477
478
479
480
481
482
def get_dataset(args, tokenizer):
    if args.dataset_name == "sharegpt":
        input_requests = sample_sharegpt_requests(
            dataset_path=args.dataset_path,
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            fixed_output_len=args.sharegpt_output_len,
483
            context_len=args.sharegpt_context_len,
484
            prompt_suffix=args.prompt_suffix,
485
            apply_chat_template=args.apply_chat_template,
486
487
488
489
490
491
492
493
494
495
496
497
        )
    elif args.dataset_name == "random":
        input_requests = sample_random_requests(
            input_len=args.random_input_len,
            output_len=args.random_output_len,
            num_prompts=args.num_prompts,
            range_ratio=args.random_range_ratio,
            tokenizer=tokenizer,
            dataset_path=args.dataset_path,
        )
    elif args.dataset_name == "generated-shared-prefix":
        input_requests = sample_generated_shared_prefix_requests(
498
499
500
501
502
            num_groups=args.gsp_num_groups,
            prompts_per_group=args.gsp_prompts_per_group,
            system_prompt_len=args.gsp_system_prompt_len,
            question_len=args.gsp_question_len,
            output_len=args.gsp_output_len,
503
504
505
506
507
508
509
            tokenizer=tokenizer,
        )
    else:
        raise ValueError(f"Unknown dataset: {args.dataset_name}")
    return input_requests


zhyncs's avatar
zhyncs committed
510
ASYNC_REQUEST_FUNCS = {
511
512
513
    "sglang": async_request_sglang_generate,
    "sglang-native": async_request_sglang_generate,
    "sglang-oai": async_request_openai_completions,
zhyncs's avatar
zhyncs committed
514
515
    "vllm": async_request_openai_completions,
    "lmdeploy": async_request_openai_completions,
516
    "trt": async_request_trt_llm,
517
    "gserver": async_request_gserver,
518
    "truss": async_request_truss,
zhyncs's avatar
zhyncs committed
519
520
521
522
523
524
525
526
}


@dataclass
class BenchmarkMetrics:
    completed: int
    total_input: int
    total_output: int
Ying Sheng's avatar
Ying Sheng committed
527
    total_output_retokenized: int
zhyncs's avatar
zhyncs committed
528
529
530
    request_throughput: float
    input_throughput: float
    output_throughput: float
Ying Sheng's avatar
Ying Sheng committed
531
    output_throughput_retokenized: float
532
533
    total_throughput: float
    total_throughput_retokenized: float
zhyncs's avatar
zhyncs committed
534
535
536
537
538
539
540
541
542
543
544
    mean_ttft_ms: float
    median_ttft_ms: float
    std_ttft_ms: float
    p99_ttft_ms: float
    mean_tpot_ms: float
    median_tpot_ms: float
    std_tpot_ms: float
    p99_tpot_ms: float
    mean_itl_ms: float
    median_itl_ms: float
    std_itl_ms: float
545
    p95_itl_ms: float
zhyncs's avatar
zhyncs committed
546
    p99_itl_ms: float
547
    max_itl_ms: float
zhyncs's avatar
zhyncs committed
548
549
    mean_e2e_latency_ms: float
    median_e2e_latency_ms: float
550
551
    std_e2e_latency_ms: float
    p99_e2e_latency_ms: float
552
    concurrency: float
zhyncs's avatar
zhyncs committed
553
554


Lianmin Zheng's avatar
Lianmin Zheng committed
555
SHAREGPT_URL = "https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json"
Lianmin Zheng's avatar
Lianmin Zheng committed
556
557


Lianmin Zheng's avatar
Lianmin Zheng committed
558
559
560
561
def download_and_cache_file(url: str, filename: Optional[str] = None):
    """Read and cache a file from a url."""
    if filename is None:
        filename = os.path.join("/tmp", url.split("/")[-1])
Lianmin Zheng's avatar
Lianmin Zheng committed
562

Lianmin Zheng's avatar
Lianmin Zheng committed
563
564
565
    # Check if the cache file already exists
    if os.path.exists(filename):
        return filename
Lianmin Zheng's avatar
Lianmin Zheng committed
566

Lianmin Zheng's avatar
Lianmin Zheng committed
567
    print(f"Downloading from {url} to {filename}")
Lianmin Zheng's avatar
Lianmin Zheng committed
568

Lianmin Zheng's avatar
Lianmin Zheng committed
569
570
571
    # Stream the response to show the progress bar
    response = requests.get(url, stream=True)
    response.raise_for_status()  # Check for request errors
Lianmin Zheng's avatar
Lianmin Zheng committed
572

Lianmin Zheng's avatar
Lianmin Zheng committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
    # Total size of the file in bytes
    total_size = int(response.headers.get("content-length", 0))
    chunk_size = 1024  # Download in chunks of 1KB

    # Use tqdm to display the progress bar
    with open(filename, "wb") as f, tqdm(
        desc=filename,
        total=total_size,
        unit="B",
        unit_scale=True,
        unit_divisor=1024,
    ) as bar:
        for chunk in response.iter_content(chunk_size=chunk_size):
            f.write(chunk)
            bar.update(len(chunk))

    return filename
Lianmin Zheng's avatar
Lianmin Zheng committed
590
591


zhyncs's avatar
zhyncs committed
592
593
594
595
596
def sample_sharegpt_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    fixed_output_len: Optional[int] = None,
597
    context_len: Optional[int] = None,
598
    prompt_suffix: Optional[str] = "",
599
    apply_chat_template=False,
zhyncs's avatar
zhyncs committed
600
601
602
603
) -> List[Tuple[str, int, int]]:
    if fixed_output_len is not None and fixed_output_len < 4:
        raise ValueError("output_len too small")

Lianmin Zheng's avatar
Lianmin Zheng committed
604
    # Download sharegpt if necessary
605
    if not os.path.isfile(dataset_path) and dataset_path == "":
Lianmin Zheng's avatar
Lianmin Zheng committed
606
        dataset_path = download_and_cache_file(SHAREGPT_URL)
zhyncs's avatar
zhyncs committed
607
608
609
610

    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
611

zhyncs's avatar
zhyncs committed
612
    # Filter out the conversations with less than 2 turns.
613
614
615
616
617
    dataset = [
        data
        for data in dataset
        if len(data.get("conversations", data.get("conversation", []))) >= 2
    ]
zhyncs's avatar
zhyncs committed
618
619
    # Only keep the first two turns of each conversation.
    dataset = [
620
621
622
623
        (
            data.get("conversations", data.get("conversation", []))[0]["value"],
            data.get("conversations", data.get("conversation", []))[1]["value"],
        )
zhyncs's avatar
zhyncs committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
        for data in dataset
    ]

    # Shuffle the dataset.
    random.shuffle(dataset)

    # Filter out sequences that are too long or too short
    filtered_dataset: List[Tuple[str, int, int]] = []
    for i in range(len(dataset)):
        if len(filtered_dataset) == num_requests:
            break

        # Tokenize the prompts and completions.
        prompt = dataset[i][0]
638
        if prompt_suffix:
639
640
641
642
643
            prompt = (
                remove_suffix(prompt, ASSISTANT_SUFFIX)
                + prompt_suffix
                + ASSISTANT_SUFFIX
            )
644
645
646
647
648
649
650
651
652

        if apply_chat_template:
            prompt = tokenizer.apply_chat_template(
                [{"role": "user", "content": prompt}],
                add_generation_prompt=True,
                tokenize=False,
            )
            prompt = prompt.replace(tokenizer.bos_token, "")

Lianmin Zheng's avatar
Lianmin Zheng committed
653
        prompt_token_ids = tokenizer.encode(prompt)
zhyncs's avatar
zhyncs committed
654
        completion = dataset[i][1]
Lianmin Zheng's avatar
Lianmin Zheng committed
655
        completion_token_ids = tokenizer.encode(completion)
zhyncs's avatar
zhyncs committed
656
657
658
659
        prompt_len = len(prompt_token_ids)
        output_len = (
            len(completion_token_ids) if fixed_output_len is None else fixed_output_len
        )
660

661
        if prompt_len < 2 or output_len < 2:
zhyncs's avatar
zhyncs committed
662
663
            # Prune too short sequences.
            continue
664
665

        if context_len and prompt_len + output_len > context_len:
zhyncs's avatar
zhyncs committed
666
667
            # Prune too long sequences.
            continue
668

zhyncs's avatar
zhyncs committed
669
670
        filtered_dataset.append((prompt, prompt_len, output_len))

671
672
    print(f"#Input tokens: {np.sum([x[1] for x in filtered_dataset])}")
    print(f"#Output tokens: {np.sum([x[2] for x in filtered_dataset])}")
zhyncs's avatar
zhyncs committed
673
674
675
    return filtered_dataset


676
677
678
679
680
681
def sample_random_requests(
    input_len: int,
    output_len: int,
    num_prompts: int,
    range_ratio: float,
    tokenizer: PreTrainedTokenizerBase,
Lianmin Zheng's avatar
Lianmin Zheng committed
682
    dataset_path: str,
683
684
685
) -> List[Tuple[str, int, int]]:

    input_lens = np.random.randint(
Yineng Zhang's avatar
Yineng Zhang committed
686
        max(int(input_len * range_ratio), 1),
687
688
689
690
691
692
693
694
        input_len + 1,
        size=num_prompts,
    )
    output_lens = np.random.randint(
        int(output_len * range_ratio),
        output_len + 1,
        size=num_prompts,
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
695
696
697
698
699

    if True:
        # Sample token ids from ShareGPT and repeat/truncate them to satisfy the input_lens

        # Download sharegpt if necessary
Lianmin Zheng's avatar
Lianmin Zheng committed
700
701
        if not os.path.isfile(dataset_path):
            dataset_path = download_and_cache_file(SHAREGPT_URL)
Lianmin Zheng's avatar
Lianmin Zheng committed
702
703
704
705
706

        # Load the dataset.
        with open(dataset_path) as f:
            dataset = json.load(f)
        # Filter out the conversations with less than 2 turns.
707
708
709
710
711
        dataset = [
            data
            for data in dataset
            if len(data.get("conversations", data.get("conversation", []))) >= 2
        ]
Lianmin Zheng's avatar
Lianmin Zheng committed
712
713
        # Only keep the first two turns of each conversation.
        dataset = [
714
715
716
717
            (
                data.get("conversations", data.get("conversation", []))[0]["value"],
                data.get("conversations", data.get("conversation", []))[1]["value"],
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
718
719
720
721
722
723
724
            for data in dataset
        ]
        # Shuffle the dataset.
        random.shuffle(dataset)

        # Filter out sequences that are too long or too short
        input_requests: List[Tuple[str, int, int]] = []
725
726
727
728
729
        for data in dataset:
            i = len(input_requests)
            if i == num_prompts:
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
730
            # Tokenize the prompts and completions.
731
            prompt = data[0]
Lianmin Zheng's avatar
Lianmin Zheng committed
732
            prompt_token_ids = tokenizer.encode(prompt)
Lianmin Zheng's avatar
Lianmin Zheng committed
733
734
            prompt_len = len(prompt_token_ids)

735
736
737
738
            # Skip empty prompt
            if prompt_len == 0:
                continue

Yineng Zhang's avatar
Yineng Zhang committed
739
            if prompt_len > input_lens[i]:
Lianmin Zheng's avatar
Lianmin Zheng committed
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
                input_ids = prompt_token_ids[: input_lens[i]]
            else:
                ratio = (input_lens[i] + prompt_len - 1) // prompt_len
                input_ids = (prompt_token_ids * ratio)[: input_lens[i]]
            prompt = tokenizer.decode(input_ids)
            input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
    else:
        # Sample token ids from random integers. This can cause some NaN issues.
        offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
        input_requests = []
        for i in range(num_prompts):
            prompt = tokenizer.decode(
                [
                    (offsets[i] + i + j) % tokenizer.vocab_size
                    for j in range(input_lens[i])
                ]
            )
            input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
758
759
760
761
762
763

    print(f"#Input tokens: {np.sum(input_lens)}")
    print(f"#Output tokens: {np.sum(output_lens)}")
    return input_requests


764
765
766
767
768
769
770
def gen_prompt(tokenizer, token_num):
    """Generate a random prompt of specified token length using tokenizer vocabulary."""
    all_available_tokens = list(tokenizer.get_vocab().values())
    selected_tokens = random.choices(all_available_tokens, k=token_num)
    return tokenizer.decode(selected_tokens)


771
772
773
774
775
776
def get_gen_prefix_cache_path(args, tokenizer):
    """Create cache directory under ~/.cache/sglang/benchmark"""
    cache_dir = Path.home() / ".cache" / "sglang" / "benchmark"

    # Create a unique cache filename based on the generation parameters
    cache_key = (
777
778
        f"gen_shared_prefix_{args.gsp_num_groups}_{args.gsp_prompts_per_group}_"
        f"{args.gsp_system_prompt_len}_{args.gsp_question_len}_{args.gsp_output_len}_"
779
780
781
782
783
        f"{tokenizer.__class__.__name__}.pkl"
    )
    return cache_dir / cache_key


784
785
786
787
788
789
790
791
def sample_generated_shared_prefix_requests(
    num_groups: int,
    prompts_per_group: int,
    system_prompt_len: int,
    question_len: int,
    output_len: int,
    tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, int, int]]:
792
793
794
795
796
797
798
    """Generate benchmark requests with shared system prompts using random tokens and caching."""
    cache_path = get_gen_prefix_cache_path(args, tokenizer)

    # Try to load from cache first
    if cache_path.exists():
        print(f"\nLoading cached generated input data from {cache_path}")
        with open(cache_path, "rb") as f:
799
800
            return pickle.load(f)

801
802
    print("\nGenerating new input data...")

803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
    # Generate system prompts for each group
    system_prompts = []
    for _ in range(num_groups):
        system_prompt = gen_prompt(tokenizer, system_prompt_len)
        system_prompts.append(system_prompt)

    # Generate questions
    questions = []
    for _ in range(num_groups * prompts_per_group):
        question = gen_prompt(tokenizer, question_len)
        questions.append(question)

    # Combine system prompts with questions
    input_requests = []
    total_input_tokens = 0
    total_output_tokens = 0

820
    for group_idx in tqdm(range(num_groups), desc="Generating system prompt"):
821
        system_prompt = system_prompts[group_idx]
822
823
824
        for prompt_idx in tqdm(
            range(prompts_per_group), desc="Generating questions", leave=False
        ):
825
826
827
828
829
830
831
832
            question = questions[group_idx * prompts_per_group + prompt_idx]
            full_prompt = f"{system_prompt}\n\n{question}"
            prompt_len = len(tokenizer.encode(full_prompt))

            input_requests.append((full_prompt, prompt_len, output_len))
            total_input_tokens += prompt_len
            total_output_tokens += output_len

833
834
835
836
    # Shuffle questions
    random.shuffle(input_requests)

    # Print statistics
837
838
839
840
841
842
843
844
845
846
847
848
    print(f"\nGenerated shared prefix dataset statistics:")
    print(f"Number of groups: {num_groups}")
    print(f"Prompts per group: {prompts_per_group}")
    print(f"Total prompts: {len(input_requests)}")
    print(f"Total input tokens: {total_input_tokens}")
    print(f"Total output tokens: {total_output_tokens}")
    print(
        f"Average system prompt length: {sum(len(tokenizer.encode(sp)) for sp in system_prompts) / len(system_prompts):.1f} tokens"
    )
    print(
        f"Average question length: {sum(len(tokenizer.encode(q)) for q in questions) / len(questions):.1f} tokens\n"
    )
849
850
851
852
853
854

    # Save to cache
    cache_path.parent.mkdir(parents=True, exist_ok=True)
    print(f"Caching generated input data to {cache_path}")
    with open(cache_path, "wb") as f:
        pickle.dump(input_requests, f)
855
856
857
858

    return input_requests


zhyncs's avatar
zhyncs committed
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
async def get_request(
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
    input_requests = iter(input_requests)
    for request in input_requests:
        yield request

        if request_rate == float("inf"):
            # If the request rate is infinity, then we don't need to wait.
            continue

        # Sample the request interval from the exponential distribution.
        interval = np.random.exponential(1.0 / request_rate)
        # The next request will be sent after the interval.
        await asyncio.sleep(interval)


def calculate_metrics(
    input_requests: List[Tuple[str, int, int]],
    outputs: List[RequestFuncOutput],
    dur_s: float,
    tokenizer: PreTrainedTokenizerBase,
882
    backend: str,
zhyncs's avatar
zhyncs committed
883
) -> Tuple[BenchmarkMetrics, List[int]]:
Ying Sheng's avatar
Ying Sheng committed
884
885
    output_lens: List[int] = []
    retokenized_output_lens: List[int] = []
zhyncs's avatar
zhyncs committed
886
887
888
889
890
    total_input = 0
    completed = 0
    itls: List[float] = []
    tpots: List[float] = []
    ttfts: List[float] = []
zhyncs's avatar
zhyncs committed
891
    e2e_latencies: List[float] = []
zhyncs's avatar
zhyncs committed
892
893
    for i in range(len(outputs)):
        if outputs[i].success:
Ying Sheng's avatar
Ying Sheng committed
894
895
896
            output_len = outputs[i].output_len
            output_lens.append(output_len)
            retokenized_output_len = len(
Lianmin Zheng's avatar
Lianmin Zheng committed
897
                tokenizer.encode(outputs[i].generated_text, add_special_tokens=False)
Ying Sheng's avatar
Ying Sheng committed
898
899
            )
            retokenized_output_lens.append(retokenized_output_len)
zhyncs's avatar
zhyncs committed
900
901
902
903
904
            total_input += input_requests[i][1]
            if output_len > 1:
                tpots.append((outputs[i].latency - outputs[i].ttft) / (output_len - 1))
            itls += outputs[i].itl
            ttfts.append(outputs[i].ttft)
zhyncs's avatar
zhyncs committed
905
906
907

            e2e_latencies.append(outputs[i].latency)

zhyncs's avatar
zhyncs committed
908
909
            completed += 1
        else:
Ying Sheng's avatar
Ying Sheng committed
910
911
            output_lens.append(0)
            retokenized_output_lens.append(0)
zhyncs's avatar
zhyncs committed
912
913
914
915
916
917
918
919
920
921

    if completed == 0:
        warnings.warn(
            "All requests failed. This is likely due to a misconfiguration "
            "on the benchmark arguments.",
            stacklevel=2,
        )
    metrics = BenchmarkMetrics(
        completed=completed,
        total_input=total_input,
Ying Sheng's avatar
Ying Sheng committed
922
923
        total_output=sum(output_lens),
        total_output_retokenized=sum(retokenized_output_lens),
zhyncs's avatar
zhyncs committed
924
925
        request_throughput=completed / dur_s,
        input_throughput=total_input / dur_s,
Ying Sheng's avatar
Ying Sheng committed
926
927
        output_throughput=sum(output_lens) / dur_s,
        output_throughput_retokenized=sum(retokenized_output_lens) / dur_s,
928
929
930
        total_throughput=(total_input + sum(output_lens)) / dur_s,
        total_throughput_retokenized=(total_input + sum(retokenized_output_lens))
        / dur_s,
zhyncs's avatar
zhyncs committed
931
932
933
934
935
936
937
938
939
940
941
942
        mean_ttft_ms=np.mean(ttfts or 0)
        * 1000,  # ttfts is empty if streaming is not supported by backend
        median_ttft_ms=np.median(ttfts or 0) * 1000,
        std_ttft_ms=np.std(ttfts or 0) * 1000,
        p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
        mean_tpot_ms=np.mean(tpots or 0) * 1000,
        median_tpot_ms=np.median(tpots or 0) * 1000,
        std_tpot_ms=np.std(tpots or 0) * 1000,
        p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
        mean_itl_ms=np.mean(itls or 0) * 1000,
        median_itl_ms=np.median(itls or 0) * 1000,
        std_itl_ms=np.std(itls or 0) * 1000,
943
        p95_itl_ms=np.percentile(itls or 0, 95) * 1000,
zhyncs's avatar
zhyncs committed
944
        p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
945
        max_itl_ms=np.max(itls or 0) * 1000,
zhyncs's avatar
zhyncs committed
946
947
        mean_e2e_latency_ms=np.mean(e2e_latencies) * 1000,
        median_e2e_latency_ms=np.median(e2e_latencies) * 1000,
948
949
        std_e2e_latency_ms=np.std(e2e_latencies) * 1000,
        p99_e2e_latency_ms=np.percentile(e2e_latencies, 99) * 1000,
950
        concurrency=np.sum(e2e_latencies) / dur_s,
zhyncs's avatar
zhyncs committed
951
952
    )

Ying Sheng's avatar
Ying Sheng committed
953
    return metrics, output_lens
zhyncs's avatar
zhyncs committed
954
955
956
957
958


async def benchmark(
    backend: str,
    api_url: str,
959
    base_url: str,
zhyncs's avatar
zhyncs committed
960
961
962
963
    model_id: str,
    tokenizer: PreTrainedTokenizerBase,
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
964
    max_concurrency: Optional[int],
zhyncs's avatar
zhyncs committed
965
    disable_tqdm: bool,
966
    lora_name: str,
967
    extra_request_body: Dict[str, Any],
968
    profile: bool,
969
    pd_seperated: bool = False,
zhyncs's avatar
zhyncs committed
970
971
972
973
974
975
):
    if backend in ASYNC_REQUEST_FUNCS:
        request_func = ASYNC_REQUEST_FUNCS[backend]
    else:
        raise ValueError(f"Unknown backend: {backend}")

976
    # Limit concurrency
977
978
979
980
981
982
983
984
985
    # From https://github.com/vllm-project/vllm/pull/9390
    semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None

    async def limited_request_func(request_func_input, pbar):
        if semaphore is None:
            return await request_func(request_func_input=request_func_input, pbar=pbar)
        async with semaphore:
            return await request_func(request_func_input=request_func_input, pbar=pbar)

986
    # Warmup
zhyncs's avatar
zhyncs committed
987
988
989
990
991
992
993
    print("Starting initial single prompt test run...")
    test_prompt, test_prompt_len, test_output_len = input_requests[0]
    test_input = RequestFuncInput(
        model=model_id,
        prompt=test_prompt,
        api_url=api_url,
        prompt_len=test_prompt_len,
994
        output_len=min(test_output_len, 32),
995
        lora_name=lora_name,
996
        extra_request_body=extra_request_body,
zhyncs's avatar
zhyncs committed
997
998
999
1000
1001
1002
1003
1004
1005
1006
    )
    test_output = await request_func(request_func_input=test_input)
    if not test_output.success:
        raise ValueError(
            "Initial test run failed - Please make sure benchmark arguments "
            f"are correctly specified. Error: {test_output.error}"
        )
    else:
        print("Initial test run completed. Starting main benchmark run...")

1007
1008
1009
1010
1011
    # Flush cache
    if "sglang" in backend:
        requests.post(base_url + "/flush_cache")

    time.sleep(1.0)
1012

1013
    # Start profiler
1014
1015
1016
1017
1018
1019
1020
1021
    if profile:
        print("Starting profiler...")
        profile_output = await async_request_profile(
            api_url=base_url + "/start_profile"
        )
        if profile_output.success:
            print("Profiler started")

zhyncs's avatar
zhyncs committed
1022
1023
    pbar = None if disable_tqdm else tqdm(total=len(input_requests))

1024
    # Run all requests
zhyncs's avatar
zhyncs committed
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
    benchmark_start_time = time.perf_counter()
    tasks: List[asyncio.Task] = []
    async for request in get_request(input_requests, request_rate):
        prompt, prompt_len, output_len = request
        request_func_input = RequestFuncInput(
            model=model_id,
            prompt=prompt,
            api_url=api_url,
            prompt_len=prompt_len,
            output_len=output_len,
1035
            lora_name=lora_name,
1036
            extra_request_body=extra_request_body,
zhyncs's avatar
zhyncs committed
1037
1038
1039
        )
        tasks.append(
            asyncio.create_task(
1040
                limited_request_func(request_func_input=request_func_input, pbar=pbar)
zhyncs's avatar
zhyncs committed
1041
1042
1043
1044
            )
        )
    outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)

1045
    # Stop profiler
1046
1047
1048
1049
1050
1051
    if profile:
        print("Stopping profiler...")
        profile_output = await async_request_profile(api_url=base_url + "/stop_profile")
        if profile_output.success:
            print("Profiler stopped")

zhyncs's avatar
zhyncs committed
1052
1053
1054
    if pbar is not None:
        pbar.close()

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
    if "sglang" in backend:
        server_info = requests.get(base_url + "/get_server_info")
        if pd_seperated:
            accept_length = server_info.json()["decode"][0].get(
                "avg_spec_accept_length", None
            )
        else:
            accept_length = server_info.json().get("avg_spec_accept_length", None)
    else:
        accept_length = None

1066
    # Compute metrics and print results
zhyncs's avatar
zhyncs committed
1067
    benchmark_duration = time.perf_counter() - benchmark_start_time
Ying Sheng's avatar
Ying Sheng committed
1068
    metrics, output_lens = calculate_metrics(
zhyncs's avatar
zhyncs committed
1069
1070
1071
1072
        input_requests=input_requests,
        outputs=outputs,
        dur_s=benchmark_duration,
        tokenizer=tokenizer,
1073
        backend=backend,
zhyncs's avatar
zhyncs committed
1074
1075
1076
    )

    print("\n{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
1077
    print("{:<40} {:<10}".format("Backend:", backend))
zhyncs's avatar
zhyncs committed
1078
    print("{:<40} {:<10}".format("Traffic request rate:", request_rate))
1079
1080
1081
1082
1083
1084
    print(
        "{:<40} {:<10}".format(
            "Max reqeuest concurrency:",
            max_concurrency if max_concurrency else "not set",
        )
    )
zhyncs's avatar
zhyncs committed
1085
1086
1087
1088
    print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
    print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
    print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
    print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
Ying Sheng's avatar
Ying Sheng committed
1089
1090
1091
1092
1093
    print(
        "{:<40} {:<10}".format(
            "Total generated tokens (retokenized):", metrics.total_output_retokenized
        )
    )
zhyncs's avatar
zhyncs committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
    print(
        "{:<40} {:<10.2f}".format(
            "Request throughput (req/s):", metrics.request_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Input token throughput (tok/s):", metrics.input_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Output token throughput (tok/s):", metrics.output_throughput
        )
    )
1109
1110
1111
1112
1113
    print(
        "{:<40} {:<10.2f}".format(
            "Total token throughput (tok/s):", metrics.total_throughput
        )
    )
1114
    print("{:<40} {:<10.2f}".format("Concurrency:", metrics.concurrency))
1115
1116
    if accept_length:
        print("{:<40} {:<10.2f}".format("Accept length:", accept_length))
zhyncs's avatar
zhyncs committed
1117
1118
1119
1120
1121
1122
1123
1124
1125
    print("{s:{c}^{n}}".format(s="End-to-End Latency", n=50, c="-"))
    print(
        "{:<40} {:<10.2f}".format("Mean E2E Latency (ms):", metrics.mean_e2e_latency_ms)
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Median E2E Latency (ms):", metrics.median_e2e_latency_ms
        )
    )
zhyncs's avatar
zhyncs committed
1126
1127
1128
1129
    print("{s:{c}^{n}}".format(s="Time to First Token", n=50, c="-"))
    print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
    print("{:<40} {:<10.2f}".format("Median TTFT (ms):", metrics.median_ttft_ms))
    print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
1130
    print("{s:{c}^{n}}".format(s="Inter-Token Latency", n=50, c="-"))
zhyncs's avatar
zhyncs committed
1131
1132
    print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))
    print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))
1133
    print("{:<40} {:<10.2f}".format("P95 ITL (ms):", metrics.p95_itl_ms))
zhyncs's avatar
zhyncs committed
1134
    print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms))
1135
    print("{:<40} {:<10.2f}".format("Max ITL (ms):", metrics.max_itl_ms))
zhyncs's avatar
zhyncs committed
1136
1137
    print("=" * 50)

zhyncs's avatar
zhyncs committed
1138
1139
1140
1141
1142
1143
    if (
        metrics.median_ttft_ms is not None
        and metrics.mean_itl_ms is not None
        and metrics.output_throughput is not None
    ):
        result = {
1144
            # Arguments
zhyncs's avatar
zhyncs committed
1145
1146
1147
            "backend": args.backend,
            "dataset_name": args.dataset_name,
            "request_rate": request_rate,
1148
            "max_concurrency": max_concurrency,
1149
1150
1151
1152
1153
1154
1155
            "sharegpt_output_len": args.sharegpt_output_len,
            "random_input_len": args.random_input_len,
            "random_output_len": args.random_output_len,
            "random_range_ratio": args.random_range_ratio,
            # Results
            "duration": benchmark_duration,
            "completed": metrics.completed,
1156
1157
1158
            "total_input_tokens": metrics.total_input,
            "total_output_tokens": metrics.total_output,
            "total_output_tokens_retokenized": metrics.total_output_retokenized,
1159
1160
1161
            "request_throughput": metrics.request_throughput,
            "input_throughput": metrics.input_throughput,
            "output_throughput": metrics.output_throughput,
1162
1163
            "mean_e2e_latency_ms": metrics.mean_e2e_latency_ms,
            "median_e2e_latency_ms": metrics.median_e2e_latency_ms,
1164
1165
            "std_e2e_latency_ms": metrics.std_e2e_latency_ms,
            "p99_e2e_latency_ms": metrics.p99_e2e_latency_ms,
1166
            "mean_ttft_ms": metrics.mean_ttft_ms,
1167
            "median_ttft_ms": metrics.median_ttft_ms,
1168
1169
1170
1171
1172
1173
            "std_ttft_ms": metrics.std_ttft_ms,
            "p99_ttft_ms": metrics.p99_ttft_ms,
            "mean_tpot_ms": metrics.mean_tpot_ms,
            "median_tpot_ms": metrics.median_tpot_ms,
            "std_tpot_ms": metrics.std_tpot_ms,
            "p99_tpot_ms": metrics.p99_tpot_ms,
1174
            "mean_itl_ms": metrics.mean_itl_ms,
1175
            "median_itl_ms": metrics.median_itl_ms,
1176
            "std_itl_ms": metrics.std_itl_ms,
1177
            "p95_itl_ms": metrics.p95_itl_ms,
1178
            "p99_itl_ms": metrics.p99_itl_ms,
1179
            "concurrency": metrics.concurrency,
1180
            "accept_length": accept_length,
zhyncs's avatar
zhyncs committed
1181
1182
1183
1184
        }
    else:
        print(f"Error running benchmark for request rate: {request_rate}")
        print("-" * 30)
1185

zhyncs's avatar
zhyncs committed
1186
1187
1188
1189
1190
1191
1192
    # Determine output file name
    if args.output_file:
        output_file_name = args.output_file
    else:
        now = datetime.now().strftime("%m%d")
        if args.dataset_name == "random":
            output_file_name = f"{args.backend}_{now}_{args.num_prompts}_{args.random_input_len}_{args.random_output_len}.jsonl"
1193
        else:
zhyncs's avatar
zhyncs committed
1194
            output_file_name = f"{args.backend}_{now}_{args.num_prompts}_sharegpt.jsonl"
1195

zhyncs's avatar
zhyncs committed
1196
1197
1198
    # Append results to a JSONL file
    with open(output_file_name, "a") as file:
        file.write(json.dumps(result) + "\n")
1199

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
    result.update(
        {
            "input_lens": [output.prompt_len for output in outputs],
            "output_lens": output_lens,
            "ttfts": [output.ttft for output in outputs],
            "itls": [output.itl for output in outputs],
            "generated_texts": [output.generated_text for output in outputs],
            "errors": [output.error for output in outputs],
        }
    )
zhyncs's avatar
zhyncs committed
1210
1211
1212
    return result


1213
1214
1215
1216
1217
1218
1219
1220
1221
def check_chat_template(model_path):
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        return "chat_template" in tokenizer.init_kwargs
    except Exception as e:
        print(f"Fail to load tokenizer config with error={e}")
        return False


1222
1223
1224
1225
1226
1227
def set_global_args(args_: argparse.Namespace):
    """Set the global args."""
    global args
    args = args_


1228
1229
1230
1231
def run_benchmark(args_: argparse.Namespace):
    global args
    args = args_

1232
1233
1234
1235
    # Set default value for max_concurrency if not present
    if not hasattr(args, "max_concurrency"):
        args.max_concurrency = None

1236
1237
    print(f"benchmark_args={args}")

Lianmin Zheng's avatar
Lianmin Zheng committed
1238
    # Set global environments
1239
    set_ulimit()
zhyncs's avatar
zhyncs committed
1240
1241
1242
    random.seed(args.seed)
    np.random.seed(args.seed)

1243
1244
1245
1246
    extra_request_body = {}
    if args.extra_request_body:
        extra_request_body = json.loads(args.extra_request_body)

Lianmin Zheng's avatar
Lianmin Zheng committed
1247
    # Set url
zhyncs's avatar
zhyncs committed
1248
1249
1250
    if args.port is None:
        args.port = {
            "sglang": 30000,
1251
1252
            "sglang-native": 30000,
            "sglang-oai": 30000,
zhyncs's avatar
zhyncs committed
1253
1254
            "lmdeploy": 23333,
            "vllm": 8000,
1255
            "trt": 8000,
1256
            "gserver": 9988,
1257
            "truss": 8080,
zhyncs's avatar
zhyncs committed
1258
1259
1260
1261
1262
1263
1264
1265
        }.get(args.backend, 30000)

    model_url = (
        f"{args.base_url}/v1/models"
        if args.base_url
        else f"http://{args.host}:{args.port}/v1/models"
    )

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
    if args.backend in ["sglang", "sglang-native"]:
        api_url = (
            f"{args.base_url}/generate"
            if args.base_url
            else f"http://{args.host}:{args.port}/generate"
        )
    elif args.backend in ["sglang-oai", "vllm", "lmdeploy"]:
        api_url = (
            f"{args.base_url}/v1/completions"
            if args.base_url
            else f"http://{args.host}:{args.port}/v1/completions"
        )
    elif args.backend == "trt":
1279
1280
1281
1282
1283
1284
1285
1286
        api_url = (
            f"{args.base_url}/v2/models/ensemble/generate_stream"
            if args.base_url
            else f"http://{args.host}:{args.port}/v2/models/ensemble/generate_stream"
        )
        if args.model is None:
            print("Please provide a model using `--model` when using `trt` backend.")
            sys.exit(1)
1287
    elif args.backend == "gserver":
Lianmin Zheng's avatar
Lianmin Zheng committed
1288
1289
        api_url = args.base_url if args.base_url else f"{args.host}:{args.port}"
        args.model = args.model or "default"
1290
1291
1292
1293
1294
1295
    elif args.backend == "truss":
        api_url = (
            f"{args.base_url}/v1/models/model:predict"
            if args.base_url
            else f"http://{args.host}:{args.port}/v1/models/model:predict"
        )
1296
1297
1298
    base_url = (
        f"http://{args.host}:{args.port}" if args.base_url is None else args.base_url
    )
1299

Lianmin Zheng's avatar
Lianmin Zheng committed
1300
    # Get model name
zhyncs's avatar
zhyncs committed
1301
    if args.model is None:
1302
1303
1304
1305
1306
        if args.backend == "truss":
            print(
                "Please provide a model with `--model` when using truss backend. e.g. --model meta-llama/Llama-3.1-8B-Instruct"
            )
            sys.exit(1)
zhyncs's avatar
zhyncs committed
1307
        try:
1308
            response = requests.get(model_url, headers=get_auth_headers())
zhyncs's avatar
zhyncs committed
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
            model_list = response.json().get("data", [])
            args.model = model_list[0]["id"] if model_list else None
        except Exception as e:
            print(f"Failed to fetch model from {model_url}. Error: {e}")
            print(
                "Please specify the correct host and port using `--host` and `--port`."
            )
            sys.exit(1)

    if args.model is None:
        print("No model specified or found. Please provide a model using `--model`.")
        sys.exit(1)

1322
1323
1324
1325
1326
1327
    if not check_chat_template(args.model):
        print(
            "\nWARNING It is recommended to use the `Chat` or `Instruct` model for benchmarking.\n"
            "Because when the tokenizer counts the output tokens, if there is gibberish, it might count incorrectly.\n"
        )

zhyncs's avatar
zhyncs committed
1328
1329
    print(f"{args}\n")

Lianmin Zheng's avatar
Lianmin Zheng committed
1330
    # Read dataset
zhyncs's avatar
zhyncs committed
1331
1332
1333
1334
    backend = args.backend
    model_id = args.model
    tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
    tokenizer = get_tokenizer(tokenizer_id)
1335
    input_requests = get_dataset(args, tokenizer)
zhyncs's avatar
zhyncs committed
1336

1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
    return asyncio.run(
        benchmark(
            backend=backend,
            api_url=api_url,
            base_url=base_url,
            model_id=model_id,
            tokenizer=tokenizer,
            input_requests=input_requests,
            request_rate=args.request_rate,
            max_concurrency=args.max_concurrency,
            disable_tqdm=args.disable_tqdm,
            lora_name=args.lora_name,
            extra_request_body=extra_request_body,
            profile=args.profile,
            pd_seperated=args.pd_seperated,
Lianmin Zheng's avatar
Lianmin Zheng committed
1352
        )
1353
    )
zhyncs's avatar
zhyncs committed
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367


def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
            print(f"Fail to set RLIMIT_NOFILE: {e}")


if __name__ == "__main__":
1368
    parser = ArgumentParser(description="Benchmark the online serving throughput.")
zhyncs's avatar
zhyncs committed
1369
1370
1371
1372
    parser.add_argument(
        "--backend",
        type=str,
        choices=list(ASYNC_REQUEST_FUNCS.keys()),
1373
        default="sglang",
zhyncs's avatar
zhyncs committed
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
        help="Must specify a backend, depending on the LLM Inference Engine.",
    )
    parser.add_argument(
        "--base-url",
        type=str,
        default=None,
        help="Server or API base url if not using http host and port.",
    )
    parser.add_argument(
        "--host", type=str, default="0.0.0.0", help="Default host is 0.0.0.0."
    )
    parser.add_argument(
        "--port",
        type=int,
        help="If not set, the default port is configured according to its default value for different LLM Inference Engines.",
    )
    parser.add_argument(
1391
1392
1393
        "--dataset-name",
        type=str,
        default="sharegpt",
1394
        choices=["sharegpt", "random", "generated-shared-prefix"],
1395
1396
1397
1398
        help="Name of the dataset to benchmark on.",
    )
    parser.add_argument(
        "--dataset-path", type=str, default="", help="Path to the dataset."
zhyncs's avatar
zhyncs committed
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
    )
    parser.add_argument(
        "--model",
        type=str,
        help="Name or path of the model. If not set, the default model will request /v1/models for conf.",
    )
    parser.add_argument(
        "--tokenizer",
        type=str,
        help="Name or path of the tokenizer. If not set, using the model conf.",
    )
    parser.add_argument(
        "--num-prompts",
        type=int,
        default=1000,
        help="Number of prompts to process. Default is 1000.",
    )
    parser.add_argument(
        "--sharegpt-output-len",
        type=int,
        default=None,
        help="Output length for each request. Overrides the output length from the ShareGPT dataset.",
    )
1422
1423
1424
1425
1426
1427
    parser.add_argument(
        "--sharegpt-context-len",
        type=int,
        default=None,
        help="The context length of the model for the ShareGPT dataset. Requests longer than the context length will be dropped.",
    )
1428
1429
1430
    parser.add_argument(
        "--random-input-len",
        type=int,
1431
        default=1024,
1432
1433
1434
1435
        help="Number of input tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-output-len",
1436
        default=1024,
1437
1438
1439
1440
1441
1442
        type=int,
        help="Number of output tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-range-ratio",
        type=float,
Yineng Zhang's avatar
Yineng Zhang committed
1443
        default=0.0,
1444
1445
1446
        help="Range of sampled ratio of input/output length, "
        "used only for random dataset.",
    )
zhyncs's avatar
zhyncs committed
1447
1448
1449
    parser.add_argument(
        "--request-rate",
        type=float,
1450
        default=float("inf"),
zhyncs's avatar
zhyncs committed
1451
        help="Number of requests per second. If this is inf, then all the requests are sent at time 0. "
min-xu-et's avatar
min-xu-et committed
1452
        "Otherwise, we use Poisson process to synthesize the request arrival times. Default is inf.",
zhyncs's avatar
zhyncs committed
1453
    )
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
    parser.add_argument(
        "--max-concurrency",
        type=int,
        default=None,
        help="Maximum number of concurrent requests. This can be used "
        "to help simulate an environment where a higher level component "
        "is enforcing a maximum number of concurrent requests. While the "
        "--request-rate argument controls the rate at which requests are "
        "initiated, this argument will control how many are actually allowed "
        "to execute at a time. This means that when used in combination, the "
        "actual request rate may be lower than specified with --request-rate, "
        "if the server is not processing requests fast enough to keep up.",
    )
1467
    parser.add_argument("--output-file", type=str, help="Output JSONL file name.")
1468
1469
1470
1471
1472
    parser.add_argument(
        "--disable-tqdm",
        action="store_true",
        help="Specify to disable tqdm progress bar.",
    )
1473
1474
1475
1476
1477
    parser.add_argument(
        "--disable-stream",
        action="store_true",
        help="Disable streaming mode.",
    )
1478
    parser.add_argument(
1479
        "--return-logprob",
1480
        action="store_true",
1481
        help="Return logprob.",
1482
    )
1483
    parser.add_argument("--seed", type=int, default=1, help="The random seed.")
1484
    parser.add_argument(
1485
        "--disable-ignore-eos",
1486
        action="store_true",
1487
        help="Disable ignoring EOS.",
1488
    )
1489
1490
1491
1492
1493
1494
1495
    parser.add_argument(
        "--extra-request-body",
        metavar='{"key1": "value1", "key2": "value2"}',
        type=str,
        help="Append given JSON object to the request payload. You can use this to specify"
        "additional generate params like sampling params.",
    )
1496
1497
1498
1499
1500
    parser.add_argument(
        "--apply-chat-template",
        action="store_true",
        help="Apply chat template",
    )
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
    parser.add_argument(
        "--profile",
        action="store_true",
        help="Use Torch Profiler. The endpoint must be launched with "
        "SGLANG_TORCH_PROFILER_DIR to enable profiler.",
    )
    parser.add_argument(
        "--lora-name",
        type=str,
        default=None,
        help="The name of LoRA adapter",
    )
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
    parser.add_argument(
        "--prompt-suffix",
        type=str,
        default="",
        help="Suffix applied to the end of all user prompts, followed by assistant prompt suffix.",
    )
    parser.add_argument(
        "--pd-seperated",
        action="store_true",
        help="Benchmark PD disaggregation server",
    )
1524
1525
1526

    group = parser.add_argument_group("generated-shared-prefix dataset arguments")
    group.add_argument(
1527
        "--gsp-num-groups",
1528
1529
1530
1531
1532
        type=int,
        default=64,
        help="Number of system prompt groups for generated-shared-prefix dataset",
    )
    group.add_argument(
1533
        "--gsp-prompts-per-group",
1534
1535
1536
1537
1538
        type=int,
        default=16,
        help="Number of prompts per system prompt group for generated-shared-prefix dataset",
    )
    group.add_argument(
1539
        "--gsp-system-prompt-len",
1540
1541
1542
1543
1544
        type=int,
        default=2048,
        help="Target length in tokens for system prompts in generated-shared-prefix dataset",
    )
    group.add_argument(
1545
        "--gsp-question-len",
1546
1547
1548
1549
1550
        type=int,
        default=128,
        help="Target length in tokens for questions in generated-shared-prefix dataset",
    )
    group.add_argument(
1551
        "--gsp-output-len",
1552
1553
1554
1555
        type=int,
        default=256,
        help="Target length in tokens for outputs in generated-shared-prefix dataset",
    )
zhyncs's avatar
zhyncs committed
1556
    args = parser.parse_args()
1557
    run_benchmark(args)